Thursday, July 23, 2020

Thursday, July 23, 2020 — 4:00 PM EDT

Applications of Nonstandard Analysis to Markov Processes

Nonstandard analysis, a powerful machinery derived from mathematical logic, has had many applications in probability theory as well as stochastic processes. Nonstandard analysis allows construction of a single object---a hyperfinite probability space---which satisfies all the first order logical properties of a finite probability space, but which can be simultaneously viewed as a measure-theoretical probability space via the Loeb construction. As a consequence, the hyperfinite/measure duality has proven to be particularly in porting discrete results into their continuous settings. 

In this talk, for every general-state-space discrete-time Markov process satisfying appropriate conditions, we construct a hyperfinite Markov process which has all the basic order logical properties of a finite Markov process to represent it.  We show that the mixing time and the hitting time agree with each other up to some multiplicative constants for discrete-time general-state-space reversible Markov processes satisfying certain condition. Finally, we show that our result is applicable to a large class of Gibbs samplers and Metropolis-Hasting algorithms.

Please note: This seminar will be delivered online through Webex. To join, please follow this link: Virtual seminar by Kevin (Haosui) Duanmu.

S M T W T F S
28
29
30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
  1. 2024 (1)
    1. August (1)
  2. 2023 (24)
    1. April (2)
    2. March (12)
    3. February (3)
    4. January (7)
  3. 2022 (83)
    1. December (6)
    2. November (11)
    3. October (6)
    4. September (4)
    5. July (3)
    6. June (3)
    7. May (4)
    8. April (8)
    9. March (12)
    10. February (7)
    11. January (19)
  4. 2021 (89)
  5. 2020 (71)
    1. December (2)
    2. November (13)
    3. October (16)
    4. September (7)
    5. August (5)
    6. July (3)
    7. June (2)
    8. May (1)
    9. March (4)
    10. February (4)
    11. January (14)
  6. 2019 (4)
  7. 2018 (2)
  8. 2017 (2)
  9. 2016 (3)
  10. 2015 (2)
  11. 2014 (2)
  12. 2013 (3)