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Two simple proof-load testing procedures are suggested to estimate the correlation between two vari- 
ables that can individually only be determined destructively. The first procedure assumes that the means 
and variances of the variables are known. The second testing procedure is more flexible and requires 
no prior information. By assuming that the variables have a bivariate normal distribution and con- 
sidering only the number of units that fail at each proof-load, we determine the maximum likelihood 
estimate for the correlation coefficient. Theoretical and simulation results compare favorably with 
previously suggested more complicated procedures and guide the practitioner in appropriate choices 
for the proof-load levels. 

KEY WORDS: Attribute testing; Censored data; Destructive testing; Jackknife methods; Maximum 
likelihood estimate (MLE). 

Many materials used in construction and other applica- 
tions can be characterized by two or more important phys- 
ical strength properties. In assessing the acceptability of 
the materials, the correlation between the various strength 
properties can be very important. For physical structures 
subject to a variety of stresses, large correlations between 
strength modes have the effect of increasing the variabil- 
ity of a structure's load-carrying capacity, thus making it 
less reliable. Suddarth, Woeste, and Galligan (1978) and 
Galligan, Johnson, and Taylor (1979) studied the effect 
of the degree of correlation between bending and tensile 
strength in metal-plate wood trusses used in the roof struc- 
ture of most homes. They concluded, based on theoretical 
and simulated results, that a large correlation may signif- 
icantly affect the structure's reliability. 

In many applications, however, the strength of an item 
can only be determined through destructive testing. Lum- 
ber, for example, has several physical properties-such 
as bending strength, tensile strength, shear strength, and 
compression strength-that can only be determined de- 
structively. As a result, one is able to ascertain only the 
breaking strength in a single mode for each unit. In such 
situations, the correlations among the various strength 
properties cannot be measured directly and must be ap- 
proximated. Several past studies (Amorim 1982; Amorim 
and Johnson 1986; Evans, Johnson, and Green 1984; 
Galligan et al. 1979; Green, Evans, and Johnson 1984; 
Johnson and Galligan 1983) have addressed the problem 

of estimating the correlation between two destructively de- 
termined variables by using proof-loading. Proof-loading 
involves stressing units only up to a prescribed (proof) 
load, thereby breaking only the weaker members of a pop- 
ulation (Johnson 1980). This way, although some units 
break before the proof-load is reached, others survive and 
can be subjected to further testing in other strength modes. 

The strategy employed in past studies (Amorim 1982; 
Evans et al. 1984) involves proof-loading units on the first 
mode followed by stressing the survivors until failure on 
a second mode and recording the exact load at failure. 
By assuming that the strength properties have a bivariate 
normal distribution with known means and standard de- 
viations, Evans et al. (1984) and Amorim (1982) were 
able to solve numerically for the maximum likelihood es- 
timate (MLE) of the correlation for various sample sizes 
and actual correlation values. A simulation study evalu- 
ated the mean and standard error of the MLE at different 
proof-load levels. Determining that the MLE was approx- 
imately unbiased, they compared the standard error of the 
MLE with the theoretical lower bound given by evaluating 
the reciprocal of the Fisher information. 

Other researchers have considered extensions of the cor- 
relation estimation problem that use additional informa- 
tion from nondestructively measured properties. Bartlett 
and Lwin (1984) considered a variation in which a third 
property can be measured nondestructively. Johnson and 
Galligan (1983) and Galligan et al. (1979) estimated the 
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correlation between two destructively measured proper- 
ties in which each is a function of several properties that 
can be measured nondestructively. They presented results 
comparing the correlation estimate calculated ignoring the 
additional dependence on the nondestructively measured 
properties and estimates obtained using the additional in- 
formation. The procedure was performed on real data, but 
the results were inconclusive due to a poor choice of proof- 
load levels. These methods, although theoretically useful, 
require much prior information that is often not available 
and so have not been successfully applied to real data. 

Note that all procedures based on proof-loading implic- 
itly assume that survivors of the proof-load are not dam- 
aged. Experimental studies by Madsen (1976) and Strick- 
ler, Pellerin, and Talbot (1970) suggested that this may 
be a reasonable assumption regarding the static strength 
of lumber, although a few pieces whose strength is only 
slightly greater than the proof-load stress will likely be 
weakened. In addition, according to cumulative damage 
theory (Gerhards 1979, p. 139), "the theoretical results 
suggest that some percentage of the population will fail 
during the proof-load, a very small additional percentage 
will be weakened, but the remainder will have residual 
strength virtually equal to original strength." These theo- 
retical results are based on the reasonable assumption that 
the proof-loading is done at a rapid rate. 

This article proposes two simple procedures that use 
only proof-loading to estimate the correlation between 
two variables that can individually only be measured de- 
structively. In Section 1, we describe Procedure I, which is 
very simple but requires prior knowledge of the individual 
means and variances. In Section 2, we present Procedure 
II, which requires a slightly more complicated testing pro- 
cedure but is more flexible because it does not require any 
prior information. In Section 3, we present an example 
of the use of the two procedures. In Section 4,we com- 
pare the efficiency of the proposed procedures with past 
approaches. 

1. PROCEDURE I: ONE-WAY ESTIMATION 

In developing Procedure I it is assumed that the two 
variables, denoted A and B, have a bivariate normal dis- 
tribution with known means and standard deviations /La, 
,Lb,, a, oab and that survivors of proof-loads are not signif- 
icantly damaged. To simplify the testing required, how- 
ever, rather than recording the precise load at failure for 
each unit in the sample as in previous studies, we record 
only the number of units that fail each of the two proof- 
loads. As a result, because proof-loading generally does 
not require sophisticated measuring equipment and can 
be done quickly and easily, the proposed procedure would 
be cheaper and easier to apply in practice than previous 
procedures. Moreover, recording only either pass or fail 
is very natural for destructive strength tests because it is 
often difficult to measure breaking strength precisely. Pro- 
cedure I is performed as follows: 

1. Start with a sample of size n. Load each unit up 
to a proof-load of PLa in variable A, letting Pa equal 
the probability of failure on this load, that is, Pa = 
>((PLa - I,a)/aa), where 0 is the cumulative standard 

normal probability. Denote the number of units that break 
under this first proof-load as na. 

2. Subject the remaining n - n, units to a proof-load 
of PLa on mode B, where Pa = '>((PLb - /b)/arb) equals 
the probability of failure. Let nb equal the number of units 
that fail this second proof-load. 

Note that n-na -nb units fail neither proof-load. Based 
on this testing procedure the likelihood of obtaining any 
given na and nb is 

L(n, na, nb) 
= 

pa(( 
- 

Pa)Pbla)b((1 - Pa)(l 
- 

pbl))n-n-n 
= P( Pb - anb)b( - P - P + Pa)n-n-n 

(1) 

where Pbla equals the probability of failure on mode B 
given that the unit did not fail on mode A and Pamb equals 
the theoretical probability that a unit would fail both proof- 
loads. Solving for Panb the MLE of Panb, gives 

nb(l - pa) 
Panb = Pb- 

n -na 
(2) 

Using Equation (2) it is possible, although unlikely un- 
less proof-load levels are very small, that the estimate P*nb 
is negative. This makes no physical sense, and we recom- 
mend that, if Panb < 0, Pab is set equal to 0. Using this 
truncation, pab is technically no longer the MLE. As 
a result, subsequent analysis ignores this recommended 
truncation and is only valid when such truncation is un- 
likely. In any event, the practical effect of the truncation 
is to reduce the standard error of the estimate. 

Because Panlb is a function of Pa, Pb, and Pab, we 
can solve for the MLE of the correlation Pa*b that cor- 
responds to the given values of Pa, Pb, and the MLE Pa*nb 
Define g(x, y, p) as the standard bivariate normal prob- 
ability function given by formula 26.3.1 of Abramowitz 
and Stegun (1972), and denote h and k as percentiles of a 
standard normal distribution such that h = ~ -(1 - p,), 
k = - 

(1 - Pb). Then 

Ik rh 

Pa nb = g(x,y, pab)dxdy 
= -00 =-00 

= f(Pa, Pb, Pab) 

and 

1 ep- 
P I r 

ep(h2 
+ k2 -2hkcos 

z)d 27r Jcos-' Pa,, 2 sin2 z 

(3b) 

where (3b) is due to Sheppard (1900). Based on (3b), the 
partial derivative of f( Pa, Pb, Pab) with respect to Pab is 
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given as (Drezner and Wesolowsky 1990) 

af( Pa , Pb. Pab) 
= g(h, k, Pab). 

OPab 
(4) 

This expression is strictly positive; therefore, f(pa, Pb, 
Pab) is a strictly increasing function as Pab ranges from 
- 1 to + 1. Thus we can search for the MLE p,1b value that 
corresponds to the determined untruncated P*b value us- 
ing the method of bisection. Note that for any given values 
of Pa, Pb, and Pab a simple numerical procedure given by 
Drezner and Wesolowsky (1990) will determine the bi- 
variate normal integral (3b). Alternatively we may use 
Expression (4) and Newton-Raphson (Press, Flannery, 
Teukolsky, and Vetterling 1988) to solve for Pab. 

In summary, for Procedure I, the MLE Pab is determined 
as follows: 

1. Choose the sample size n and failure probabilities 
paand Pb. Determineh = -l'(1-pa),k = (-l(l-Pb). 

2. Perform the experiment as outlined to obtain na 
and nb. 

3. Use Expression (2) to obtain the MLE Panb If Pa*lb 
< 0, set Pnb = 0. 

4. Using the calculated P anb, h, and k find the value 
of p,, that solves (3). 

The preceding methodology is a two-step process; first 
we obtain pb,, which is then translated to the correspond- 
ing Pb value. It is of interest to note that Pab obtained 
through this two-step process is the same as that obtained 
through direct maximization of (1) written in terms of Pab 
The two-step methodology is recommended because it 
gives a simple explicit formula for Panb, which may also be 
of interest, and the methodology is more easily extended. 

1.1 Properties of the Estimates Pa-b and Pab for 
Procedure I 

The MLE Pnb,, as derived in Equation (2), is defined 
only if na < n-in other words, if not all units fail under 
the first proof-load. If na = n, none of the units are sub- 
jected to any proof-loads in the second strength mode, and 
as a result, no information is obtained about the correla- 
tion between strength modes. We shall proceed with the 
analysis assuming that na < n. Fortunately, because the 
proof-load levels can be set to any desired values, observ- 
ing na = n is very unlikely even for small sample sizes. 

The mean and variance of Pa*l can be derived through 
conditioning. Assuming na < n, we have 

E( n, 
b = E (nt,lna) 

)=E(Pba) =Pbla. 

Thus, by Equation (2), E(pnb) = Panb. Similarly the 
conditional variance formula gives 

var(pnb,) = (1 - P.)2var( 
nb 

) 
= (1 - a)2[v\n 

- na 

n - - na 

+ E ar( 
nb 

na)] - 
/a 

= (Pb - Panb)(l - Pa - Pb + Panb) 

xE( 
1 

). n -na/' 

Expressions of the form E(x-1), where x is a bino- 
mial variate bounded away from 0, have been studied 
(Johnson and Kotz 1969, sec. 3.10). Given that na > n, 
the variable n - na is such a binomial variate with sample 
size n and probability of success 1 - Pa. An approxi- 
mation suggested by Grab and Savage (1954)-namely, 
E((n - na)-) ( (n(l - Pa) - pa)-l-gives two signif- 
icant figures of accuracy for n(1 - Pa) > 10 and is more 
than adequate for our application. Thus we have 

,,,, - (Pb Pab)( 
- 

Pa - Pb + Panb) ( var(Panb,) .1 (5) 
n(1 - Pa) - Pa 

The mean and variance of ab are more difficult to de- 
termine. An estimate Panb is translated to pab through the 
relation Panb = f(Pab; Pa, Pb). The function f(Pab) is 
not a simple linear relation, however. Thus, unfortunately, 
the MLE Pab is not in general unbiased. In the next sec- 
tion, however, we show, using simulation studies, that the 
bias of pb is approximately 0 and an insignificant part 
of the estimate's mean squared error for most proof-load 
levels. Fortunately, the standard error of Pab can be esti- 
mated using the 3 method [method of statistical differen- 
tials (Johnson and Kotz 1989)]. For Pab values away from 
the extremes ?1, f(Pab) can be closely approximated by 
a linear function, and var(pa*) (af/aPab)-2var(Panh). 
Thus, through Equations (4) and (5), the standard error of 
Pab can be approximated as 

se ) vvar(pnb) 1 

af/Opab g(h, k, Pab) 

(Pb - Panb)( 
- Pa -Pb + Panb) 

n(l - Pa) - Pa 
(6) 

Notice that Equation (6) cannot be computed unless the 
true correlation level Pab is known. Our experience has 
shown, however, that using the computed MLE's Pab and 
palnb in Equation (6) provides a good estimate of se(pa) 
based solely on the sample data. 

1.2 Sensitivity Analysis for Procedure I 

The following section explores how proof-load levels, 
actual correlation values, and sample size affect the bias 
and standard error of p.b The sensitivity of the estimate 
Pab to changes in proof-load failure rates Pa and ph is 
shown in three-dimensional surface plots. Figure 1 and 
other simulations suggest that correlation estimates ob- 
tained with Procedure I are unbiased for a large range 
of Pa and Pb values; only for extreme combinations in 
which one proof-load is high and the other low does the 
bias deviate significantly from 0. Figure 2 suggests that 
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0.3 

.9 ) 250 300 350 400 450 500 
Sample Size 

.2 .2 .- Pa 

Figure 1. Bias of Simulated Correlation Estimate: n = 300, 
Pab = .6, 10,000 Samples. 

the standard error of Pb is relatively insensitive to changes 
in proof-load levels near the optimal values for Pa and Pb. 
This is shown by the large flat section near the minimum. 
In general, simulation results of the estimate's standard 
error correspond very closely to Equation (6). Simulation 
results also suggest that p*b is approximately normally 
distributed so long as the sample size is fairly large and 
the estimate is not close to the extremes -1 and 1. In 
general, the normal approximation is good if the range 
P4b + 3se(p,,b) does not include -1 or 1. 

The effect of the sample size n on the standard error 
of Pa* is clearly demonstrated through Equation (6). The 
standard error of Pab decreases as a function of 1/./n as n 
increases. The effect of n on the bias of Pab is more diffi- 
cult to quantify. Through a simulation study, however, we 
determined that the absolute value of the bias of ab de- 

.40 

.35 

.30 

. .20-'~ 

'6.10 

.05 

.9 

.2.2 .2 a 

Figure 2. Standard Error of Simulated Correlation Estimate: 
n = 300, Pab = .6, 10,000 Samples. 

Figure 3. Sample Size Versus Standard Error of ab: Assume 
Optimal Proof-load Levels From Section 1.3. 

creases approximately as a function of 1/n as n increases. 
In any case, for near optimal proof-load levels the bias of 
Pa is insignificant compared with its standard error for 
any sample size. 

Another factor that has a significant influence is the ac- 
tual correlation value. Figure 3 explores, using (6), how 
changes in sample size and the actual Pab affect the stan- 
dard error of Pa. Note that the curves for negative correla- 
tions correspond almost exactly to the curves for positive 
correlations with the same absolute value. Figure 3 can 
guide the practitioner in choosing an appropriate sample 
size. Clearly, the estimation procedure works best when 
the real correlation is strongly positive or negative. Simu- 
lation studies suggest that the actual correlation value has 
little affect on the bias of P1b for near-optimal proof-load 
levels. 

The effect of incorrect estimates for Pa and Pb on the 
correlation estimate is explored in Figure 4. For example, 
say we believe that our current proof-load level will result 
in Pb = .4 but in reality ph = .5; that is, APb = -.1. 

Figure 4 shows that this incorrect assumption leads to 
correlation estimates that are on average around .19 lower 
than the true value. Clearly, the effect of inaccurate Pa 
or Pb values can be very significant and is a major prob- 
lem with any estimation procedure such as Procedure I 
and the Evans method (Evans et al. 1984) that relies on 
prior estimates. Notice also from Figure 4 that the bias of 
Pa* is more sensitive to deviations in Pb. As a result, we 
recommend that the strength mode in which one has the 
most reliable prior information be used as mode B. 

1.3 Optimal Proof-load Failure Rates pa and Pb for 
Procedure I 

Given an actual correlation Pah and the sample size n we 
can find the values of p, and Pb that minimize the predicted 
standard error given by (6), using the Nelder-Mead multi- 
dimensional simplex method (Press et al. 1988). Figure 5 
plots the optimal p, and Pb values for actual Pab values 
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-0.3 
0.3 

0.2 

0.1 

APb 
0.0 

-0.1 

-0.2 

-0.3 

-0.2 -0.1 0.0 0.1 0.2 0.3 

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 

APa 

Figure 4. Contour Plotofthe Correlation Estimate Bias When 
Prior Estimates of Pa and Pb Are Incorrect. Apa and pb equal 
the deviation of the prior estimates from the actual values: 
Pa = .65, Pb = .5, Pab = .6. 

between -.95 and .95. The curves showing the optimal 
pa and Pb values are quadratic and cubic in nature, re- 
spectively, and can be very closely approximated from a 
regression analysis as 

optimal a, = .733- .165a2b 

optimal Pb = .499 - .184pab + .146p2b. (7) 

Unfortunately, determining the optimal values for Pa 
and Pb requires a prior estimate for the correlation Pab. 
Due to the relative insensitivity of the standard error of 
Pfb near the optimal Pa and Pb values, however, choosing 
good Pa and Pb values can be done even with little idea of 
the actual Pab. With little prior information regarding the 
correlation level, we recommend proof-load levels close 
to p, = .65 and Pb = .5. 

2. PROCEDURE II: SYMMETRIC PROCEDURE 

In developing the one-way estimation procedure, we 
assumed that good prior estimates of the means and vari- 
ances of the two characteristics are available. In practice, 
these estimates may either be inaccurate due to quality 
changes or unavailable due to a lack of experience with 
the process. The symmetric procedure outlined here alle- 
viates this difficulty by using the experimental results to 
estimate not only Panb but also Pa and Pb. The simplicity 
of the one-way procedure is retained by still considering 
only one proof-load level in each mode; however, to obtain 
more information we reverse the order of the proof-loads 
for some of the units. A similar type of procedure that ex- 
tends the methodology of Amorim (1982) was suggested 
by Green and Evans (1983). They suggested subjecting 
half the sample to a proof-load in mode A followed by 

U.75 ' 

0.65 

0.6 ' 

&0.55" 
0.5,' 

0.45 ' 

0.4 

0.35 ' . ' 
-1 -0.8 -0.6-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 

actual correlation Pb 

Figure 5. Optimal Pa and Pb Values for Procedure 1: o = 
Best Pa, x = Best Pb. 

stress until failure in mode B and the other half to proof- 
load in mode B followed by stress until failure in mode A. 
They reported good results in estimating all five parame- 
ters of a bivariate normal distribution but did not present 
their results or analysis. 

Our proposed symmetric procedure is outlined as fol- 
lows: 

1. Start with a sample of size n + m. 
2. Perform the one-way procedure of Section 1 on n 

units. 
3. Perform the one-way procedure in reverse order on 

the remaining m units. 

Denote the number of the first n units that break under 
proof-loads PLa and PLb as na and nb, respectively, and 
denote the number of the m units, in the reverse order 
test, that fail under the proof-loads PLb and PLa as mb 
and ma, respectively. Using the notation of Section 1 the 
likelihood function for the symmetric procedure is 

L(n, m, na, rn, ma, mb) = pna(pb - Panbh)n' 
X (1 - Pa - Pb + Panh)n-n P b 

X (Pa - Panb)a( - Pa - Pb + Panb)m-ma-m' 

(8) 

This symmetric procedure provides more information than 
the one-way procedure. Solving for the MLE's gives 

* na(na + nb + ma + mb) 
a 

= 

(n + m)(na + nb) 
mb(na + nb + ma + mb) 

pb = 
(n + m)(ma + mb) 

* _ (mbna - manb)(na + nb + ma + mb) 
Panb- 

(n + m)(na + nb)(ma + (b) 

Note that Panb may be less than 0, although this makes no 
physical sense. Unless p, and Pb are quite small, however, 
that is very unlikely because normally we will observe 
na > ma and mb > nb. If the experiment results in P*nh 
< 0, we recommend setting Pab = 0. As in Section 1, the 

TECHNOMETRICS, FEBRUARY 1995, VOL. 37, NO. 1 

98 



ESTIMATING CORRELATION USING PROOF-LOADING 

truncated Panb is technically no longer the MLE. Subse- 
quent analysis ignores this recommended truncation and 
is only valid when such truncation is unlikely. In any 
event, the practical effect of the truncation is to reduce the 
variance of the estimate. 

Given Panb the corresponding Pab can be obtained using 
the methodology of Section 1. Rather than using known 
values for Pa and Pb, however, we use the MLE's Pa 
and p* that is, solve Pa*n = f(pa , Pb ) for Pab The 
method is summarized as follows: 

1. Choose sample sizes n and m and proof-load levels 
in modes A and B. 

2. Perform the experiment as outlined to obtain na, nb, 
ma, and mh. 

3. Use Expressions (9) to obtain the MLE's p*, p;, and 

Pa*n, and determine h* = ?-l(1 - p,) and k* = I)-1 
(1 )- If Pan < 0, set Pnb = 0. b anb 

4. Using alcl h*, k, fi the calculated orre- 
sponding P*^ through (3). 

Substituting (3a) into (8) and numerically searching for 
the values of Pa, Pb, and Pab that maximize (8) is an alter- 
native approach to finding the MLE's. This direct method 
yields the same results as our two-step approach, how- 
ever, and has the disadvantage of requiring a simultaneous 
search in three dimensions. 

2.1 Properties of the MLE's for Procedure II 

We restrict analysis to the case in which na + nb 0 
and ma + mhb 0. This restriction is necessary because if 
either na + nb = 0 or ma + mb = 0-that is, no units fail 
in either proof-load-not enough information is obtained 
and two or more of the MLE's are undefined. The likeli- 
hood of observing either n, + nb = 0 or ma + mb = 0 is 
in most cases very small. 

Given the restriction, the MLE's given by Equations 
(9) can be shown to be unbiased, and the standard error 
and bias of P*b can be estimated based solely on the ob- 
served sample using the jackknife method (Efron 1981). 
Consider the correlation estimate obtained from each sub- 
sample of the original sample that has one observation 
removed. We can think of P*b as being a function of the 
experimental outcome; that is =h(, = hn, b, ma, mb, n 
+ m). Fortunately, in our case, due to the discreteness of 
our data we need consider only five distinct cases pib with 
corresponding weights wi: 

Pah = h(na - 1, n, ma, m, n +m - 1), 

P2 = h(n., nh - 1, ma, mb, n + m - 1), 

3b = h(n nb, ma- ,mb, n +m- ), 

Pb = h(n, nb, ma, mb - , n +m - 1), 

p5h = h(na, nb, m,, mb, n + m- 1), 

Wl = na 

W2 = nb 

W3 = ma 

W4 = mb 

5 = n + m - n, - nb - ma - mb. 

(10) 
Based on these additional correlation estimates, the jack- 
knife estimate of the bias BIAS, and standard error S of 

Pab are 

n + m - I 5 
BIAS = Wk(b- Pb) 

n+m k=l 
b 

k=l 

n + m -1 5Wi - 5 

EnWk EE (nab) k=I -i=n 

-2 
k - 

Pab 

(11) 

Because in most cases the bias of P*b is quite small, the 
jackknife bias adjustment is of little value. On the other 
hand, simulation results suggest that the jackknife esti- 
mates for the standard error of the correlation estimate are 
usually very good. 

2.2 Sensitivity Analysis for the Symmetric 
Procedure 

It is of interest to determine the effect of sample size, 
proof-load levels, and actual correlation values on the bias 
and standard error of the correlation estimate Pab derived 
by Procedure II. Simulation results suggest that the bias of 
a*b using the symmetric procedure follows a very similar 

pattern to that exhibited by Procedure I (see Fig. 1). In 
other words, the bias is very small unless one or both the 
proof-loads are small (p, or Pb < .2). Figure 6 explores 
the simulated standard error of P*b for various proof-load 
levels. 

Based on Figure 6 and additional simulation studies, we 
recommend trying to choose proof-load levels that result 
in about 60% failures. Near these proof-load levels, the 
standard error of P,*h is small and relatively insensitive to 
changes in p, and Pb. This insensitivity is very important 
because when the individual means and standard devia- 
tions are not known with certainty it is impossible to set 
proof-load levels exactly at a desired level. 

.9 

Figure 6. Standard Error of the Simulated Correlation Esti- 
mate: n = m = 150, Pab = .6, 10, 000 Samples. 
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0.4 , 

0.3 \ Pnb = 0.2 

0.3 - P\ / 06 
M \0 \ P Pbab=6Pab 

0..1 

0 
0.2 0.3 0.4 0.5 0.6 

Pa andPb 

Figure 7. Standard Error as a Function of P 
n=m= 150. 

The symmetric procedure also exhibi 
similar to Procedure I with regards to the < 
size (see Fig. 3). Because for the symm 
we are unable to set the proof-load prob; 
Pb, however, we are very interested in the i 
on the procedure's estimates. Figure 7 sl 
results of standard error of Pab as a functic 
probabilities and true correlation levels. 

Clearly, as shown in Figure 7, the estim, 
works best when Pah is large and Pa and p 
In our experience, the estimation proced 
well unless Pa*nb (or mbna - nbma) is likel 
or close to 0. When Panb is close to 0, tl 
not very stable because small changes in tt 
outcome (na, nb, ma, m^) result in large 
corresponding pab value. Fortunately, m 
only likely to be close to 0 when Pa or 
small and Pab is not strongly positive. 

3. EXAMPLE 

To illustrate the two procedures, suppost 
terested in estimating the correlation betwc 
and tension strength of lumber. 

250 

200- 

150- 

100 - 

50- 

0 
0.06 0.08 0.1 0.12 

Figure 8. Histogram of the Jackknife Stan 
mate. 

Following the summary of Procedure I resulted in the 
following steps: 

~- ~ 1. A sample of 300 lumber specimens were taken (i.e., 
n = 300), and the proof-load levels in bending and tension 
were chosen so that Pa = .65 and Pb = .45; that is, 

= 0.8 h =-.385 and k =. 126 
2. The experiment resulted in 190 units failing under 

the proof-load in bending and 23 units of the remaining 
- 110 units failing under the proof-load in tension. Thus 

na = 190 and nb = 23. 
3. Using these variables and Equations (2) and (3) 

0.7 0.8 gave Pa,b = .377 and P*b = .557. From Equation (6), 
we estimated se(pb) = .088. 

'roof-load Levels, Following the summary of Procedure II, we performed 
the following steps: 

ts performance 1. A sample of 300 lumber specimens was taken 
effect of sample choosing n = m = 150. 
ietric procedure 2. Running the experiment gave na = 96 and nb = 11, 
abilities Pa and ma = 42 and mb = 65. 
effect they have 3. Substituting into Equtin o ions (9) gave a = .64, p 
hows simulated .43, and P,nb = .36. Thus h = -.359 and k = .168. 
n of proof-load 4. Inverting (3) gave Pb = .547. The jackknife 

procedure, Equations (10) and (11), gave pb = .546, p2 
ation procedure = .573, pa = .556, pab = .549, and pb = .544, which 
)b are not small. results in a standard error estimate of S = . 113. 
ure works very 
y to be negative In both cases the example was generated randomly us- 
he procedure is ing a bivariate normal distribution with Pa = .65, Pb 
he experimental = .45, and Pab = .5 (thus Panb = .368). Simulation 
changes in the results suggest that for Procedure I se(p,b) = .091 and 
bna - nbma is for Procedure II se(pb) = . 168. 
Pb or both are For comparison, we also include Figure 8, which shows 

simulation results of the jackknife estimate for the stan- 
dard error of Procedure II. Figure 8 shows a histogram of 
1,000 trials with a mean jackknife standard error estimate 
of.116. e that we are in- of16 

,en the bending 4. COMPARISON OF RESULTS WITH 
EVANS'S METHOD 

Table 1 compares the best standard errors of Pab 
obtained by simulating the Evans et al. (1984) method 
and our proposed one-way and symmetric procedures. As 
expected, the standard errors of Pb for our Procedures 

Table 1. Best Standard Errorofp*b 

Evans's Proposed Proposed Proposed 
procedure Procedure I Procedure I Procedure II 

Actual pab n = 300 n = 300 n = 365 n+ m = 300 

014 0.16 .2 .0895 .1101 .0972 .1328 
.6 .0649 .0804 .0709 .0982 
.8 .0400 .0520 .0456 .0701 

dard Error Esti- .9 .0257 .0310 .0284 .0444 
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I and II are higher (about 20-25% and 40-60%, respec- 
tively). This decrease in efficiency, however, will be com- 
pensated by the lower cost and greater ease of implemen- 
tation. Both Procedures I and II have the advantage of not 
requiring the determination of precise breaking strengths 
because only proof-loading is used. 

Moreover, because the proposed procedures use only 
proof-loading, some of the units tested are not destroyed 
and can be returned to the population of unused sam- 
ples. The average number of units not destroyed is eas- 
ily approximated. For example, using Procedure I with 
Pa = .65 and Pb = .5 results in the survival of 17.5% 
of the units on average. These units not only survive the 
testing but are in fact the strongest units in the sample 
because they have withstood two proof-loads. For com- 
parison, Table 1 also shows results for Procedure I with 
n = 365 (if 17.8% of the units do not fail, the procedure 
will destroy 300 units). The standard errors for Proce- 
dure I are now only about 10% higher than those obtained 
with the Evans method. Procedure II, the symmetric pro- 
cedure, has the advantage of not requiring accurate prior 
mean and standard-deviation estimates. When such prior 
estimates are unavailable or incorrect, the symmetric pro- 
cedure may well outperform the one-way procedure and 
previously developed procedures. 

5. RECOMMENDATIONS AND CONCLUSIONS 

For the practitioner, these two new procedures offer 
simple and practical ways to obtain good estimates of the 
correlation between two variables that can only be de- 
termined destructively. The proposed procedures require 
only one pass/fail proof-load in each strength mode. In 
both cases, optimal proof-load levels depend on the un- 
known correlation coefficient; however, both suggested 
procedures are not overly sensitive to changes in the proof- 
load levels near the optimal levels. Therefore, for the 
one-way procedure, a good rule of thumb is to choose the 
proof-loads such that on average 65% of the units break 
on the first test, and an average of 50% break on the sec- 
ond test (i.e., 50% would break if the second test were 
done first). When the means and standard deviations of 
the individual variables are unknown, the symmetric pro- 
cedure is applicable, but choosing good proof-load levels 
is more difficult. In this case, the practitioner should aim 
for proof-load levels at which 60% fail proof-load levels 
in each mode. 
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