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Acceptance control charts provide control limits for processes in which the natural dispersion 
is small and the process mean may be permitted to vary. These control limits are based on 
specification limits and on permitted probabilities of making incorrect decisions of "accep- 
tance" or "rejection." This article deals with acceptance control charts in which two processes, 
or two characteristics of a product, are controlled for simultaneous conformance to specifi- 
cation limits or standards. The processes can be positively or negatively correlated. Sample 
sizes and control limits are derived for each chart, using cost minimization or maximum- 
sample-size minimization as criteria. The analysis is also applicable to acceptance sampling. 

KEY WORDS: Hypothesis testing; Optimization; Quality control. 

1. INTRODUCTION 

In acceptance control charts, control limits on sam- 
ple means are derived from "acceptable" and "re- 
jectable" levels for the process mean that are usually 
calculated using the specification limits. Such charts 
are unlike Shewhart charts in that the mean may be 
permitted to drift. Examples of this occur in manu- 
facturing with tool wear or in chemical processes in 
which the process is not stable in the sense of having 
a constant mean. The necessary assumption is that 
the process has a small natural dispersion relative to 
the specification limits (it has a high process-capa- 
bility index). 

Although these charts are statistically similar to 
variables-acceptance sampling plans, they are usually 
a form of process control and not acceptance sam- 
pling. A full discussion of acceptance control charts 
and additional references can be found in Duncan 
(1986) and Wadsworth, Stephens, and Godfrey 
(1986). It will be convenient to frame the illustrations 
for our method in terms of acceptance control charts. 

This article deals with the case in which a product 
may have two characteristics, produced by two sep- 
arate operations or processes. We define jointly ac- 
ceptable as meaning that the processes producing both 
characteristics are simultaneously acceptable and 
jointly rejectable as the case in which one or both of 
these processes are rejectable. It is assumed that a 
joint rational sample is possible; the means of the 
characteristics are stable during sampling and during 
their subsequent incorporation into the product. 

Our simultaneous acceptance control charts are 
different from multivariate control charts such as the 
Hotelling's T2 [see Jackson (1985) for a review of 
such charts], because they seek not to detect changes 
but to control the changes with reference to product 
specifications. 

As an example, consider the manufacture of elec- 
trical watt-hour meters that must have a percentage 
of reading error within plus or minus 1% under 
"high" load and plus or minus 2% under "low" load. 
To be acceptable, the production process must be pro- 
ducing meters that are acceptable under both high and 
low load. The percentage errors for a meter tested 
under the two power levels are correlated. Although 
control of accuracy has been done by acceptance 
sampling-in other words, by testing a sample from 
a lot and then accepting or rejecting the lot-the use 
of acceptance control charts moves this control to 
the assembly line and converts it to process control. 

To maintain the charts, samples of, say, 15 meters 
are taken at intervals. Each meter in a sample under- 
goes a measurement for accuracy at high power and 
at low power. Each measurement has its own chart 
with control limits calculated from the specifications 
and the permitted risks. Because of the joint nature 
of the acceptability criterion, however, it would be 
incorrect to construct the charts as if each were an 
isolated case. In other words, the two charts (high 
power and low power) are taken as a system; the 
control limit for this system is exceeded if the average 
percentage error of a sample of meters falls outside 
the control limits on either chart. The a (producer's 
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risk) and fi (consumer's risk) of the charts are not 
meaningful unless control limits are calculated in the 
context of the joint nature of the specifications. 

The case in which processes are statistically in- 
dependent was treated in Wesolowsky (1987). This 
paper deals with the more difficult case in which the 
processes are correlated, but it restricts itself to two 
processes. Another approach was taken by Danzin- 
ger and Papp (1988), who also dealt with uncorre- 
lated processes; they provided many examples of si- 
multaneous product criteria. Their objective, how- 
ever, was different in that they wished to control the 
total proportion of the product that is nonconforming 
and did not directly control the quality of each of 
the characteristics. Their approach did not attempt 
to optimize sample sizes. 

To summarize, we take a sample of nJ items, cal- 
culate the sample mean Xj, and if Xj > c,, then the 
"alarm" is sounded. 

The preceding expressions are in terms of accept- 
able and rejectable process means. Sometimes these 
are determined directly; if acceptability and reject- 
ability were given in terms of proportions of product 
units falling above the upper specification limit, how- 
ever, then we would convert these requirements to 
equivalent ones involving means. For example, if 
process j measurements have a normal distribution 
and the acceptable fraction nonconforming is called 
the acceptable process level, APL(j), then 

p = Uj - z(APL(j))ai, (6) 

where Uj is the upper specification limit. Similarly, 

2. PRELIMINARY FORMULATION 

Let us first review the acceptance control chart for 
a single characteristic, j. It is useful to develop our 
arguments in terms of implied hypothesis testing. 

The implied hypothesis test is 

Ho: p = pA, Hl: // = //u, 

where ,u is the acceptable process average and u, is 
the rejectable process average. 

When the sample mean Xj falls outside the control 
limits, this is, in effect, rejection of the null hypoth- 
esis in favor of the alternative hypothesis. It is as- 
sumed here, without loss of generality, that /J > 
,uj. This indicates that the mean, ,u, becomes unac- 
ceptable when it is too large. There may be two 
acceptable means that in fact defined an acceptable 
range for the mean. There will then be a lower re- 
jectable mean. 

This is not material to the analysis, however. In 
acceptance control charts, it is assumed that the pro- 
cess dispersion is so small that, in effect, only one 
limit can be active at any one time, so we restrict 
our analysis to the "upper end." 

It has been shown in the previously mentioned 
references that the required sample size, n, and the 
control limit, Cj, are 

n = j(z(a1) + z(/))2, (2) 

c = P + z(a)aj/V!n, (3) 

and 

c = ; - z(/fj)aj//Vn, (4) 
where aj is the standard deviation of process j, z(aj) 
and z(/fl) are standardized normal deviates such that 
the areas under the probability density curve to the 
right are aj and /fj, respectively, and 

j = [o/(lp - ,lU)]2. (5) 
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r = Uj - z(RPL(j))uj (7) 

for the rejectable process level, RPL(j). 
Let us now consider the case in which two pro- 

cesses are being monitored simultaneously. Each 
process has its own acceptable and rejectable means; 
we now consider both processes to be part of a joint 
product, however. This joint product is acceptable 
if both means are acceptable and rejectable if one 
or more of the means are rejectable. 

As in the single acceptance control chart, there is 
an implied hypothesis system. The implied hypoth- 
esis system is 

H(: a1 = /p, p2 = /a 

Hi: //i = Al, //2 = ,a 

H2: P = I/, P2 = -2 

H3: p1 = /I, /2 = #U. (8) 

We wish to design two separate charts-that is, to 
find ni, cl, c2, and n2-so that the probability of 
rejecting on either or both of the charts when H(, is 
true is less than or equal to a' and the probability 
of accepting on both of the charts simultaneously 
when HI, H2, or H3 is true is less than or equal to 
fl*. The solution to this requirement is not unique, 
and we will, in addition, minimize a weighted sum 
of the sample sizes of each characteristic. 

An equivalent way of viewing the problem is that 
we wish to design an operating characteristic (OC) 
surface for our system of two separate acceptance 
charts. This surface must be above or equal to 1 - 
a when p, = af and ,2 = /U and below or equal to 
/ when either or both of the means are at the re- 
jectable level. Minimizing sampling will "press" this 
surface against three of these points. The point where 
both means are rejectable will always be below fl, 
as I shall show with a lemma. 

We now make observations and define results 
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needed for a precise statement of this design prob- 
lem. Assume that the measurements in the two pro- 
cesses have a known correlation coefficient p. The 
sample means from the two processes, therefore, also 
have a correlation of p, but only if the two samples 
are of equal size. For example, if we measure the 
high-power average percentage of error of 20 meters 
and the low-power average percentage of error of 
only the first 10 meters, the correlation of the sample 
means will not be p. As is easily shown, the corre- 
lation of the means, p, will be 

Pn = P(nminlnmax)12, (9) 

where nmin is the minimum of nl and n2 and nmax is 
the maximum. We adopt the notation p, instead of 
p(nl, n2) for simplicity. 

Note that the p, like the a's, is estimated from 
samples once the process is assumed to be stable, 
which is the usual practice in control charts. Note 
that a Shewhart chart on the standard deviation is 
usually maintained in conjunction with the accep- 
tance chart. The correlation should also be moni- 
tored. The means are assumed to have an approxi- 
mately bivariate normal distribution. 

We now define notation for the individual charts. 
Let a, be the marginal probability that XI > cI when 
,u = ,u '. Note that 

a, = Pr(z > (c, - #a))/(al/Vn) 

and does not depend on p or on the marginal distri- 
bution of X2. Similarly, let lI be the marginal prob- 
ability that X I_ c when -li = url, t2 be the marginal 
probability that X2 > c2 when P2 = pa, and f2 be 
the marginal probability that X2 - c2 when 2 = 
,^. Now a, the probability of rejecting process means 
1 and 2 when they are jointly acceptable (when H( 
is true), is given by 

a = a1 + C2 - 
(Ca1, a2, Pn), (10) 

where 

,(aCt, C2, P) = L(Z(aI), z(a2), Pn) (11) 

which gives (Abramowitz and Stegun 1970, p. 936, 
ex. 26.3.8): 

Pr(acceptance I H1) 

= Al - L(z(1il), z(a2), -p). 

Similarly, 

Pr(acceptance I H2) 

= /2 - L(z(aY), Z(/2), - Pn), 

and 

Pr(acceptance | H3) = L(z(fB,), z(l2), P,). 

(12) 

(13) 

(14) 

To restrict the probability of Type II error in the 
system to /fl, we must, therefore, have 

/ < TI(pn) = 1, - L(z(/,), z(a2), -Pn), (15) 

/P - T2(p,) = f2 - L(z(a0), Z(f2), -Pn), (16) 

and 

P -< T3(pn) = L(z(1,), Z(42), Pn) (17) 

We now show that the constraint (17) is always 
met when (15) and (16) are. 

Lemma 1. T(p,,) > T3(p,) and T2(p) T3(p,,). 
Proof. TI(p,) > T3(p,) when L(z(/,), -z(a2), 

Pn) > L(z(/i), z(/2), Pn). This is true when 1 - a2 
> /2, which is always true, since we assumed that 

,u > ,u. Similarly, T2(p,) > T3(pn) 

Charts meeting the upper limit Type I and Type 
II error requirements a' and f/ may be designed 
according to different objectives. I discuss other cri- 
teria later, but our basic goal is sample size (sample 
cost) minimization: 

Minimize A n + A2n2 (18) 

subject to 

Oa a a = a1I + a2 - L(z(a 1), Z(a2), Pn), (19) 

/ ? Tr(Pn) = /?i - L(z(/1), z(a2), -Pn), (20) 
is the joint probability that z, > z(ai) and Z2 > z(a2) 
(or, equivalently, XI > cl and X2 > c2) under the 
assumption of a bivariate normal distribution with 
correlation p,. The properties of L were given by 
Abramowitz and Stegun (1970, p. 936). We now ex- 
amine the probability that our system of two charts 
will accept the product when 'ul = ,u and ,u: 

Pr(acceptance I H,) 

= Pr(XI < cl and X2 c H1) 

= Pr(zl < -z(f, ) and Z2 < z(a2)) 

= Pr(zl > z(#f) and Z2 > -z(a2)) 

= L(z(p,), -z(Ca), P), 

and 

/' S T2(p,) = /2 - L(z(a1), Z(/2), -Pn). (21) 
The Al and A2 in (19)-(21) are constants that must 

be specified, but n, and n2 are determined by the 
optimization procedure. We make two observations. 
First, the z(aj) and z(/i) can be expressed in terms 
of ni, n2, cl, and c2 using (3) and (4); these, there- 
fore, are the real variables in the problem. We will 
not make this substitution, however, because it will 
be convenient for our optimization procedure to work 
with the marginal probabilities aj and /j. Second, the 
preceding inequalities can be replaced by equalities 
because, as can easily be shown, the inequalities will 
be tight to minimize sampling cost. 
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3. OPTIMIZATION PROCEDURE 

We now rearrange the constraints (18)-(21), which 
are converted to equalities, into a form convenient 
for discussion of our optimization procedure. Mini- 
mize 

Cost(a,, a2,, , /2) = A,l1[z(a,) + Z(/1)2 

+ A,G2[z(a2) + z(/2)]2 (22) 

subject to 

a2 = a' - a1 +- (a1, a2, n), (23) 

P1 = P+ .(P,, a2, -Pn), (24) 

and 

12 = fi + .(aI, 12, -P,). (25) 

Our basic strategy is to convert the problem into 
a series of easily done univariate searches. We will 
search for the lowest value of the objective function 
by varying al over its possible range, while express- 
ing a2, ill, and 12 in terms of a,. 

To put it another way, we will solve (23), (24), 
and (25) numerically to obtain a2, ?i, and f2 for a 
given a, and then substitute them into Cost(al, a2, 
p1i, 12) to obtain C(al), a function of al only. C(al) 
has no constraints. Note, however, that C(al) is not 
an equation but a numerical procedure. Since a, has 
a well-defined range, the minimum of C(al) can be 
found by a simple search procedure or even plotting 
a graph, as will be demonstrated. 

I shall now discuss the method of constructing C(al). 
The range of possible values for a, is (0, a'), where 
the parentheses indicate that it does not include the 
specified endpoints. As is easily verified, if al = 0, 
n, is infinitely large, and when a, is a', n2 is infinitely 
large. 

Let us consider how we find a2, /1, and 32 for a 
given a,. If a, is given, a2 is obtained by solving the 
nonlinear equation (23); then, a2 being known, lI is 
obtained by solving (24) and 12 by solving (25). Cost(al, 

2,, i1, 12) can then be evaluated for that a,, in effect 
producing C(al). 

Before we discuss a method for solving the non- 
linear equations involved, note that the possible val- 
ues of a2, i1, and 12 have quite restricted ranges. We 
will find it useful to explore these. To simplify anal- 
ysis, assume that a' < .5 and f' < .5. This is not an 
unduly restrictive assumption in practice. 

Lemma 2. If a' < .5 and 11 < .5, then, for a, 
in the range (0, a'), a2 E (a' - a1, a*), P1 E (P?, 
11 + a2), and 12 E (11, f1 + al). 

Proof. This is readily shown by applying the re- 
sult that L increases with increasing p and that L(h, 
k, - 1) = 0 for h + k - 0 and L(h, k, 1) = min{Pr(z 

- h), Pr(z > k)} (Abramowitz and Stegun 1970, p. 
937) to Equations (23), (24), and (25). 

If a, is given, the preceding lemma can be used to 
aid in the solutions of Equations (23), (24), and (25) 
for a2, /,I, and /2. Assume that a routine for eval- 
uating . is available. There are many such programs; 
for example, see Drezner (1978) or the IMSL sub- 
routine MDBDOR. There are also simple approxi- 
mations such as the one by Mee and Owen (1983). 

We could use some form of search to solve each 
of the three equations for a2, /i, and #2, but I suggest 
an iteration procedure. For example, to solve 

a2 = as - a1 + .(a1, a2, p,,) 
when a, is known, pick a starting value for a2 and 
then substitute recursively until the equation is solved 
to required accuracy. This is known as one-point it- 
eration. The procedure will converge because the 
derivative of . with respect to a2 is less than 1 (see 
Dahlquist and Bjorck 1974, chap. 6). Similar com- 
ments apply to the other two equations. 

Experience indicates that the number of iterations 
required varies from about 3 to 20 if the termination 
criterion is to make the difference between the two 
sides of the equation less than .001% of the left side. 
The number of iterations needed increases when the 
probability converged to is very small. One can 
decrease the number of iterations greatly by using 
the Aitken extrapolation procedure (Dahlquist and 
Bjorck 1974, p. 235). There are, of course, many 
other approaches to solving this kind of nonlinear 
equation, but this one is very easy to implement. 

Use the following procedure to evaluate C(ai): 

Required input: a,, a', /*, a, a02, , C, pg, , r, 
Al, A, p. 

Calculated: &1, 2, using (5). 
Step 1. Set p,, = p. 
Step 2. Set p", = P,. 
Step 3. Find a2 from (23) by iteration. 
Step 4. Find fl1 from (24) by iteration. 
Step 5. Find 12 from (25) by iteration. 
Step 6. Find nl and n2 from (2) and hence nmin and 

nmaxa 

Step 7. Set p, = p(nmin/nmax)2 If IPn - p(n > E, go 
to Step 2. 

Step 8. Set C(a,) = cost(al, a2, fl, ,2) using (22). 
Step 9. End. 

The preceding procedure could be used to search 
for the best C(ao) on the range of a1 : (0, a') in 
some formal manner. Simply evaluating enough 
points for a plot of C(ao) on this range is probably 
the best method, however, since the function tends 
to be rather flat and this will make us aware of trade- 
offs. 
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Once a value of a, is selected, the associated nl 
and n, are, of course, known, so c, and c2 can be 
computed from (3) and (4); the solution is then com- 
plete. 

4. EXAMPLE 

We continue our previous watt-hour meter ex- 
ample, in which the percentage error at high power 
was to be within + 1% and at low power was to be 
?2%. The standard deviation is .05 at high power 
and .2 at low power. High-power and low-power 
error measurements have a correlation of .8. For 
high power, the acceptable and rejectable propor- 
tions nonconforming are .005 and .02, whereas for 
low power these proportions are .01 and .05, re- 
spectively. 

Charts are to be designed so that the probability 
of either or both charts showing sample means "out 
of control" is less than or equal to .01 when the 
manufacturing process is producing acceptable me- 
ters with respect to both readings and the probability 
of both charts showing "in control" when the process 
is producing meters unsatisfactory with respect to 
either measurement is less than or equal to .05. Hence 
a' = .01, and fl = .05. 

Calculate the upper acceptable and rejectable pro- 
cess means (average percentage of error produced 
by the manufacturing process) for high power as fol- 
lows: 

1.0- z(.005)(.05) = .8711 

and 

~ = 1.0 - z(.02)(.05) = .8973. 

The lower aceptable and rejectable means would be 
-.871 and -.897, respectively. Hence 

8, = (.05/(.897 - .871))2 = 3.669. 

Similarly, , = 1.535, ur = 1.672, and 62 = 2.153. 
We now find the charts that minimize the to- 

tal number of error measurements necessary. In 
other words, A, = A. Figure 1 shows a plot of nl, 
n,, and n, + n2 as functions of a1. Minimizing C(a,) 
by Golden Sections gave the optimum value a' = 
.00708. Equations (22)-(25) also gave a* = .00383 
and ,fB = -* = .05. Moreover, n = 62, and n2 = 
40 after rounding. 

The correlation between sample means at these 
sample sizes was .8(40/62)'/2 = .643 using (9). This 
means that we would take samples of 62 meters. High- 
power measurements are taken on all 62, but low- 
power measurements are taken on only, say, the first 
40. 

The control limits from (3) and (4) are then cal- 
culated to be ?.887 for high-power average per- 

140- 

120- 

100- 

uJ 
-J 
a, 

4c Cl 

80- 

60- 

40- 

20- 

II 

/ 

- ni 
--- n2 

nl +n2 

0.000 0.002 0.004 0.006 0.008 0.010 

a1 

Figure 1. Plot of Sample Sizes for p = .8. 

centage errors and + 1.62 for low-power average per- 
centage errors. Figure 2 shows the OC surface of the 
optimal solution. 

If the correlation coefficient were -.8 instead of 
.8, then n* = 63, n* = 39, ao = .00584, a* = 
.00416, /f = .0526, and /f, = .0535. Moreover, for 
p = 0: nf = 63, n2 = 40, a* = .00636, a* = .00371, 
,f = .0502, and /2 = .0502. 

5. SPECIAL CASES AND EXTENSIONS 

One alternative to minimizing the sum of weighted 
measurements is to minimize the largest sample that 
is taken. For example, we could wish to take the 
smallest possible sample of meters from the produc- 
tion line. 

This would mean minimizing 

max{S,[z(al) + z(l,)]2, 26[z(a,) + Z(f2)]2}. 

w 
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o 

4 I. 
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Figure 2. Operating Characteristic Surface for p = .8. 
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Our method remains unchanged except for the quan- 
tity being calculated for each a,. When this objective 
is used in the preceding example with p = .8, we 
obtain a* = .00997, a* = .000199, and nr = n* 
= 58 after rounding. 

Analysis of Figure 1 shows why this minimum oc- 
curs at n1 = n2; n, decreases with a, and n2 increases 
simultaneously because a2 decreases. This is because 
variation in sample size is, in this example, deter- 
mined primarily by the z(aj) terms; /l and /2 remain 

relatively stable around .05 with changes in al. This 
means that sample-size changes are dominated by 
the z(aj)'s. This will be true in most practical situ- 
ations because usually P' is chosen to be much larger 
than ac, and, as is seen from Lemma 2, this restricts 
the range of the /j's. 

It is also interesting to consider the height of the 
OC surface at H3 : /,l = I/, /2 = p2. We know from 
Lemma 1 that this will be below /,, but this prob- 
ability of acceptance will vary. One could ask the 

question of whether an alternative design criterion 
could be forcing the OC surface through a prespe- 
cified point at H3. 

If such a specified probability is /B, it is easy to 

adjust our procedure to minimize l/" - L(z(#l), 
z(/2), pn)l [see (14)]. L(z(/1), z(42), Pn) has only a 
limited possible range of values, however, because 
P, and p2 have limited ranges, as is evident from 
Lemma 2. Hence it may not be possible to force the 
surface through a desired point. Probably the best 
procedure, if the probability of acceptance at H3 is 
of concern, is to plot this probability along with the 
sample sizes and to use it as an auxiliary criterion. 

6. SUMMARY AND CONCLUSIONS 

This article has derived relatively simple compu- 
tational procedures for determining the optimal sam- 

pie sizes and control limits when acceptance control 
charts must reflect a commitment to joint, or total, 
acceptability with respect to two correlated pro- 
cesses. A search method was developed that mini- 
mizes the cost-weighted combined sample size or the 
maximum sample size. It may be used to fit an OC 
surface through four points if the points are such as 
to make this possible. 
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