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Methodology is presented for the design of single and double compressed-limit sequential probability ratio tests (SPRT) and
cumulative sum (CUSUM) control charts to detect one-sided mean shifts in a symmetric probability distribution. We also show
how to evaluate the average run length properties with the fast initial response (FIR) feature. The resulting CUSUM plans have a
simple scoring procedure, and are extremely simple to derive and implement. The use of two compressed-limit gauges is more
efficient than a single compressed-limit gauge. In the case of SPRTs, the use of two compressed limit gauges minimizes the
average sampling number required for specified operating characteristics. In the case of CUSUM, the gain in efficiency reduces the
out-of-control average run length for a given in-control average run length.

1. Introduction

Control charts are used to detect shifts from the target of
a process. Let X;,X,,. .. denote a sequence of independent
random variables whose target cumulative distribution
function is Fy. Then a one-sided control chart for the
detection of an alternate distribution function F; consists
of an action limit 2 and a plot of Y; = gi(X;X,...X))
against j (j = 1, 2,...), where g; is a function of the
previous j random variables. A shift in the process is
signaled at time j if ¥; > h. The economy of a control
chart is often evaluated by computing the average run
length, where the run length is defined as the number of
samples until the chart signals. When the process is at the
target value, the run length should be large so that there
are few false alarms, and the run length should be small
when the process has shifted.

The Shewhart control chart (Shewhart, 1931) can
quickly detect large shifts in a process, whereas a
cumulative sum (CUSUM) control chart (Page, 1954) is
preferred for detecting small shifts in a process. Lucas
(1982) recommends combining Shewhart and CUSUM
control schemes to obtain efficient control for small and
large shifts in a process.

Cumulative sum charts consist of plotting

Y;=max(0, Y;., +2Z;), j=12,..., (1)
where Z; is a function of X; and Yy = y < h. The CUSUM

chart is a sequence of tests ending in acceptance of F =
Fq as long as Y; < h or with acceptance of F = F, if ¥; >
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h. Moustakides (1986) showed that the CUSUM scheme
that minimizes the out-of-control average run length for a
given in control run length is always of the form

Yy =max(0, ¥,y +1nr(x), j=12..., ()

where r(x;) is the likelihood ratio L(xj;F,)/L(x;;Fo) and
YO = 0

Although exact measurement of variables is most
efficient, precise measurement can be difficult or expen-
sive. An alternative to the traditional variables-based
control chart is to use an attribute control chart (Stevens,
1947, Beattie, 1962; Elder et al., 1981; Lucas and
Crosier, 1982). The simplest attribute methods that clas-
sify units as conforming or nonconforming are inefficient
when the proportion of non-conforming units is very
small (Duncan, 1986). Ladany (1976) suggests compen-
sating for the loss in efficiency by using a compressed
limit, or a narrow-limit gauge when the underlying
distribution of the quality characteristic of interest is
known. When a compressed-limit gauge is used, the
concept of nonconformity is replaced by one of ‘pseu-
do-nonconformity’. Steiner et al. (1994a,b) present meth-
odology for the design of acceptance control and She-
whart-type control charts with multiple-step gauges when
the random variable of interest has a normal distribution.

Schneider and O’Cinneide (1987) proposed a CUSUM
scheme with a compressed-limit gauge placed at ¢ = (pg +
11)/2, where g and i, correspond to the acceptable and
unacceptable target means of a production process. Beja
and Ladany (1974) showed that this choice for the
compressed-limit gauge minimizes the sample size for
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an acceptance sampling plan when the type I and type II
error probabilities are equal. This choice was also de-
rived by Sykes (1981) and Evans and Thyregod (1985).
Schneider and O’Cinneide (1987) point out that a com-
pressed-limit gauge placed midway between the accep-
table and unacceptable mean values maximizes the
change in the proportion of pseudo-nonconforming items.
Equivalently, this choice maximizes the change in the
expected likelihood ratio under po and p;.

Schneider and O’Cinneide’s scheme involves setting
Yy = 0, taking samples of size n from a production
process and letting Z; in (1) denote the number of
pseudo-nonconforming items in the jth sample minus
some reference value k. To obtain the average run length
of such a plan, they use the normal approximation to the
binomial distribution. This approach is only valid if the
sample size is large enough so that np > 5, where p
denotes the probability of observing pseudo-nonconform-
" ing units. This condition must hold when the process is at
the target value, and when it is at the unacceptable
setting. In most practical applications, this implies that
the sample size must be larger than 10 or 15 units.
However, many practitioners prefer to take smaller sam-
ples more frequently so that the normal approximation to
the binomial may not be appropriate. The Schneider and
O’Cinneide approach also does not extend easily to the
use of two compressed-limit gauges.

In what follows, we extend and improve on the
Schneider and O’Cinneide approach. We derive the exact
average sampling number and average run length proper-
ties for both single and double compressed-limit gauge
SPRTs and CUSUM charts. The resulting equations are
valid for any sample size as long as observations are
entered into the CUSUM unit sequentially.

Following Page (1954), we consider the CUSUM
scheme specified by (2) as a sequence of Wald SPRTs
with initial score zero and boundaries zero and A. If a fast
initial response (FIR) is used, so that Y, # 0, then the
first SPRT in the sequence may be considered to have
initial score Y, (Lucas and Crosier, 1982). Fig. 1 shows
the three possible stages in the run length of a CUSUM
control chart using the FIR feature. Stage I of the
CUSUM consists of a Wald SPRT with absorbing bar-
riers at 0 and k and non-zero initial score. If this test ends
in acceptance, a sequence of Wald SPRTs, shown as
stage II, with initial score zero, and barriers at zero and h
follow. In stage III the CUSUM ends with a rejection
Wald SPRT. Note that the FIR CUSUM may terminate in
stage I if the cumulative sum reached k before dropping
to zero. The traditional CUSUM, without FIR, would
consist of stages II and III. The average run length
properties of the CUSUM plan are derived by consider-
ing the sampling properties of the underlying Wald test.

In Section 2 we show that the scoring procedure
suggested by (2) leads to simple random walks. In
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Fig. 1. Three stages of a CUSUM procedure.

Section 3 the theory of the random walk (Cox and Miller,
1965) is used to derive the operating characteristics and
average sampling number (ASN) for a Wald SPRT with
one or two compressed-limit gauges. Average run length
properties for the CUSUM specified by (2) are derived in
Section 4. In the first sections, we assume that the way in
which units are classified is determined either through
practical considerations or through some prior knowl-
edge. In Section 5, this assumption is relaxed and optimal
compressed limits are derived for both SPRTs and CU-
SUM procedures. Finally, the ease with which these
methods can be used in practice are illustrated with an
example.

2. Notation and definitions

Let o and u; denote the acceptable and unacceptable
process means for a production process. As a result, we
wish to test the hypothesis Hy: p = 1o against Hy: p = p.
We assume that the quality characteristic is normally
distributed with cumulative distribution function
®(x;p,0). Given that the underlying distribution is
known, compressed-limit methods are applicable. With-
out loss of generality, we assume that o = 1. Suppose that
compressed-limit gauges are placed at (o + p1)/2 + At
as suggested by Beja and Ladany (1974). Observations
are thus classified as belonging to one of three groups.
Three-group data occur frequently in industry through the
use of step-gauges and similar classification devices. A
step-gauge classifies continuous observations into groups
by comparing their dimension with a number of pins of
different diameter rather than measuring them precisely.
In industry, step-gauges, or other multigroup classifica-
tion schemes, are used as an alternative when precise
measurement is difficult or expensive (see Steiner et al.,
1994a).

Let m(p), mo(u) and m3(p) denote the probabilities of
an observation’s being classified into each of the three
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groups respectively. Then

mi(n) = / f+”l)/2’A'¢%exp(—(x — w’/2)dx,
(

(wotp)/2+A1
o) = /( L exp

PR Y
o+ )/2-At \/E ——(x ,u) /2)dx, (3)

(k) = /( °°+H - ﬁexp(—(x — W /2)dx.

Ho

The symmetry of the normal distribution gives the
following relations:

mi(po) = m3() (4)
ma (o) = ma{pi1)
73(po) = w1 (1)

Suppose that we sample one observation at a time.
Relaxation of this assumption is discussed at the end of
Section 4. Moustakides’ result implies that we should use
a CUSUM of the form

Y, =max(0, Y;_1+2z), j=12,..., (5)
where

zj = In(mi(um) /7i( o)) (6)

if the jth observation falls into the ith group.

Using (4) we notice that In(m(p)/mi(mo)) =
—In(m3(p1)/73(0)), and In (m2(p1)/m2(po)) = 0, so that
after suitable rescaling, the optimal CUSUM scheme has
z; = 1 if the jth observation is classified as belonging to
group three, and z; = —1 if the jth observation is
classified as belonging to group one. If the jth observa-
tion falls into the second group, it offers no information
regarding the relative merits of the two hypothesis and,
using (4), z; = 0.

Notice that the equivalent scoring system for the
single compressed-limit CUSUM of Schneider and
O’Cinneide (1987) may be obtained as a special case
of the above by setting Az = 0. Throughout the following,
equivalent results for the single compressed-limit plans
may be obtained by letting At = 0 so that the simple
random walk with steps {—1, 0, 1} becomes a random
walk with steps —1 and 1 and with m, = 0.

3. Compressed-limit Wald tests

Consider a traditional Wald Sequential Probability Ratio
Test with absorption boundaries at —B and A, with A and
B > 0, a starting value of zero and the scoring system
proposed in Section 2. The test terminates at the nth trial,
where n is the smallest integer for which either
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—1 with probability m(u)
0 with probability m(x)

-B, }
where z; =
1 with probability m3(u)

otz 2 A,

Define Z, = Z;’;l z; as the terminating value of the
SPRT, and assume that m(u) and m3(u) are not equal to
zero. Then, since the possible steps are {—1,0,1}, choos-
ing the absorbing barriers as integer values means the
SPRT cannot overshoot the absorbing barriers. Thus, the
SPRT termination value Z, must equal either A or —B. If
Z, terminates at A, then we decide in favor of iy,
whereas if Z, = —B, then we decide py. We wish to
determine the average sampling number (ASN) and
operating characteristics for this test. Let £_p = Pr(Z, =
—B) and &4 = Pr(Z, = A) denote the probabilities of
absorption at —B and A respectively. Thus the probability
of accepting the null hypothesis is {—p and the prob-
ability of rejecting the null hypothesis is £4.

The probabilities of absorption at A and —B and the
average number of steps to the boundary are derived by
using the theory of the random walk (Cox and Miller,
1965). In particular, for a simple random walk with steps
{-1, 0, 1} and corresponding probabilities {m;(x), m2(p),
m3(u)}, the probabilities of absorption at A and —B are
given by

m(w)® — m(p)®

£, = ﬂ'3(u)A7T3(/J,)A+B—7T1(/J.)A+B for 7!'1(#) 7&773(“)a
158 for mi(u) = m3(p),
and
A _ ()4
m(u)P — 2L T for () # (),
£ p= m3(1) L, " (1)

A+ B for mi(p) = m3(p)-

These equations can be adjusted to reflect a SPRT
starting at w with absorbing barriers at 0 and h, where 0
< w < h. Let Prejec(w) and Pyecep(w) equal the prob-
abilities of the SPRT’s ending at the rejection barrier h
and acceptance barrier zero respectively, when the initial
score of the SPRT is w. These acceptance and rejection
probabilities follow directly from the above equations

y )h—w7T3(:u)w — my(p)”

) for m (p) # m3(w),

P reject(W) =

==

for m(p) = m3 (),
(7)

and
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o= o) £ ma)

my()" — m(w)

m

Paccept(w) =
v for m (1) = m5(1)
(8)

With this formulation, the possible termination values,
denoted Z,, are —w and h — w.

Thus, suppressing the dependence on p, the moments
of Z, are

(h=wieh =" (xy - 7) + (-w)'nt ("~} )
e
w(h — w)k + (b — w)(-w)t
h

Wald (1947) gave a general result to find the average
sampling number of SPRTs:

E(Z,)/E(z) for E(z) #0,
E(Z%)/Var(z) for E(z) =0.

for m # 3,

E(Z;) =

for7r| =T73.

ASN:{

In our application, E(z) = 0 only if m; = m3. Thus, the
average number of steps to absorption for an SPRT
starting at w is

Wb -mm)  w
(o)) mom R
ASN(w,h,u) =
wik - w) for m = 3.
27!'1
9)

4., Compressed-limit CUSUM control charts

We derive the average run length properties of the
CUSUM plan by noticing that a CUSUM scheme is a
sequence of Wald sequential probability ratio tests with
initial score zero and boundary h (Fig. 1). The average
run length of the CUSUM scheme is given by

ARL = ASN(w = 0)/(1 — Paccept(0)), (10)

where ASN(w = 0) and Pgccepi(0) are the average sam-
pling number and probability of acceptance of the corre-
sponding Wald test with initial score zero (Page, 1954).
This follows from the fact that, at termination of the
CUSUM at h, a geometric number of Wald tests have
been observed.

Geyer et al.

To obtain the average sampling number and the prob-
ability of acceptance of a single Wald test when the
starting value is zero, we condition on the outcome of the
first observation. If the first step is —1 or 0, the Wald test
ends in acceptance; if, on the other hand, the first step is
+1, then the probability of acceptance is given by (8).
Therefore the probability of acceptance with a starting
value of zero is given by

Paccept(o) =7 + T+ 73 Paccept(l);
(1 + 7 —m3) —

fi :
71_’3‘ —71”1’ or m 7é7r3
Paccept(o) = (11)
v
1——h—l for m = m3.

and the average sampling number when starting at zero is
ASN(w=0) =m +m +m3 (ASN(w=1)+1);

hﬂ'g' m
ﬂ‘g—ﬂ’}l'— fOI'7T17é7T3,

3 — 7

(12)
hl

for m = ms.
2

By using the results given in (8), (9), (11) and (12) it is
possible to solve for the exact ARL of any two- or three-
step CUSUM scheme through (10). This gives

7|Jlx+1 —71'171'2'
for m # ms,
1r’3’(7r3—7r1)2 T3 — M 173
ARL = (13)
M for my = m3.
271'1

The ARL of a CUSUM that utilizes the FIR feature is
also easily obtainable if the different stages shown in
Fig. 1 are considered. If the CUSUM is set to have a FIR
initial value of w the ARL of the FIR CUSUM can be
obtained based on the previous results if we consider the
outcome of stage I. If stage I ends in rejection, the
CUSUM consists only of a single SPRT starting at w
and ending at absorbing barrier h. If, on the other hand,
the initial stage ends with acceptance, the remaining
CUSUM is identical to the standard CUSUM with start-
ing value zero. Thus, the ARL of the FIR CUSUM with
head start w can be written in terms of (7)—(9) and (13),
namely

ARLgR = (ARL + ASN(W)) Paceept (W) + ASN(W) Preject (W);
ARLgr = ASN(W) 4 Paccept(w)ARL;
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7lfll+1 _7rvlv+l7r§~w h—
h(my — m)?

for Uy 7&71'3,
w3 —

ARLFfr =
hh+ 1) — w(w + 1)
271'1

for m = 3.

(14)

Notice that if ARL is the average run length of a
single-observation compressed-limit CUSUM, then the
average run length of such a scheme when observations
are sampled n units at a time is merely ARL/n as long as
observations are entered into the CUSUM one at a time.
Clearly, curtailment within the samples is feasible be-
cause the scoring system is simple.

5. Optimal symmetric double compressed limits

In this article we assume that the two gauge limits are
placed symmetrically about the midpoint between the
acceptable and unacceptable means of the process,
namely at (o + p1)/2 + At. As shown by Beja and
Ladany (1974), this symmetric placement is optimal
when the type I and II error rates of our hypothesis test,
denoted o and [ respectively, are equal. However, the
question of the best A¢ remains. Clearly, if the value of
At is too small, there will be little additional information
and only a small advantage over the two-group plan.
Similarly, if At is too large, there will effectively be only
one group, and the resultant tests and charts may perform
poorly compared with when At = 0. Below we derive the
optimal At value for SPRTs and CUSUM procedures.

An SPRT is characterized by its probability of making
a type I or II error, and its ASN for various parameter
values. In our application, the goal of the SPRT is
distinguish between the null (x = po) and alternate (u =
t1) hypotheses. Eqns (7) and (8) give the actual error
rates Qe = Preject(W;/‘ = po and By = Paccept(W’pf = p1)s
and (9) yields the ASN. The SPRT will have relatively
short ASN values when the mean value is at either the
null or alternate mean value. Typically, these ASN values
are significantly smaller than the sample size of the
corresponding fixed sample size procedure, hence the
rationale for considering sequential methods. However
SPRTs can be criticized because the sample size required
is not known with certainty, and may be large. Based on
maximizing (9), the SPRT has its largest ASN at u = (g
+ p1)/2. At this value, the random walk has no trend. As
a result, it makes sense to place the gauge limits so as to
minimize the ASN when g = (uo + p1)/2 subject to
certain restrictions on the error rate.

Using (7)—(9), and defining « and (3 as the desired
maximum error rates, the optimization problem is to find
the At, h and w that satisfy:
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MiAnir}}lize ASN(p = 3o + 1)) = w(h — w)/2m
HLnw

subject to Preject(ﬂ = HO) <aand Paccept(ﬂ =) < B,

where A is the upper absorbing barrier of the SPRT, and
w is the starting value.

Notice that as & and/or Ar increase, ASN increases;
however, both the actual error rates decrease. Also, both
h and w must be integers with h > 2, 2 > w > 1, and At
> 0. This problem can be solved by considering all
feasible # and w combinations and incrementing & from
h = 2. Since we assume « = (3, the search can be
restricted to combinations of (h,w) where w = |h/2] (w
= [h/2] would also do, but yields smaller o, values).
Fortunately, the number of A values that need to be
considered can be bounded. For large h, the error rate
constraints already hold when At = 0. Because further
increases in h result in a further decrease in the error
rates and an increase in the ASN there is no need to
consider any h values that are larger. The At, & and w
combination that yields the lowest ASN at p = (g + 1)/
2 is the optimal solution.

A simple extension of this optimization methodology
can be used to find the optimal symmetric gauge limit
placement when « # 3. For each & value there are (h — 1)
possible values for w. For each feasible (h,w) combination
we perform two simple one-dimensional searches to find
the smallest At value that satisfies Preject(it = f10) < o, and
the smallest At value that satisfies Poccepr(pt = 1) < S
The larger of these two At values is the smallest At that
satisfies both error rate constraints for the given h and w
values. Thus, this Ar value also yields the best
ASN(p = (uo + m11)/2) for the given combination of h
and w. The number of & and w combinations that need to
be considered can be reduced by noticing that, owing to
symmetry, if w < h/2 then (3, > a,, and if w > h/2 then
Qact > Bace- As a result, if we desire error rates such that o
< B, then the best value for w must be less than or equal
to A/2 and vice versa for a > (3. Notice that when o # 3
there may be a better non-symmetric gauge limit place-
ment, although unless a and J are very different the
optimal symmetric placement should be close to the
global optimum. When « = [, the optimal symmetric
gauge limit placement is also the global optimal gauge
limit placement.

Letting Ar", k" and w" denote the optimal values, the
results of this optimization for various mean shifts and
desired error rate values are shown in Table 1. In Table
1, ASN” denotes the optimal ASN of the SPRT at u = (g
+ 11)/2. The corresponding ASN at mean values of g or
(4 are significantly lower. The optimal Atr values vary
considerably. However, much of the variation is due to
the discreteness inherent in the problem because h and w
must be integers. When « = 3 and the values for 4 and w
are fairly large, the optimal values for At range between
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Table 1. Optimal symmetric gauge limit design, SPRT barriers and starting values for various mean shifts and type I and II error rates

Mean shift (in standard deviation units)

0.50 o 1.5¢
o B Ar " w ASN' Ar K w' ASN A s w ASN
0.001 0.001 0.6521 22 11 2352 0.5044 12 6 58.6 0.4926 8 4 25.7
0.001 0.005 0.5469 21 9 184.8 0.8099 9 4 47.8 0.5286 7 3 20.1
0.0025 0.0025 0.5747 20 10 176.8 0.5681 10 5 439 0.7355 6 3 19.5
0.0025 0.0125 0.4341 19 8 132.5 0.5665 9 4 35.0 0.2725 7 3 15.3
0.005 0.005 0.5457 18 9 1384 0.7352 8 4 34.6 0.5273 6 3 15.1
0.005 0.025 0.3778 17 7 99.2 0.7305 7 3 25.8 0.5964 5 2 109
0.01 0.01 0.5083 16 8 104.7 0.5012 8 4 26.0 0.3082 6 3 11.9
0.01 0.05 0.5711 13 5 70.4 0.9858 5 2 18.5 0.2957 5 2 7.8
0.5 and 0.7. ARL,” obtained for various mean shifts and desired in-

For CUSUM procedures, the best choice for At de-
pends upon the size of the mean shift that one is trying to
detect, and the desired average run length properties. In
general, given a minimum average run length when the
mean is at the acceptable level, we wish to find an A and
a At that minimize the average run length when the mean
is at the unacceptable level. Symbolically, we have the
following optimization problem.

Minimize ARL(y)
At h

subject to ARL(y0) = ARLy.

The optimal values of At and k may be easily obtained
by using the fact that the average run length of the simple
random walk CUSUM is monotonically increasing in
both At and h, and that only a finite number of integer
values for h need be considered. Given a CUSUM barrier
h, the minimum average run length is obtained when
At = 0. Begin by letting At = 0, and find the maximum
feasible & for which ARL(ug) < ARL,. For each feasible
integer A, find the value of At for which the constraint
achieves equality. Finally, compute ARL(y,) for each of
these (h,At) combinations and select that which leads to
a minimum ARL(y,).

Let Af" and k™ denote the oPtimal solution. Table 2
gives the values of At" and k" and the corresponding
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Fig. 2. ARL versus At for pu = (o + (41)/2 and h = 6.

control average run lengths. For moderate mean shifts,
At" will be between 0.50 and 1o and the optimal
CUSUM barrier &~ will be between 2 and 10, depending
upon the required in-control average run length. In
general, we notice that the optimal gauge limits will be
outside the zone of indifference between p and p,. For
fixed h, smaller average run lengths are obtained by
bringing the gauge limits closer to the acceptable and
rejectable mean levels. Optimal At values for the CU-
SUM procedure are, for the most part, quite similar to the
optimal values obtained for the SPRTs. For both proce-
dures the optimal values are affected to a significant
degree by the discreteness required in h. However,
choosing At between 0.5 and 0.65 is never far from
optimal.

6. Example
Let us compare the ARLs of CUSUM schemes using two

10

1(?2
ARL:

102;

101}

100 L
0 0.2 04 0.6 08 1
Mean Value

Fig. 3. ARL on log scale versus true mean value.
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Table 2. Optimal symmetric gauge limit design and CUSUM barriers for various mean shifts and in-control average run lengths

Mean shift (in standard deviation units)

0.50 o 1.5¢0

ARL, Af K ARL/" Af Iy ARL, Af B ARL,"

250 0.6283 5 23.88 0.7688 3 9.10 0.9414 2 4.97

500 0.6315 6 29.95 0.5643 4 10.79 0.5365 3 5.76

750 0.5434 7 33.77 0.6858 4 11.74 0.6478 3 6.14
1000 0.6430 7 36.35 0.7681 4 12.51 0.7236 3 6.45
2000 0.6569 8 4297 0.6073 5 14.19 0.8973 3 7.34
3000 0.5912 9 46.90 0.7062 5 15.20 0.5373 4 7.82
4000 0.6706 9 49.72 0.7739 5 16.00 0.5989 4 8.09
5000 0.5645 10 51.95 0.5392 6 16.58 0.6457 4 8.31

and three groups. Choosing po =0, y; =1, and o = 1 we
will attempt to detect a 1o shift in the mean of a normal
distribution with a sample of size 4. We consider two
cases: a two-group example with a gauge limit placed at
0.5, and a three-group example with gauge limits placed
symmetrically about 0.5. Using (13) we can derive the
ARL of the CUSUM procedure at various parameter
values. Fig. 2 illustrates the effect of various At values
for the three-group case when the actual mean value is
(o + 11)/2 and the absorbing barrier is h = 6. Notice that
the ARL for the two-group case is given when At = 0.
For subsequent analysis on the three-group example we
use gauge limits placed at zero and unity (i.e. Az = 0.5).

Table 3 shows the in-control ARL, denoted ARL,, and
the out-of-control ARL, denoted ARL,, derived from
(13), for the two-group and three-group case for various
values of h. For example, using three groups and h = 6
gives ARL(p = po, n = 4) = 4183.2/4 = 1045.8 and
ARL(y = py, n = 4) = 16.2/4 = 4.05. Similarly, with a
single gauge limit at 0.5 and k = 7 the corresponding
average run lengths are ARL(y = po, n = 4) = 328.9 and
ARL(p = py, n = 4) = 4.05. These two particular example
cases have identical ARL out of control, but the three-

Table 3. In-control and out-of-control ARLs for two-group and
three-group CUSUM procedures when n = 4

h Two groups Three groups
ARL, ARL, ARL, ARL,

2 34 0.88 8.1 1.16
3 10.1 1.48 303 1.88
4 259 2.11 101.8 2.59
5 62.2 275 328.8 3.32
6 144.2 3.40 10458 4.05
7 3289 4.05 3307.0 479
8 743.5 4.70 10434.9 5.52
9 16735 5.35 32900.9 6.25

10 3756.5 6.00 103707.0 6.98

group CUSUM has a significantly better average run
length in control than the two-step scheme. Fig. 3 plots
the ARL for the given two- and three-group examples for
various true mean values. The results for the three-group
CUSUM can be improved by considering the optimal
placement of the group limits. Using group limits placed
at (—0.2895, 1.2895), i.e. At = 0.7895, with a sample of
size 4 leads to the optimal result that gives the largest in-
control ARL with an out-of-control ARL of 16.2/4 =
4.05. The corresponding in-control ARL, ARL(y = po, n
= 4), is 4278.5/4 = 1069.6. This value is slightly larger
than that obtained when using group limits at (0, 1).
Notice also that the optimal result is not dependent on
the sample size chosen.

7. Conclusions

Singly and doubly compressed sequential probability
ratio tests (SPRTs) and cumulative sum (CUSUM)
schemes to detect one-sided shifts in the mean of a
normal distribution are presented. Explicit formulas for
the average run lengths of the SPRTs and CUSUM
schemes are determined using conditioning arguments
and the theory of the random walk. These results are
also applicable for detecting shifts in the mean of any
symmetric distribution. The three-group (doubly com-
pressed group limits) SPRTs and CUSUM procedures
have a significant advantage in terms of average run
length over the two-group schemes. In addition, a dis-
cussion of the optimal group limits for the three-group
SPRTs and CUSUM procedures to detect shifts in a
normal mean is presented.
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