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Control charts based on grouped observations

S. H. STEINERY, P. L. GEYER and G. O. WESOLOWSKY

It is often more economical to classify a continuous quality characteristic into
several groups than it is to measure it exactly. We propose a control chart based
on gauging theoretically continuous observations into multiple groups. This chart
is designed to detect one-directional shifts in the mean of a normal distribution
with specified operating characteristics. We show how to minimize the sample size
required by optimizing the criteria used to group the quality characteristic.
Control charts based on grouped observations may be superior to standard
control charts based on variables when the quality characteristic is difficult or
expensive to measure precisely but economical to gauge.

1. Introduction

It has long been recognized that it may be more economical to gauge observa-
tions into groups than to measure their quantities exactly. Stevens (1948) was the
first to make a strong case for the use of a two-step gauge, which divides
observations into three groups. He showed that, if the gauge limits are properly
chosen, grouped data are an excellent alternative to exact measurement since the
small loss in statistical efficiency may be more than offset by savings in the cost of
measurement. In particular, it is often quicker, easier and therefore cheaper to gauge
an article than it is to measure it exactly. Similarly, exact measurements occasionally
require costly skilled personnel and sophisticated instruments (Ladany and Sinuary-
Stern 1985). For example, in the manufacture of metal fasteners in a progressive die
environment, good control of an opening gap dimension is required. However, using
calipers distorts the measurements since the parts are made of rather pliable metal.
As a result, the only economical alternative on the shop floor is to use step gauges.

In the area of acceptance sampling, plans to monitor the proportion of non-
conforming units commonly require the classification of quality characteristics as
acceptable or rejectable (Duncan 1986). Others have pointed out that, when the
standard deviation of the variable of interest is known, savings in inspection costs
can be realized by using an attributes plan with compressed specification limits.
Compressed-limit sampling plans have been discussed by Ott and Mundel (1954),
Dudding and Jennett (1944), Mace (1952), Ladany (1976) and Duncan (1986).
Others have strived for greater efficiency by using three groups instead of two. Beja
and Ladany (1974) proposed using three attributes to test for one-sided shifts in the
mean of a normal distribution when the process dispersion is known. Ladany and
Sinuary-Stern (1985) discuss the curtailment of artificial attribute sampling plans
with two or three groups. The approach of Beja and Ladany and of Ladany and
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76 S. H. Steiner et al.

Sinuary-Stern is not easily extended to more than three groups, where gains in
efficiency may be realized. Bray, Lyon and Burr (1973) consider distribution free
three class attribute plans.

Stevens (1948) proposed two simple control charts for simultaneously monitor-
ing the mean and standard deviation of a normal distribution using a two-step
gauge. He also considered the optimal design of the gauge limits by maximizing the
expected Fisher’s information in a single observation. It is not straightforward to
extend Stevens’ methodology to more than three groups, and it is difficult to derive
an operating characteristic (OC) curve for his charts.

Currently, in industry, multiple grouped data is handled in an ad hoc manner,
Usually, for reasons of practicability, grouped observations are treated as if they
were non-grouped, giving all the units that fall into a particular group a ‘representa-
tive’ value equal either to an end point or better to the central value of that group’s
interval. However, as stated by Kulldorff (1961), “This procedure represents an
approximation that often leads to considerable systematic errors.” Consequently,
estimates of the process mean will be biased unless the distribution is uniform, and
the error rates of a control chart based on this approach may be significantly higher
than desired. In addition, assigning the interval end point or midpoint to observa-
tions cannot be done for end intervals, since for such intervals the end point and
midpoint are equal to infinity. As a result, to utilize this ad hoc approach, we must
use many groups to alleviate the bias problems and to ensure that no sample units
fall into the end groups.

We propose a k-step gauged variable control chart to monitor shifts in the mean
of a normal distribution when the process standard deviation is known. When
observations are classified into groups, the appropriate model is multinomial with
group probabilities being known functions of the unknown parameters. We shall
consider testing whether or not the process mean has shifted. The uniformly most
powerful test is based upon the likelihood ratio of the multinomial probabilities.
This approach leads to optimal control charts that are simple to design and
implement. Using the design methodology to be presented, the practitioner will be
able to determine the required sample size n, control limit 4, and optimal group
weights z,, z,, ..., for any specific application. The resulting charting procedure is
very similar to standard variables-based control charts and no more difficult to use.
The implementation steps are as follows.

(1) Take a sample of size n each sample period.

(2) Gauge all the units into groups using a step gauge.

(3) Assign a weight z; to each unit in group .

(4) Plot the average weight of a sample, signalling ‘out of control’ if the average
weight plots outside the control limit A.

This new approach is designed specifically for grouped data and thus avoids bias
problems; it can be effectively employed even with a few groups. Consequently, these
proposed control charts have better OCs and lower measurement costs when
compared with existing ad hoc control charts for grouped data.

In general, it is of interest to design a control chart such that it satisfies certain
criteria with regards to its OC curve. More specifically, we may wish to design a
control chart whose OC curve goes through the points (u,, 1 —) and (44, B), where
Uo is the target value for the mean of the process and yu, is an undesirable mean
value. With this interpretation we may consider « and § to be the error rates of
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chart, with « equal to the probability of a false alarm, and f equal to the probability
that the chart will not immediately detect a shift in the mean to ;. This design
problem corresponds to finding a sample size n and a critical value for the likelihood
ratio A such that

a=Pr (chart signals | u= po)
1 — B =Pr (chart signals | u=p,)

This paper is organized in the following manner. In §2, we present the problem
formulation. In § 3, we discuss the issues involved in the design of control charts for
grouped data. Solution methodology for both the large- and the small-sample-size
cases are presented. When o and f§ are small, or if the difference between p, and p, is
small, then large sample sizes are required and we can appeal to the central limit
theorem. If small sample sizes are required, the solution is more difficult. Section 3
also addresses the issue of discreteness. Since we are working with grouped (discrete)
data and integer sample sizes the design problem is complicated. In §4, we address
the related but separate problem of step-gauge design. There are two decisions to be
made in specifying the grouping criteria: we must decide how many groups are to be
used, and how these groups are to be distinguished. In general, a k-step gauge
classifies units into k+1 groups. As more groups are used, more information
becomes available about the parameters of the underlying distribution. The limiting
case occurs when the variable is measured to arbitrary precision. Given that a k-step
gauge is to be used, not all gauge limits will provide the same amount of information
about the parameters of the underlying distribution. It is not intuitively clear how to
set the k steps of the gauge to minimize the sample size required. In §4, we give
tables of step-gauge limits that minimize the sample size required for tests with
specific type I and I risks. We consider in detail the important special case where the
error risks are equal and the gauge limits are placed symmetrically about (uo+ pt)-
It is well known that the optimal single-limit gauge should be placed at 3(uo+uy)
when the error risks are equal (Beja and Ladany 1974, Sykes 1981, Evans and
Thyregod 1985). Beja and Ladany (1974) also suggested that the optimal gauge
limits should be symmetrically placed about $(¢o + 1) for a two-step gauge. Indeed,
we show numerically that, if the error risks are equal, this strategy is optimal for
k-step gauges. In §5 we present an example from our work in the manufacture of
metal fasteners to illustrate the use of the tables of optimal gauge limits in the design
and implementation of step-gauge control charts. In summary, control charts based
on grouped data are a viable alternative to variable control charts when it is
expensive to measure the quality characteristic precisely.

2. A k-step gauge control chart

A control chart is a graphical representation of repeated hypothesis tests. We
propose a k-step gauge control chart that uses the likelihood ratio of two specific
hypotheses to create a control chart that can detect one-sided shifts in the mean
from a normal distribution from grouped data. Suppose that the quality character-
istic of interest is a random variable Y that has a normal distribution with
probability density ¢(Y; u, o), where y is the location parameter and o is the known
process standard deviation. Without loss of generality we shall assume that o is
unity. Suppose that the target value for the process is po, and we wish our control
chart to signal a false alarm with probability less than «, and to signal with
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probability at least 1 —f whenever the process means shifts to My . Assume p, >y,
for convenience, noting that the solution presented can easily be adapted to opposite
case. OQur control chart will thus repeatedly test the hypothesis that u=p, against the
alternative that u=yu, with a level of significance of « and power 1 —f. The solution
will have the property that for any mean value better than Uy (1e. <ug) the level of
significance will be less than or equal to the level of significance at y,, and for mean
values worse than p, (> u,) the power of the test is greater than or equal to power at
py- In this sense, our hypothesis test is equivalent to considering the composite
hypothesis <y, against u>pu, .

A k-step gauge classifies observations into one of k + 1 distinct intervals. Let the
k interval end points be denoted by t;,j=1,2, ..., k, then the probability that an
observation is classified as belonging to group j is given by

'ty

()= ¢(y; 1) dy
u(‘t,-
)= dy,wdy  j=2,... 0k (D
Jii-
* x
T (W)=1 &(y; u)dy

Note that the definition of the gauge limits is totally general, and thus the distinct
intervals need not be of equal size. In practice, most standard step gauges have
intervals of equal size but, as will be shown in §4, in some circumstances, step gauges
with unequal intervals are optimal.

Let X be a (k+1) column vector whose jth element X ; denotes the number of
observations in a sample of size # that are classified into the Jjth group. Then the
likelihood function for hypotheses regarding u given a sample of size n is

k+1

LulX)=c [] m;(w*

ji=1

the constant ¢ of proportionality being arbitrary. All the information which a sample
of size n provides regarding the relative merits of our hypothesis is contained in the
likelihood ratio of these hypotheses on the sample (Edwards 1972). In fact, by the
Neyman-Pearson lemma (Kendall and Stuart 1979, p. 180) we know that for testing
a simple hypothesis the optimal partitioning of the accept-reject region is based on
the likelihood ratio of the two hypotheses.

The likelihood ratio for the two hypotheses of interest is given by

L{py | X) k22 (i )\ X
X)y="-1"T'= =
L0 =130 j:l(nj(uo))
where
kil Xj=n
i=1

To simplify subsequently notation considerably, we shall set the critical value for the
likelihood ratio equal to exp (n4). This way, as we shall see later, 4 is the critical
value, or control limit, for the statistic to be plotted on the chart. Therefore our
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control chart signals that the process mean has shifted whenever LR(u| X)>exp (n4)
or, equivalently, whenever Y%*! X;In{n(u,)/n(1o))>nA. Define z; as a random
variable that is equal to In[r{(u,)/n;(1,)] when the ith observation belongs to the jth
group. Then our chart signals whenever the average likelihood ratio for a sample Z is
greater than A.

If « and f are the desired error probabilities of our chart, our design problem is

to find the sample size n and control limit A so that

oc=Pr< zi>ni|y=u0> (2)
i=1

and

i

1~ﬂ=Pr< Zi>nilu=u1> 3)
=1

The following lemma will be useful in simplifying the calculations for the
important special case when a=§.

Lemma

Suppose that the process has an underlying normal distribution. If «=p, and the
gauge limits are symmetrically placed about (uo+4;), then the distribution of z
has moments that satisfy

—E(" u=p,) if ris odd

E(Z"|p=po)=
0 EZ |u=p,) if r is even

Proof
For a k-step gauge where the gauge limits are symmetrically placed about
(o + 1y) We have m(io) =Ty - ft;) by the symmetry of the normal distribution.
Since z;=In{[n;(u,)/m(1o)], we know that z;= —z;,,_;. Consequently,
k+1

EC \p=py)= Z (g )(z)"

i=1

+1

= '21 nk+2—i(l‘o)(‘zk+2—i)'

k+1

(-1 Y 1)

i=1

=(—1YE(Z"|u=po)

3. Design of a k-step gauge control chart

Solving equations (2) and (3) for the required sample size and control limit is not
straightforward. However, an approximate solution may be obtained by using the
central limit theorem (CLT). This solution is presented in §3.1 and is applicable
when the required sample size is large. However, since grouped data are inherently
discrete, the desired error rates will not be achieved exactly. This, coupled with small
or moderate sample size, may cause the CLT solution to be not sufficiently accurate.
In §3.2, we give an algorithm that, for small and moderate sample sizes, can find the
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true error rates. In this way, it is possible to evaluate when the CLT solution is
appropriate. Section 3.3 presents a procedure that can be used to design k- -step gauge
control charts for small sample sizes.

3.1. Central limit theorem solution

For large n, z=37_,z,/n will have an approximate normal distribution. Since
the random variables z;, i=1, ..., n are independent and identically distributed, we
know that E(Z)=E(z), and var () =var (z)/n. To emphasize that the moments of 3
depend on the mean of the underlying distribution u, define the mean and variance
of Z as d&(¢) and t2(u)/n respectively. Then

k+1

S =E()= Y. nip)y;

Jj=1

k+1

u)=var (2)= Y. n(w)z? -5

i=1

Using these definitions we can solve equations (2) and (3) for the required sample
size and control limit:

<1<a)r(uo) - 1(1—ﬂ)r(u1)) @
5(/‘0) o(uy)

O™ (@)t(po)d(py) — @ (1 — Bye(u,)d(uo)
O @)1(o) — @~ (1 - B)r(ny)

where ®~'() denotes the inverse of the cumulative distribution function of the
standard normal distribution.

If we decide that o= and the gauge limits are symmetric about 3o+ 1y), then
equations (4) and (5) can be considerably simplified.

and

l:

%)

Theorem
If «=p and the gauge limits are symmetrically placed about L(ug+p,), then

( “H(@t(po ))
5(#0)

I

n

and

Proof
By the lemma in the previous section, we know that o(uy)= —0(u,), and the
variance of z under y, is equal to the variance of z under u, since

k+1

(uy) =Y mluy)z}—6(u,)

i=1

k+1

= Z ,(ﬂo)z - 5(#0)]2

= T2(,Uo)
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When a=8, @ ()= —@ '(1—p), then the denominator of equations (4) and (5)
is given by &(uo)—0(u;)=20(po) which is clearly non-zero. The numerators
of equations (4) and (5) are

O~ 1) t(po)d(py) — @ (1= Bye(u,)d(po) =0
and

O (@) t(po) — @1 (1—Preluy) =20 ! (@)e(ko)

The result follows immediately from substitution into equations (4) and (5).

3.2. Determination of exact o and B

Since the sample size must be an integer, and the random variable z; is discrete,
the actual error levels will not be exactly as desired. In general, for small sample
sizes, the distribution of z will be positively skewed when the mean is equal to y, and
negatively skewed when the mean is equal to since most of the gauge limits are
placed between p, and p,. Note that this skewness problem will be most pronounced
when trying to detect large shifts with few groups. In cases where the distribution of z
is skewed, the actual error rates will be larger than the normal approximation would
suggest. For example, if we use the methodology of §3.1 to design a two-step gauge
chart to detect a 2o shift in the mean with desired error rates « = f=0-001, the actual
error risks calculated with the branch-and-bound algorithm presented below are
«=0-002 and f=0-006. Figure 1 illustrates the significant extent to which, in this
case, the distribution of z deviates from normality.

To compute the exact « and f§ for a given sample of size n, critical value 4 and
gauge steps vector t, we must determine all partitions of the n observations into k +1
groups, without regard to order, such that LR(u|X)>exp (N1). Let {K,} represent
the set of all such partitions that cause the chart to signal. The probability that the
chart signals when the true value of the mean is p is given by

n' k+1

Pr [LR(u|X NA)= : (Y5 6
r [LR(p|X)>exp (N4)] {KZ,}Xl!Xz!‘-.Xm!,-Uln’(“) (6)

Then a=1—Pr[LR(u,X)>exp(N4)] and B=Pr[LR(u,|X)>exp(N4)]. The

number of such partitions grows exponentially as the number of groups increases
and polynomially as the sample size increases. Fortunately, for large n and k the
CLT is applicable and we may use the methodology of the preceding section. For

u=0 u=2

] 1h
0.15F _1 015}

01} 01 |
005 005
0 - L 0
25 2 15 -1 05 0 0.5 05 0 05 1 1.5 2 25

Figure 1. Exact distribution of Z (1=[0-5, 15]; z=[—2-2344, 0, 2:2344]; 1=0; n=9).
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moderately large » and k, we give an algorithm, similar in spirit to the branch-and-
bound algorithm, which finds the set {K,} , and the probability that the sample
belongs to {K,} when the mean is at the target value u, and the unacceptable value
u;. The algorithm avoids total enumeration by fathoming samples which could not
possibly lead to a signal.

Before presenting the algorithm, we would like to offer some of the intuition
behind the fathoming rule. Note that the z; values are ordered in the sense that they
increase from negative values in the lower tail to positive values in the upper tail.
Suppose that a partial sample of n’ observations covering only the first &' groups in
the left tail has n; observations in the ith group. The maximum possible value of z
will occur if the remaining n—n’ observations fall into the (k+ 1)th group. Hence, if
at such a stage in the enumeration, we find that

mzi+(m—nz, ., <ni

N

it

i=1

then we know that any sample containing this partial sample does not belong to
{K,}. Hence, we begin considering partial samples by first allocating observations to
the lower tail. As soon as a partial sample can be fathomed (rejected), we stop
allocating observations to that group and begin allocating observations to the next
group. This continues until all samples have been either fathomed or included in the
set {K,}.

3.2.1. Algorithm for the determination of {K,} and Pr (Xe{K,}p
This is as follows.

Branch step. For each group, starting with the first and proceeding to the
(k+1)th group, consider all partial allocations to previous groups
not yet fathomed. From each unfathomed node create a new
branch for every possible allocations of the remaining observations
to the next group.

Bound step. For every branch, calculate the bound equal to Y nz+
(n—n)z; .. This is an upper bound on the value of z for the
current partial sample.

Fathoming step. Fathom all branches where the bound is less than ni.

Summary step  All branches not fathomed form the set {K,}. Use equation (6) to
obtain Pr(Xe{K,}|uo) and Pr(Xe{K}|u,).

3.2.2. Use of the algorithm

This algorithm substantially reduces the amount of computation required; in
most cases, over 50% of the total possible allocations were eliminated. An important
special case occurs when type I and type II errors (x and pB) are considered equally
important and gauge limits are equally spaced symmetric about 4(uq+x,). In that
case, by the lemma, the distribution of z when M=l 1s the mirror reflection about
zero of the distribution of z when #=p,. As a consequence, the group weights are
symmetric, and the CLT solution suggests that we may achieve approximately equal
error risks when 4=0 (see the example presented in Fig. 1). Note, however, that the
error rates achieved will not be exactly equal since the distribution of B is discrete
and will admit zero as a possible value, since the weights are perfectly symmetric.
While we have arbitrarily decided not to signal if z=0, the sample offers no
information regarding the relative merits of the possibilities that =y, or u=y,.
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Exactly equal error probabilities may be achieved by sampling another observation
in the event that z=0. If this is desired, then the set {K} and equation (6) need to be
redefined accordingly.

The question of how large a sample is required for the CLT solution to be
sufficiently accurate is important. Clearly the answer depends on many factors,
including the number of gauge limits used, the location of gauge limits, the
magnitude of mean shift that we wish to detect readily, and the accuracy required for
a particular application. Given that the gauge limits are chosen primarily between
the mean levels of the null and alternative hypothesis, the most important factor
becomes the number of gauge limits. Figures 2-4 show actual error rates for plans
designed with the CLT solution to detect mean shifts with two gauge limits [0-25,
1-25], three gauge limits [0, 0-75, 1-5] and five gauge limits [—0-25, 0-25, 0-75, 1-75]
respectively and error rates a=f=0-005. True error rates, obtained from the
branch-and-bound algorithm, are plotted for various sample sizes.

Figures 2-4 all show that, because of the skewness in the distribution of z, the
true error rates are always somewhat larger than expected. As this underestimation
of the error rates by the CLT solution is expected, we may determine that the CLT
solution is appropriate if the deviations of the true error rates from the desired rates
is small. With this evaluation criterion, the effect of the number of gauge limits, as
expressed in the figures, is significant. In the two-gauge-limit case, the fluctuations in
the true error rates are still apparent at a sample size of 50. However, for more gauge
limits the CLT solution performs much better. When using three gauge limits, the
error rates become quite stable and close to the desired levels by a sample size of 20.
In the five-gauge-limit case, the same is true at a sample size of 15. These results are
of course dependent on the location of the gauge limits, and the accuracy required in
any particular situation, but they do provide some insight into the usefulness of the
CLT solution.

3.3. Design of a small-sample step-gauge chart

If a small sample size is required, the solution presented in §3.1 may not be
sufficiently accurate, and the true error rates may be significantly higher than the
desired levels. However, by using the CLT solution as a starting solution, and
utilizing the algorithm from §3.2 which calculates the exact true error rates, we can
employ the following iterative procedure to design an appropriate chart.

0.03

0.025

Error 0.02
Rates

0.015

001

0.005

10 20 30 40 50 60
Sample Size

Figure 2. True error rates with two gauge limits (¢=[0-25, 1-25}).
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0.03

0.025

Error 002 |
Rates
0.015 }

0.01 H

0.005

5 10 15 20 25 30
Sample Size

Figure 3. True error rates with three gauge limits (¢=[0, 0-75, 1-5]).

003

0.025 |
Error 0.02 |
Rates

0.015

0.01

0.005 |

0
5 10 15 20 25 30
Sample Size

Figure 4. True error rates with five gauge limits (1=[—0-25, 0-25, 0-75, 1-25, 1-75)).

(1) Use equations (4) and (5) to determine an initial solution for n, n* say, and
control limit A.

(2) Use the branch-and-bound algorithm to compute the exact « and f for
sample size [ n* ] and control limit A.

(3) Incrementally increase n until satisfactory error rates are achieved.

To illustrate this, assume that we desired a chart to detect a shift of 2¢ units in a
standard normal distribution with 2=0-001 and B=0-005. Using the normal
approximation and optimal gauge limits, t' =[0-1636, 0-8762, 1:6076], derived in §4,
the initial solution is A=0-0717 and n=14-3. If we increment # from 15 and use the
exact algorithm, we obtain the actual error rates given in Table 1. Because of the
discreteness problem, the solution using the CLT results in higher « and g than
planned. We require »=17 to obtain error rates x<0-001 and f<0-005. Note that
this incremental strategy for designing small-sample-size control charts will not
necessarily find the solution with the smallest sample size. This is because we are not
simultaneously adjusting the control limit as we increment the sample size. It may be
possible that at some lower sample size an adjustment of the control limit may
change the actual error rates in such a way that they both satisfy the requirements.

4. Optimal step-gauge design
Until now we have assumed that the gauge limits are fixed. Although this is often
true in most industrial environments, in some circumstances it may be possible and
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n o B

15 0-0017 0-0064
16 0-001 5 0-0045
17 0-00099 0-0038

Table 1. Exact a and f§ values as » increases.

desirable to design the step gauge specifically for a control chart. In this section we
shall determine, by minimizing the required sample size from the CLT solution, the
optimal step-gauge limits. This procedure will also allow us to compare the efficiency
of the optimal limits with fixed limits.

Beja and Ladany (1974), Sykes (1981) and Evans and Thyregod (1985) have
shown that, when the error risks o and 8 are equal, the optimal single-step gauge
should be placed at (uy+u,;)- Beja and Ladany (1974) also suggested that the
optimal gauge steps for a two-step gauge should be symmetrically placed about
3(po + 1;)- Using this rule of thumb, a one-dimensional search for the optimal steps
is possible. This solution will only be optimal if the error risks are equal.

Suppose that we are given the magnitude of the mean shift that is to be readily
detected, that is u, — o, and the error rates for a chart. If the error rates are small
and/or the shift to be readily detected is small, then the required sample size will be
large enough that Z is approximately normally distributed. In this case we can
determine optimal gauge limits by minimizing equation (4), subject to the constraint
that the gauge limits remain ordered. Formally, let t be the k-dimensional vector of
gauge limits. Then we have the multidimensional minimization problem

min [a(t) + m(t)]
where

M, iftj>t]+1f0ra]lj:l,..,k
m(t) = )
0, otherwise

and M is a large number. This optimization problem can easily and efficiently be
solved by the Nelder-Mead multidimensional simplex algorithm (Press ez al. 1988).

Tables 2 and 3 give the resulting optimal steps, and the corresponding weights
for step gauges with one to seven steps, and for charts that should readily detect
shifts in the mean of 4o, 1o or 3¢ units. It should be noted that the required sample
size obtained from equation (4) is fairly insensitive to slight deviations from the
optimal step gauge design. This is illustrated in Figure 5 for a two-step gauge, where
the gauge limits remain symmetric about 0-S. The figure shows the sample size
required to detect a 1o mean shift with error rates of 0-005 as a function of gauge
limits. The horizontal axis of Fig. 5 represents the amount that each gauge limit
deviates from 0-5, that is the gauge limits are placed at 0-5—y and 0-5+7y, where y is
the amount of deviation from the one-step gauge case. The optimal value for y, from
Table 2, is =0-5424. Near this value the required sample size increases only slowly.

For small sample sizes the distribution of z is skewed when the mean is at either
lio OT fi,; as a result, the optimal gauge limits and weights presented in Tables 2 and 3
are no longer optimal. Theoretically, it is possible to find the optimal gauge limits
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Values of ¢; and z; for the following i
Uk n/i 1 2 3 4 5 6 7 8
05 1 n=2355 1 025
A=0 z; —0-4001 0-4001
2 n=1860 1 —0-3417 0-8417
A=0 z; —0:6052 0 0-6052
3 n=1796 1 —0-6925 02500 0925
A=0 z —074 —0-2188 02188 0-74
4 n=1646 1 —09384 0-1139 06139 14384
A=0 z; —0-8395 —0-3667 0 0-3667 0-8395
5 n=161-1 1 —1-1254 —0-3743 0-2500 0-8743 1-6254
A=0 z; —09172 —0-4771 —0-1511 0-1511 0-4771 09172
6 n=1589 1 ~12749 —0-5751 —0-0142 0-5142 1-0751 1-7749
A=0 z; —0-9804 —0-5642 —0-2653 0 0-2653 0-5642 0-9804
7 n=1575 1, —1-3987 —0-7372 —0-2202 0-2500 0-7202 1-2373 1-8986
A=0 z; —1-0334 —0-6356 —0-3563 —0-1154 0-1154 0-3563 0-6356 1-0334
1 I n=556 ¢ 05000
A=0 z; —0-8070 0-8070
2 n=444 1 —00424 1-0424
A=0 z; —1-11789 0 1-1789
3 n=412 1 —03428 0:5000 1-3428
A=0 z; —1-4062 —0-3972  0-3972 14062
4 n=400  —05373 0-1813 0-8187 1-5373
A=0 z; —1:5600 —0-6495 0O 0-6495 1-5600
5 n=392 f —06723 —0-0357 0-5000 1-0357 1-6723
4=0 z; —1:6692 —0-8257 —0-2615 0-2615 0-8257 1-6692
6 n=388 1, —07697 —0-1941 0-2767 0-7233 11941 1-7697
A=0 5 —1:7492 —0-9553 —0-4503 0 0-4503 0-9553 1-7492
7 n=386 t; —0-8417 —0-3149 0-1093 0-5000 1-8907 1-3149 1-8417
Ai=0 z; —1-8090 —1-0537 ~0-5938 —0-1929 0-1929 0-5938 1-0537 1-8090
5 1 »=224 1 07500
A=0 z; —1:2275 1:2275
2 n=181 ;02661 12339
A=0 z; —17172 0 1-7172
3 n=170 ¢ 00273 07500 1-4727
A=0 z; —19817 —0-5190 0-5190 1-9817
4 n=166 1 —01068 04829 1-0171 1-6068
A=0 z; —2-1358 —0-8189 0 0-8189 2-1358
5 n=164 1 —0-1867 0-3132 07500 1-1868 1-6867
A=0 z; —2:2293 —1-0090 —0-3225  0-3225 1-0090 2-2293
6 n=163  —02365 01971 05706 09294 1-3029 1-7365
A=0 z; —2-2882 —1-1366 —0-5429 0 0-5429 1-1366 2-2882
7 n=162 ¢ 02688 01135 04413 0-7500 1-0587 1-3865 1-7688
A=0 z; —2:3268 —1.2265 —0-7025 —0-2297 0-7025 1-2265 2-3268

n is calculated with the assumption that the type 1 and 2 errors are =0-001.

Table 2. Optimal steps and weights for the standard normal distribution, a=§.
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Values of ¢; and z; for the following i

Uy k nf/i 1 2 3 4 5 6 7 8
05 1 n=1981 1 02889
A=0-0070 z; —0-3878 0-4125
2 n=1563  —0-2954 0-8870
A=00090 z, —0-5880 00204 0-6220
3 n=1440 1 —0-6405 0-3009 1-2428
A=0-0099 z; —0-7197 —0-1949 02423 0-7603
4 n=1384 1 —0-8812 00587 06685 1-4929
A=0-0103 z; —0-8162 —0-3402 00263 0-3925 0-8620
5 n=1354 1 —1:0634 —0-3151 03079 0-9321 1-6839
A=0:0106 z; —0-8913 —0-4483 —0-1227 0:1791 0-5048 0-9418
6 n=133-6 1, —1-2084 —0-5121 —0-0468 0-5746 1-1359 1-8372
A=0-0107 z; —0:9521 —0-5333 —0-2351 00297 0-2948 0-5936 1-0070
7 n=1324 1 —1-3276 —0-6706 —0-1561 0-3129 0-7829 1-3009 1-9645
A=00109 z —1-0029 —0-6026 —0-3244 —0-0843 0-1462 0-3872 0-6667 1-0618
1 1 n=466 t, 05725
A=0-0256 z; —0-7618 0-8533
2 n=373 ;00459 1-1288
A=0-0333 z; —1-1147 0-0792 1-2429
3 n=346 1, —02387 0-5968 1-4438
4=0-0367 z; —1-3259 —0-3028 0-4901 1-4854
4 n=335 f —04178 02891 09254 1-6528
A=0-0385 z; —1-4649 —0-5414 0-1037 07552 1:6533
5 n=329 t —05384 0-0827 0-6141 1-1525 1-8020
4=0-0395 z; —1-5608 —0.7049 —0-1481 0-3741 0-9436 1-7760
6 n=326 1 —06230 —0-0658 0-3983 0-8443 1-3207 19127
A=00402 z; —1:6290 —0-8229 —0-3278 0-1193 0-5716 1-0847 1-8684
7 n=324 t —0-6838 —0-1776 02380 0-6261 1-0188 1-4507 1-9969
4=0-0406 z; —1-6786 —0-9111 —0-4631 —0-0671 0-3183 0-7234 1-1939 19396
1.5 1 n=188 ¢ 08471
4=0-0498 z; —1-1378 1:3202
2 n=152 03034 13495
Ai=0-0654 z; —1:5924 01616 1-8456
3 n=143 o 01636 08762 16076
A=00717 z, —1-8291 —0-3309 07057 2-1367
4 n=139 . 00443 06198 1-1540 1-7579
1=0-1082 z, —1-9625 —0-6099 0-2005 1-0273 2-3134
5 n=137 ¢ —0-0250 0-4587 0-8917 1-3331 1-8502
4=0-0762 z; —2-0414 —0-7843 —0-1104 0-5349 1-2347 2-4245
6 n=136 1 —00676 03493 07170 1-0763 1-4567 1-9090
A=0-0771 z; —2-0903 —0-9006 —0-3216 0-2176 0-7654 1-3757 2-4958
7 n=136 r; —0-0949 02708 0-5917 0-8987 1-2101 1-5462 1-9479
4=00776 z; —2:1220 —0-9821 —0-4740 —0-0072 0-4529 0-9334 1-4757 2-5433

Table 3. Optimal steps and weights for the standard normal distribution, «=0-001,
B =0-005.
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Required sample size as a function of gauge limit design.

Interval Weight z;
1: (—o0, 73, 69) —1-3259
2: (73-69, 74-78) —0-3028
3: (74-78, 75-88) 0-4901
4: (7588, ) 1-4854

Table 4. Example gauge limit and weight design.

’JIIIIII

Figure 6. An idealized six-step gauge.

for the small-sample-size case. However, in general, for small sample sizes this is
computationally expensive, and the gauge limits given in Tables 2 and 3 are nearly
_optimal.

Tables 2 and 3 were computed for a standard normal in-control process,
although they may be used to calculate the optimal steps for any normal process by
noting that, if t is the vector of optimal steps to detect the mean shift of a N(0, 1)
process, then t'=tog + ul will be the corresponding vector of optimal steps for an
N(u, o) process. For example, suppose that we wish to detect a 1o shift in the mean
of a N(74,1-3) process with error rates a=0-001 and f=0-005 using a three-step
gauge. From Table 3, we should use a sample of size 35, and a critical value of
0-0367. The optimal gauge steps in Table 3 are —0-2387, —0-:5968, 1-4438. After
multiplying by ¢ and adding g, the three-step gauge will classify observations into
the four groups with the corresponding weights given in Table 4. The process is
deemed ‘out of control’ if the average weight in the sample of size 35 is >0-0367.

5. Metal-fasteners example

This example is motivated by our work in the manufacture of metal fasteners in a
progressive die environment. It was desired to monitor increases in the width of an
important gap dimension of a fastener. Since the metal used is pliable, calipers
distort the gap measurement, and the only economical alternative on the shop floor
is to use a step gauge. Figure 6 shows an example of a step gauge with six pins of
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different diameters. These pins are used to gauge parts into different groups based
on the smallest pin that a part’s opening gap does not fall through.

The target value for the process mean is 0-074 inch, and previous studies using a
precision optical measurement device suggest that the standard deviation is constant
and equal to 1-3. We wish to create a control chart that has an OC curve that passes
through the points (74, 0-995) and (75-3, 0-005) or better (i.e. a=f=0-005, u, = 1)
that uses a six-step gauge. With reference to Table 2, the optimal gauge limit design
suggests classifying units into the seven intervals, with their corresponding weights,
given in Table 5.

As an aside, note that the optimal weights given in this case, and in general, can
be rounded off to two or three significant digits to ease implementation without a
significant effect on the OCs of the resulting control chart. Using this step-gauge
design and solving equations (4) and (5) for the sample size and critical value gives
n=27 and 2=0. The resulting control charting procedure for each sample can be
summarized as follows.

(1) Take a sample of 27 units from the process.

(2) Assign each of the 27 units a weight based on Table 5 above.
(3) Calculate the average weight for the sample.

(4) Plot the average weight on the control chart.

(6) Search for an assignable cause if the point plots above 0.

The above procedure was simulated and results are illustrated in Fig. 7. The
first ten samples were in control, that is the mean was 74; the next three samples were
taken after a mean shift of 1¢ unit, that is the mean shifted to 75-3. Note that, owing
to the small error rates that were chosen, the control chart detected the mean shift

Interval Weight z;

1: (— o0, 73:00) —1-7492
2: (73-00, 73-75) —0-9553
3: (73.75, 74:35) —0-4503
4: (74-35, 74-94) 0-0

5: (7494, 75-55) 0-4503
6: (75'55, 76:30) 0-9553
7: (76-30, ) 1-7492

Table 5. Step-gauge design for metal-fasteners example.

0 2 4

8
6 Sample

Figure 7. Control chart with 1¢ shift in mean at sample 11.
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Figure 8. Plot of sample size required against the number of gauge limits using a = f=0-005
and the optimal gauge limits derived from Table 2.

immediately. To ease implementation on the shop floor, it is possible to round off
the weights. The loss in efficiency to go to two significant digits in this case is almost
negligible and can be precisely evaluated using the branch-and-bound algorithm.

For the purposes of comparison, we have calculated the sample size required
using the optimal gauge limits from Table 2 for one to seven gauge limits and have
plotted the results in Fig. 8. From Fig. 8, it is clear that our six-step gauge compares
very favourably with the optimal binomial approach (a one-step gauge) requiring
samples of size 27 rather than 39. In addition, we calculated that a variables control
chart approach would also require samples of size 27 (round up from 26-55); this
agrees with the asymptotic nature of the curve as the number of step gauges
increases in Fig. 7. Our purposed six-step-gauge control chart is thus virtually
idential in terms of power with a control chart based on variables and is thus an
excellent alternative in this situation.

6. Conclusion

We present a multiple-step-gauge control chart that is applicable for detecting
shifts in a mean of a normal distribution when observations are classified into one of
several groups. We show how the control chart can be designed to satisfy specified
operating characteristics. We develop design methodology for both large and small
sample sizes. We also address the question of optimal gauge design, deriving the
optimal gauge limits for the normal approximation solution. The results show that
the k-step-gauge control chart is a viable alternative to other control charts,
approaching the variables-based control charts in efficiency. These charts are
applicable in situations where variables measurements are expensive or impossible,
and yet classifying units in groups is economical.
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