Department seminar by Steffen Klaere, University of AucklandExport this event to calendar

Thursday, May 24, 2018 — 4:00 PM EDT

Does your phylogenetic tree fit your data?


Phylogenetic methods are used to infer ancestral relationships based on genetic and morphological data. What started as more sophisticated clustering has now become a more and more complex machinery of estimating ancestral processes and divergence times. One major branch of inference is maximum likelihood methods. Here, one selects the parameters from a given model class for which the data are more likely to occur than for any other set of parameters of the same model class. Most analysis of real data is executed using such methods.

However, one step of statistical inference that has little exposure to application is the goodness of fit test between inferred model and data. There seem to be various reasons for this behaviour, users are either content with using a bootstrap approach to obtain support for the inferred topology, are afraid that a goodness of fit test would find little or no support for their phylogeny thus demeaning their carefully assembled data, or they simply lack the statistical background to acknowledge this step.

Recently, methods to detect sections of the data which do not support the inferred model have been proposed, and strategies to explain these differences have been devised. In this talk I will present and discuss some of these methods, their shortcomings and possible ways of improving them.

Location 
M3 - Mathematics 3
Room: 3127
200 University Avenue West
Waterloo, ON N2L 3G1
Canada

S M T W T F S
29
30
31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
1
  1. 2018 (29)
    1. September (1)
    2. August (3)
    3. July (2)
    4. June (1)
    5. May (4)
    6. April (2)
    7. March (4)
    8. February (2)
    9. January (10)
  2. 2017 (55)
    1. December (3)
    2. November (11)
    3. October (5)
    4. September (7)
    5. August (1)
    6. July (1)
    7. June (2)
    8. May (4)
    9. April (2)
    10. March (3)
    11. February (4)
    12. January (12)
  3. 2016 (44)
  4. 2015 (38)
  5. 2014 (44)
  6. 2013 (46)
  7. 2012 (44)