Department seminar by Mathieu Boudreault, Université du Québec à MontréalExport this event to calendar

Friday, November 22, 2019 — 10:30 AM EST

Do Jumps Matter in the Long Run? A Tale of Two Horizons


Economic scenario generators (ESGs) for equities are important components of the valuation and risk management process of life insurance and pension plans. As the resulting liabilities are very long-lived, it is a desired feature of an ESG to replicate equity returns over such horizons. However, the short-term performance of the assets backing these liabilities may also trigger significant losses and in turn, affect the financial stability of the insurer or plan. For example, a line of GLWBs with frequent withdrawals may trigger losses when subaccounts suddenly lose after a stock market crash or pension contributions may also need to be revised after a long-lasting economic slump. Therefore, the ESG must replicate both short- and long-term stock price dynamics in a consistent manner, which is a critical problem in actuarial finance. Popular features of financial models include stochastic volatility and jumps, and as such, we would like to investigate how these features matter for typical long-term actuarial applications.

For a model to be useful in actuarial finance, it should at least replicate the dynamics of daily, monthly and annual returns (and any frequency in between). A crucial characteristic of returns at these scales is that the kurtosis tends to be very high on a daily basis (25-30) but close to 4-5 on an annual basis. We show that jump-diffusion models, featuring both stochastic volatility and jumps, cannot replicate such features if estimated with the maximum likelihood. Using the generalized method of moments, we find that simple jump-diffusion models or regime-switching models (with at least three regimes) have an excellent fit for various moments observed at different time scales. Finally, we investigate three typical actuarial applications: $1 accumulated in the long run with no intermediate monitoring, a long-term solvency analysis with frequent monitoring and a portfolio rebalancing problem, also with frequent monitoring and updates. Overall, we find that a stochastic volatility model with independent jumps or a regime-switching lognormal model with three regimes, both fitted with the GMM, yield the best fit to moments at different scales and also provide the most conservative figures in actuarial applications, especially when there is intermediate monitoring.

So yes, jumps or jump-like features are essential in the long run. This also illustrates how typical actuarial models fitted with the maximum likelihood may be inadequate for reserving, economic capital and solvency analyses.

Location 
M3 - Mathematics 3
Room: 3127
200 University Avenue West

Waterloo, ON N2L 3G1
Canada

S M T W T F S
27
28
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
  1. 2019 (64)
    1. December (1)
    2. November (8)
    3. October (8)
    4. September (4)
    5. August (2)
    6. July (2)
    7. June (2)
    8. May (7)
    9. April (7)
    10. March (6)
    11. February (4)
    12. January (13)
  2. 2018 (44)
    1. November (6)
    2. October (6)
    3. September (4)
    4. August (3)
    5. July (2)
    6. June (1)
    7. May (4)
    8. April (2)
    9. March (4)
    10. February (2)
    11. January (10)
  3. 2017 (55)
  4. 2016 (44)
  5. 2015 (38)
  6. 2014 (44)
  7. 2013 (46)
  8. 2012 (44)