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Methodology is proposed for the design of sequential methods when data are obtained by gauging 
articles into groups. Exact expressions are obtained for the operating characteristics and average 
sampling number of Wald sequential probability ratio tests and for the average run length of 
cumulative sum (CUSUM) schemes based on grouped data. Step-by-step design algorithms are 
provided to assist the practitioner. The methodology is illustrated assuming a normal process with 
known standard deviation in which we wish to detect shifts in the mean. An example from a 
progressive die operation is presented. The methods proposed are simple to implement and are 
an economical alternative to variables-data-based sequential sampling plans and CUSUM control 
charts. 

KEY WORDS: CUSUM; Fast initial response 
SPRT. 

It is not always possible or practical to use vari- 
ables or precise measurement data in quality control. The 
widespread occurrence of binomial pass/fail attribute data 
in industry attests to the economic advantages of collect- 
ing go/no-go data over exact measurements. Variables data 
provide more information, but gauging, or classifying, ob- 
servations into one of several groups based on a critical 
dimension is often preferred because it takes less skill, is 
faster and less costly, and is a tradition in certain indus- 
tries (Ladany 1976; Schilling 1982). Gauging observations 
results in grouped data, with binomial attribute data repre- 
senting the special case of two groups. For more informa- 
tion on grouped data, see Haitovsky (1982). 

Stevens (1948), Mace (1952), and Ott and Mundel (1954) 
attempted to bridge the gap in efficiency between vari- 
ables and binomial attributes procedures by using go/no-go 
gauges set at artificial levels. The classification of units as 
conforming or nonconforming is inefficient when the pro- 
portion of nonconforming units is small. The sample size 
required for an attributes plan to achieve any given oper- 
ating characteristics is inversely related to the size of the 
proportion nonconforming that it is required to detect. As 
a result, a gauge limit that classifies a higher proportion 
of items as nonconforming (pseudononconforming) will be 
statistically more efficient and offer more information about 
the characteristic of interest. The focus of much of this re- 
search has been the testing or control of the mean of a 
normal distribution. 

Others have striven for greater efficiency by using three 
groups instead of two. Beja and Ladany (1974) proposed 
using three attributes to test for one-sided shifts in the 
mean of a normal distribution when the process dispersion 
is known. Ladany and Sinuary-Stern (1985) discussed the 
curtailment of artificial attribute-sampling plans with two 
or three groups. The first to consider the general k-group 
case were Steiner, Geyer, and Wesolowsky (1994, in press), 

(FIR); Grouped data; Parametric multinomial; 

who developed methodology for one-sided and two-sided 
acceptance sampling plans, acceptance control charts, and 
Shewhart-type control charts. 

In the realm of sequential quality-control methods, less 
work has been done. Schneider and O'Cinneide (1987) pro- 
posed a cumulative sum (CUSUM) scheme for monitor- 
ing the mean of a normal distribution with a single com- 
pressed limit gauge. They determined solutions based on the 
normal approximation to the binomial. Geyer, Steiner, and 
Wesolowsky (in press) extended this CUSUM to the use of 
two compressed limit gauges placed symmetrically about 
the midpoint between the target mean and the mean that 
the chart is intended to detect. The Geyer et al. (in press) 
solutions are exact and are derived through the theory of 
the random walk. 

In this article we derive sequential probability ratio tests 
(SPRT's) and CUSUM procedures based on group data with 
any number of groups. Section 1 introduces the proposed 
integer scoring procedure based on the likelihood ratio. Sec- 
tion 2 considers the design and implementation of grouped- 
data SPRT's for testing simple hypotheses about a param- 
eter of interest when data are grouped and the probability 
distribution of the quality characteristic is known. Using the 
theory of sequential analysis (Wald 1947), we derive exact 
expressions for the operating characteristics (OC's) and the 
average sampling number (ASN). 

The design and implementation of grouped-data CUSUM 
quality-control schemes are discussed in Section 3. Follow- 
ing Page (1954), we consider the proposed grouped-data 
CUSUM as a sequence of grouped-data SPRT's and derive 
the average run length (ARL) using the properties of the 
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individual SPRT's. We also give results applicable when 
using the fast initial response (FIR) feature recommended 
by Lucas and Crosier (1982). 

Sections 4 and 5 turn to practical considerations that 
arise when applying this methodology. Section 4 considers 
monitoring the mean of a normal distribution with known 
standard deviation and discusses the choice of gauge lim- 
its and the performance of grouped-data CUSUM's relative 
to traditional variables-based CUSUM's. Section 5 presents 
a step-by-step design procedure and an example concern- 
ing the production of metal fasteners in a progressive die 
environment. For simplicity, the analysis in Sections 1-5 as- 
sumes a unit-sequential implementation of the procedures. 
Section 6 shows that adapting the procedure to samples of 
size n is relatively straightforward. 

Grouped-data SPRT and CUSUM procedures bridge 
the gap between the efficiency of binomial-attribute 
and compressed-limit sequential procedures and that of 
variables-based sequential methods. 

1. A SEQUENTIAL SCORING PROCEDURE 
FOR GROUPED DATA 

Whenever data are grouped, the need arises to assign 
the grouped observations a numerical value based on their 
grouping. For go/no-go gauges, observations are usually 
treated singly as Bernoulli random variables, being ei- 
ther conforming or nonconforming. When observations are 
grouped into multiple intervals, the likelihood ratio sug- 
gests a scoring system. The likelihood ratio is used because 
it has great prominence as a measure of statistical evidence 
in traditional hypothesis testing, sequential sampling, and 
the development of CUSUM control charts. The Neyman- 
Pearson lemma implies that the likelihood ratio test is the 
most powerful test for comparing simple hypotheses. Wald 
(1947) showed that a similar optimality property applies 
to the use of the likelihood ratio in sequential sampling: 
The SPRT minimizes the ASN under Ho and H1 among 
all sequential tests for given error probabilities. More re- 
cently, Moustakides (1986) proved that the CUSUM pro- 
cedure based on the likelihood ratio minimizes the ARL 
under H1 for a given ARL under Ho. 

For the simple hypothesis test Ho: 0 = 0o versus H1: 
0 = 01, the likelihood ratio is given by the ratio of the like- 
lihood of the data under H1 to the likelihood of the data 
under Ho. When observations are grouped into k intervals, 
the likelihood ratio is a ratio of multinomial likelihoods 
in which the group probabilities depend on the parame- 
ter specifications in the underlying probability distributions 
under Ho and H1. Specifically, let the random variable X 
have probability distribution f(x; 0) and cumulative distri- 
bution function F(x; ). Let t1 < t2 < ... < tk-1 denote 
the k - 1 endpoints or gauge limits of the k grouping in- 
tervals. We assume for the moment that the k- 1 gauge 
limits are given. In many applications the grouping criteria 
are predetermined because they are based on some standard 
classification device or procedure. In Section 4 this assump- 
tion is relaxed and the optimal placement of group limits 
for detecting shifts in a normal mean is discussed. Defining 
to = -oo and tk = o, the probability that an observation 

falls into the jth interval is denoted by 

= F(tj; 0) - F(tj_l; 0), 

the dependence of 7r on 0 being understood. The contribu- 
tion to the log-likelihood ratio of an observation that falls 
into the jth interval is thus given by the weight 

Ij = ln{7rj(01)/7r (0)}, j =1,2,...,k. (1.2) 

Using the analysis presented in Sections 2 and 3, the 
properties of sequential procedures based on integer scores 
can be found. Thus, for implementation, group scores are 
obtained by first scaling and then rounding off the likeli- 
hood ratio weights. Let 

wj = round(qlj), (1.3) 

denote the group score applied to any observation in the 
jth group, where q is the chosen scaling factor. Define 
w = (w1, w2,...,wk). We assume that all wj scores are 
unique; if two or more groups lead to the same score, ei- 
ther the scaling factor should be increased or groups should 
be combined. 

Due to the rounding of log-likelihood ratio weights, the 
resulting schemes are only approximately based on the op- 
timal sequential probability ratio. The properties of the re- 
sulting random walk, however, can be made arbitrarily close 
to optimal by increasing the scaling factor. In subsequent 
sections we use the fact that, so long as the number of 
groups is greater than or equal to 2 and 0o # 01, at least 
one individual score is positive and at least one is negative. 
This implies max(w) > 0 and min(w) < 0 and ensures that 
the SPRT's and CUSUM schemes are capable of conclud- 
ing either in favor of the null or the alternative hypothesis. 

A trade-off is involved in the appropriate choice of the 
scaling factor q. The solution approach, presented in Sec- 
tions 2 and 3, requires integer scores and is less computa- 
tionally intensive to design (and easier to implement) when 
the scores are as close to 0 as possible. We wish, however, 
to stay as close as possible to the optimal relative weights 
suggested by the likelihood ratio. We have found that, in 
most cases, choosing a scaling factor so that the spread in 
the sample scores [max(w) - min(w)] is approximately 50; 
that is, setting q = 50/[max(/1,..., Ik) - min(11,..., k)] 
yields results that are indistinguishable from simulation 
results using the log-likelihood ratio weights. Naturally, 
smaller scaling factors are also feasible but may yield 
slightly inferior results. The relative size of the group 
scores drives the solution. Thus, if the group scores derived 
through (1.3) have a common factor, all the scores can be 
divided by this factor without affecting the efficiency of the 
solution. 

2. SEQUENTIAL PROBABILITY RATIO TESTS 
WITH GROUPED DATA 

Consider a sequential test of Ho: 0 = 00 versus H1: 0 = 
01, where each unit is assigned a sample score s and where 
si = wj, as given by (1.3), if the ith unit is classified into 
group j. Choosing absorbing barriers at In B and In A, the 
sampling terminates on the Nth trial, where N is the small- 
est integer for which either S = s1 + s2 + * * * + SN > In A 

TECHNOMETRICS, AUGUST 1996, VOL. 38, NO. 3 

231 

j= 1,2,..., k, (1.1) 



GROUPED DATA-SEQUENTIAL PROBABILITY RATIO TESTS 

or S = Sl + S2 + * * + SN < In B, where 0 < B < 1 <A < 
oo. S is the value of the SPRT at termination. If S > In A, 
we conclude that the parameter has shifted to 01, whereas 
if S < In B, we decide in favor of 00. Because the obser- 
vations are all independent and identically distributed, the 
sequence S = si +.- + SN can be viewed as a random walk 
with step sizes w between absorbing barriers In B and In A. 
Because the step sizes can take on only a finite number of 
integer values, we may use the theory of sequential analysis 
(Wald 1947) to derive the OC's and ASN. 

To determine the OC's and ASN of this SPRT, we first 
derive the probability distribution for all possible terminat- 
ing values of the SPRT. See the Appendix for a derivation 
of ~j = Pr(S = Cj), where the vector c = (cl,C2,..., Cd) 
denotes all the possible terminating values of the SPRT in- 
cluding overshoots of the absorbing barriers. Because all 
wj's are integers, d, the number of different possible ter- 
minating values is finite and depends on the range in the 
group scores and the scale of the absorbing barriers. Let [a] 
be the smallest integer greater than or equal to In A and [b] 
be the largest integer smaller than or equal to In B. Then the 
probability that the random walk terminates with S < [b], 
and thus accepts the null hypothesis, is given by 

(2.1) Paccept(0; [a], [b]) = y j, 
jEc- 

where c- = {cj: cj < [b]}. This expression allows the de- 
termination of the OC curve of the sequential test. 

Using the probability distribution of S and Wald's equa- 
tions, we may derive the ASN of the sequential test, de- 
noted E(N). By Wald's first equation (Wald 1947, A: 69), 
if E(N) < oo and E(s) ; 0, then 

ln(f(x;01)/f(x;0o))), where Yo = 0. The process is as- 
sumed to be in state Ho as long as Yi < h and is deemed 
to shift to state H1 if Yi > h. The CUSUM represents a 
sequence of Wald tests with initial score 0 and absorbing 
barriers at 0 and h (Page 1954). It is easy to show that the 
ARL of a CUSUM chart is given by 

ARL- 1E(N; - 0) ARL - Pa( = 0)' 
(3.1) 

where E(N; v = 0) and Pa(v = 0) are the ASN and proba- 
bility of acceptance of the component (0, h) Wald tests with 
starting value 0 (Page 1954). Unfortunately, E(N; y = 0) 
and Pa(v = 0) are not directly obtainable from (2.1)-(2.3) 
because those expressions are derived assuming that the 
SPRT starting value is not equal to lower barrier values; 
that is, v > 0. Expressions for E(N; v = 0) and Pa(v = 0) 
can be derived by conditioning on the value of the first sam- 
ple score, however. Notice also that the ARL of a CUSUM 
given by (3.1) is implicitly dependent on the true param- 
eter value 0 because changes in 0 will change the group 
probabilities as given by (1.1). 

Define w+ and w- as the set of all the possible sample 
scores that are positive and nonpositive, respectively. Then, 
remembering from (1.1) that 7j = Pr(s = wj), we get 

E(N; v = 0) = 1 + S 7ijE(N; = wj) 
jCw+ 

(3.2) 

and 

Pa(V = 0) = E 7-j + E 7 jPa(V = Wj), 
jEw- jEw+ 

(3.3) 

where E(N; v = x) = 0 and Pa(v = x) = 0 if x > h. Thus, 
the ARL of the grouped data CUSUM is given by 

E(N; [a], [b]) = E(S)/E(s)= - 1 ji 

E-j=l 17jWj 
(2.2) 

Wald (1947) also showed that if E(s) = 0 and E(s2) < oo, 
then 

E(N; [a], [b]) = E(S2)/E(s2)= - . (2.3) 
kZ=i rj 

Equations (2.1)-(2.3) are valid for an SPRT with initial 
value 0 and absorbing barriers at [b] < 0 and [a] > 0. 
Through a translation, this is equivalent to an SPRT with 
initial value v, 0 < v < h, and absorbing barriers at 0 
and h. This translation is of interest because the tradi- 
tional (0, h) CUSUM chart can be modeled as a geomet- 
ric series of (0, h) SPRT's. Define E(N; v) and Pa(v) as 
the ASN and probability of concluding in favor of the Ho, 
respectively, for a (0, h) SPRT with initial score v. Then 
E(N; ) = E(N;[a] = h - v,[b] = -v) and Pa(v) = 

Paccept (0; [a] = h - v, [b] = -v) as given by Equations 
(2.1) and (2.2) or (2.3). 

3. CUSUM CONTROL CHARTS 
WITH GROUPED DATA 

CUSUM charts consist of plotting Yi = max(0, Y/-1 + 
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ARL + E1j+ 7ijE(N; 
v 

= wj) ARL(1 
Ej,,+ 7i (1 - Pa(V -- wj)) 

' (3.4) 

Using an FIR (Lucas and Crosier 1982), the starting value 
of the CUSUM is w > 0. The FIR ARL, denoted ARL(o), is 
determined by conditioning on the outcome of the first Wald 
test in the sequence. Only the initial Wald test is unique; if 
the initial test does not signal, then all subsequent Wald 
tests start at 0. With ARL given by (3.4) and E(N) from 
Section 2, 

ARL(w) = E(N; v = w) + Pa(v = w)ARL. (3.5) 

4. OPTIMAL GAUGE-LIMIT PLACEMENT 
In practice, the placement of group or gauge limits is of- 

ten predetermined through the use of standard gauges. In 
some circumstances, however, design of the step gauge is 
possible, and we may wish to determine the optimal gauge 
limits. In any event, it is of interest to compare the efficiency 
of using grouped data relative to the traditional variables- 
based approaches. Clearly, grouped data will be less effi- 
cient because some information is lost due to the grouping. 
As will be shown, however, this loss of information is small 
for well-chosen group limits and, as a result, may be more 
than compensated for by lower data-collection costs. 
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Table 1. Optimal SPRT Gauge Limits: Optimal Gauge Limits t = (po + p 1)/2 + oat 

p,1 - -[o = .5oa [1 -- Po = la /11 - 0o = 1.5o I p1 - to = 2oa 

# groups At At At At 

2 0 0 0 0 
3 ?.6209 ?.6487 ?.6976 ?.7712 
4 0, ?.9972 0, ?1.0439 0, ?1.1203 0, ?1.2224 
5 ?.3893, ?1.2652 ?.4104, ?1.3259 ?.4458, ?1.4201 ?.4963, ?1.5385 
6 0, ?.6716, ?1.4721 0, ?.7091, ?1.5437 0, ?.7696, ?1.6503 0, ?.8508, ?1.7790 
7 ?.2861, ?.8918, ?1.6397 ?.3032, ?.9423, ?1.7201 ?.3313, ?1.0211, ?1.836 ?.3703, ?1.1223, ?1.972 

The methodology presented in Sections 1-3 is applicable 
for hypothesis tests involving any parameters from any dis- 
tribution so long as Ho and H1 completely specify the dis- 
tribution. The efficiency of the method and optimal group 
limits depend, however, on the underlying distribution of 
the quality characteristic of interest. We derive optimal 
gauge limits for SPRT and CUSUM procedures for detect- 
ing mean shifts of a normal distribution with known stan- 
dard deviation. We assume, without the loss of generality, 
that in control the process has mean uo = 0 and standard 
deviation a = 1. 

The goal of our SPRT is to distinguish between uto and 
p1. As a result, we may maximize the SPRT's ability to dif- 
ferentiate between the two parameter values by determin- 
ing the gauge limits that maximize the difference between 
the expected log-likelihood ratio weight (1.2) under [uo and 
under pl. With this goal in mind, we solve the following 
maximization problem: 

maximize E(lpi =- pi) - E(lp, = po), (4.1) 

where I is a random variable equal to lj with probability 
7rj for j = 1, 2,..., k. We use 1 rather than s, as defined 
in Section 2, to ensure that the optimal gauge limits do 
not depend on the scaling factor used. Strictly speaking the 
preceding optimization problem is appropriate only if we 
are equally interested in the parameter values po and p1. 
If not, we should consider a weighted difference of the ex- 
pected log-likelihood ratio. The solution of (4.1), however, 
will provide guidance as to the best gauge limits in any 
event. 

This maximization problem is solved using the Nelder- 
Mead simplex algorithm (Press, Flannery, Teukolosky, and 
Vetterling 1988). Results for various parameter values are 
given in Table 1. To save space, the optimal solutions in 
Table 1 are given in terms of At, where given o0, pi, and 
a the optimal gauge limits are t = (pio + p1)/2 + uAt. For 
example, when puo = 12, p1 = 15, and a = 2 and the number 
of groups equals four, we get optimal gauge limits (11.26, 

Table 2. Optimal CUSUM Gauge Limits: Assume I'o = 0, 
Il = 1, a = 1, and ARLo = 1,000 

# groups tl t2 t3 t4 t5 

2 .8861 
3 .3958 1.5637 
4 .0252 .9947 1.9090 
5 -.2945 .5720 1.3013 2.1194 
6 -.5591 .1787 .8415 1.5017 2.2019 

13.5, 15.74). The effect of p1 - P0 on the optimal gauge 
limits written in terms of At is small. Thus, from Table 1, 
close to optimal gauge limits can be determined for most 
situations. 

CUSUM's are typically evaluated in terms of their ARL 
at the alternate mean value, ARL(ji), when their ARL at 
the null, ARL(p/o), equals some constant, ARLo say. For a 
grouped-data CUSUM, this comparison is difficult to make 
due to the discrete nature of the problem. For any given 
gauge limit design t, it is usually impossible to set the 
(integer) decision barrier h so that ARL(po) equals ARLo 
precisely. To improve the comparison, we use interpolation. 
As h varies, a plot of ln(ARL(po)) versus ARL(pi) forms 
approximately a straight line. Let h- and h+ equal the 
largest and smallest absorbing barriers, respectively, such 
that ARL(polh- ) is less than ARLo and ARL(polh+) is 
greater than ARLo. Then, the theoretical ARL at the al- 
ternate mean when the in-control ARL is ARLo is given 
by 

ARL(/|1 ARL((o) = ARLo) 

=ARL(pllh )+ ln( ARL(O Ih ), (4.2) ( 
ARL(poh) 

where 

ARL(pIh+) - ARL(plIh-) 
ln(ARL(po h+))-ln(ARL(polh-)) 

Optimal gauge limits that minimize the ARL given by 
(4.2) were found using the Nelder-Mead simplex algo- 
rithm (Press et al. 1988). Table 2 gives results for the case 
P1 = 1, ARLo = 1,000. For different ARLo values, the re- 
sults are very similar. For different values of pl, scaling 
the results in Table 2 by P1 yields near optimal gauge lim- 
its. Not surprisingly, the optimal gauge limits for CUSUM 
charts are different from the optimal limits for SPRT's. 

It is of interest to evaluate the loss in efficiency that 
must be expected when articles are gauged into groups 
rather than measured precisely. A direct comparison of the 
grouped-data CUSUM and the traditional variables-based 
approach is difficult due to the discrete nature of any scheme 
that uses categorical data. Using interpolation, as given by 
(4.2), however, a comparison can be made. Using the so- 
lution approach suggested by Brook and Evans (1972) for 
a variables CUSUM when Ho: po = 0, H1: p1 = 1, with 
a = 1 and h = 5, we obtain ARL's of 904.81 and 10.39 at 
the null and alternate mean values. We consider grouped- 
data CUSUM's with two to six groups. The log-likelihood 
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Table 3. Optimal Log-likelihood Ratio and Scores for Grouped-Data CUSUM 

# groups Log-likelihood ratio (1.2) Assigned group scores w (1.3) 

2 -.5802, 1.0661 -18, 32 
3 -.8740, .4282, 1.5811 -18, 9, 32 
4 -1.1296, .0092, .8883, 1.8653 -19, 0, 15, 31 
5 -1.3688, -.3393, .4177, 1.1455, 2.0440 -20, -5, 6, 17, 30 
6 -1.5774, -.6596, .0097, .6477, 1.4983, 2.1150 -21, -9, 0, 9, 18, 29 

ratio weights presented in Table 3 are derived using the op- 
timal gauge limits suggested in Table 2. The group scores 
are given by (1.3) with q = 50/(k -11), where k equals the 
number of groups. 

To conduct the comparison, we set ARLo - 904.81 
and find h- and h+. Equation (4.2) then gives the the- 
oretical matching ARL, ARL(ullARL(/uo) = 904.81). 
Using formulas analogous to (4.2), we also determine 

ARL(o|LARL(/1)) = 10.39). Table 4 shows that the ARL 

properties improve significantly as the number of groups 
increases. 

5. DESIGN OF GROUPED-DATA SPRT'S 
AND CUSUM PROCEDURES 

To assist the practitioner to implement grouped-data 
SPRT's or CUSUM's to test Ho: 0 = 00 versus H1: 0 = 01, 
we present two iterative design procedures. A grouped-data 
SPRT with starting value 0 and absorbing barriers at [a] > 0 
and [b] < 0 can be designed following steps S1-S9. Notice 
that an SPRT with starting value v and absorbing barriers 
at 0 and h can be determined using these steps by applying 
the transformations h = [a] - [b] and v = -[b]. The key 
problem in the design is determining appropriate values for 

[a] and [b]. 

Grouped-Data SPRT Design Algorithm 
S1. Determine, based on application, the null and alter- 

nate parameter values 0o and 01 and the maximum desired 
Type I and Type II error rates a and /3, respectively. 

S2. Set group limits (ti's) either at optimal values as dis- 
cussed in Section 4 or at predetermined values based on the 
application. 

S3. Use Equation (1.2) to calculate the log-likelihood ra- 
tio weight for each group. 

S4. Derive integer group scores using (1.3). If the applica- 
tion allows, use q = 50/[max(ll,..., Ik)- min(ll,..., k)]. 
Common factors in the resultant scores can be removed 
without affecting the efficiency of the procedure. 

Table 4. Comparison of Variables-Based CUSUM 
and Grouped-Data CUSUM 

ARL(po) = 904.81; ARL('1) = 10.39; 
# groups ARL(p 1) estimate ARL(po) estimate 

2 14.37 240.0 
3 12.04 458.0 
4 11.28 592.6 
5 10.96 694.0 
6 10.78 756.0 

Variables 10.39 904.81 

S5. Choose initial values for the absorbing barriers [a] > 
0 and [b] < 0. 

S6. Using the current [a] and [b] and the methodology in 
the Appendix, derive the probability function ~j = Pr(S = 

cj) for S, the terminating value of the SPRT. 
S7. Using ~j and Equation (2.1), calculate Paccept at 0 = 

00 and 0 = 01. Denote the actual error rates obtained by 
aa = 1 - Paccept (o) and /a = Paccept(01). 

S8. If aa < a and 3a < / and [a] and [b] are the values 
closest to 0 that satisfy both these constraints, then stop. 

S9. Otherwise, 

* if aa > a and 3a > /3, decrement [b] and increment 

[a] by one unit; 
* if aa < a and 3a > 3, decrement [b] by one unit; 
* if aa > a and 3a < /3, increment [a] by one unit; 
* if aa < a and /3a < /3, increment [b] and decrement 

[a] by one unit and go to S6. 

For the continuous-variable problem, Wald (1947) sug- 
gested choosing A = (1 - /3)/a and B = 3/(1 - a). This 
choice is derived by ignoring the possibility of overshoot- 
ing the barriers but is useful as a guide. We have found that 
good initial values for the absorbing barriers are the Wald 
approximations appropriately scaled; that is, let [b] equal 
the largest integer smaller than qln[3/(1 - a)], and let [a] 
equal the smallest integer larger than q ln[(1 - 3)/a], where 
q is the scaling factor discussed in Section 1. 

CUSUM procedures are usually designed by specifying 
the minimum acceptable ARL at the null ARLo and the 
maximum acceptable ARL at the alternate ARL1. We de- 
sire both ARL(0o) > ARLo and ARL(01) < ARL1. For 
our CUSUM procedure, however, h, the absorbing barrier, 
is the only design parameter. This implies that we cannot 
necessarily satisfy both ARL criteria simultaneously. Typ- 
ically, the ARL at the null (i.e., the in-control ARL) is of 
greater concern. As a result, the following design algorithm 
ensures that the constraint ARL(o0) > ARLo is satisfied 
while minimizing ARL(01). The algorithm C1-C6 is eas- 
ily adapted to design a CUSUM that maximizes ARL(00) 
while ARL(01) < ARL1. 

Grouped-Data CUSUM Design Algorithm 
C1. Specify the minimum acceptable ARL at the null, 

ARLo. 
C2. Perform Steps S2-S4. 
C3. Choose an initial value for the absorbing barrier h. 

For typical CUSUM applications, the initial value of h 
should be a multiple of max(w). 

C4. Use Equation (3.4) to determine ARL(0olh). 
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Table 5. Design Iterations for SPRT Example 

Iteration [b] [a] Caa 3a 

1 -21 21 .0710 .0561 
2 -20 20 .0743 .0624 
3 -19 19 .0787 .0662 
4 -18 18 .0876 .0758 
5 -17 17 .1088 .0792 
6 -17 18 .0869 .0811 
7 -16 17 .1082 .0835 
8* -16 18 .0864 .0856 
9 -15 17 .1050 .1112 

C5. If we have found the smallest h, where ARL(0o h) > 
ARLo, then stop. 

C6. Adjust h as follows: 

* If ARL(00oh) < ARLo, increase h. Increment h by 
one unit if ARL(Oolh) is close to ARLo and a larger 
value if not. 

* Otherwise, decrease h by one unit. 

Go to step C4. 
Consider the following example to illustrate the solution 

procedure. We first design an appropriate SPRT. In control, 
the process of interest is normal with mean ,0 = 74.3 and 
standard deviation a = 1.3, and we wish to detect mean 
shifts to /I- = 75.6 (i.e., mean shifts of one standard devia- 
tion unit). Using a standardized gauge, the group limits are 
t = (74, 75, 76). This implies group probabilities of (.4087, 
.2961, .1997, .0955) and (.1092, .2130, .2986, .3792) under 
Ho and H1, respectively. The log-likelihood ratios (1.2) are 
thus (-1.3200, -.3294, .4096,1.3791). Based on the appli- 
cation, the error rates a and 3 should both be less than .1. 
This completes steps S1-S3. Scaling the weights as rec- 
ommended in step S4 yields scores (-24, -6,8, 26). These 
scores have a common factor of 2; thus without any loss in 
efficiency, we use w = (-12, -3,4,13). Because the scal- 
ing factor needed to yield w is q = 9.26, the recommended 
initial estimates for the absorbing barriers using the scaled 
Wald approximations are -21 and 21. Table 5 shows the 
results of the iteration S6-S9. The best solution occurred 
at iteration 8. Based on [a] = 18 and [b] = -16, Equation 
(2.2) gives ASN's of 4.7767 and 4.7616 when / = 0o and 
[1 = pi, respectively. 

To illustrate the design of a CUSUM, consider the exam- 
ple given by Steiner et al. (1994). That example concerned 
the manufacture of metal fasteners in a progressive die en- 
vironment. The in-control process mean is 74 thousandths 
of an inch with a standard deviation of 1.3. Using a six- 
step gauge with group intervals defined by 73, 73.75, 74.35, 
74.94, 75.55, and 76.3, a fixed-sample-size control chart to 
detect a mean shift to 75.3 thousandths of an inch with 
Type I and Type II error rates of .005 required a sample 
size of 27 units. Thus, the ARL's of this fixed-sample-size 
chart, in terms of the number of units examined before a 
signal, are 5,400 = 27/.005 and 27.1 units when the process 
is "in-control" and "out-of-control," respectively. Because 
this example involves detection of a fairly small mean shift, 
a CUSUM chart is expected to outperform a Shewhart-type 
control chart. 

Assuming that we wish to do at least as well as the fixed- 
sample-size approach, set ARLo = 5,400. Step C2 yields 
group weights (-1.7492, -.9553, -.4503,0,.4503,.9553, 
1.7492) and corresponding group scores w = (-25,-14, 
-6,0,6,14,25). From previous experience, h = 76 was 
taken as an initial guess. The results of iterating through 
steps C3-C6 is shown in Table 6. Because the first itera- 
tions yielded ARL(yuo) values significantly less than 5,400, 
h was incremented by five units at a time for the first four it- 
erations. The best solution is h = 98 with ARL(/uo) = 5,646 
and ARL(/i) = 14.6. This grouped-data CUSUM has ap- 
proximately the same performance as the fixed-sample-size 
approach at the null but is dramatically better at the alter- 
nate mean. 

6. EXTENSION TO SAMPLES OF SIZE n 
In this article we have focused on the unit sequential 

implementation of grouped-data SPRT's and CUSUM's. 
The same methodology is appropriate, however, when using 
larger samples. For a sample of size n, where nj observa- 
tions are classified into the jth group, the sample weight, 
defined as the sum of the individual log-likelihood ratios, 
is Ek=I nj log{7rj(O1)/Trj (o)}. Scaling the weights to get 
scores as in Section 1, we may define our sample score as 
y = Ej=1 njwj. Thus, increasing the sample size increases 
the number and spread of the possible sample scores. 

By the multinomial distribution, Pr(y -= E= njwj) 
(n!/ Hk=l n!) Ejk= 7r i. Different combinations of nj val- 
ues may lead to the same sum, however. Let z 
(zI, Z2 ..., Zm) be the m distinct values of the sample score 
y. Define pi = Pr(y = zi), where the probability Pr(y = zi) 
is the sum of all preceding multinomial probabilities in 
which the nj's yield the sample score zi. The number of 
possible sample scores m grows exponentially with the 
number of groups and polynomially with the sample size. 
Fortunately, we need only consider moderate sample sizes 
and numbers of groups. If the sample size is large, a normal 
approximation solution is appropriate, and if the number of 
groups is large, the problem can be accurately approximated 
by assuming variables data. 

To derive solutions for samples of size n, make the fol- 
lowing substitutions in the analysis of the previous sections: 
k = m, wi = Zi, and ri =- pi. Note that, if the desired sam- 
ple size is large, then the scaling factor q may need to be 
reduced because the spread in the sample scores is now 
n[max(w) - min(w)] and that N refers to the number of 
samples until absorption, whereas n is the sample size. 

Table 6. Design Iterations for CUSUM Example 

Iteration h ARL(go) ARL(y 1) 

1 76 1200.4 11.45 
2 81 1692.1 12.17 
3 86 2470.3 12.97 
4 91 3576.4 13.76 
5 96 5026.3 14.49 
6 97 5336.9 14.49 
7* 98 5646.5 14.62 

TECHNOMETRICS, AUGUST 1996, VOL. 38, NO. 3 

235 



GROUPED DATA-SEQUENTIAL PROBABILITY RATIO TESTS 

7. SUMMARY 
We propose an integer scoring procedure for sequen- 

tial tests with grouped data. Group scores are integer ap- 
proximations of the parametric multinomial likelihood ra- 
tio. We show how to derive false-alarm rates, power, ASN, 
and ARL of grouped-data SPRT's and CUSUM procedures. 
Step-by-step algorithms to determine design parameters are 
presented. The resulting SPRT's and CUSUM procedures 
are easily implemented on the shop floor. Optimal group- 
ing criterion for the normal mean case are also discussed. 
Grouped data are a natural compromise between the low 
data-collection and implementation costs of binomial (two- 
group) data and the high information content of variables 
(oo-group) data. 
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APPENDIX: DERIVATION OF THE PROBABILITY 
DISTRIBUTION OF S 

We derive the probability distribution of the cumula- 
tive sum S at the termination of the grouped-data SPRT. 
Based on (1.3), the moment-generating function of the 

group score s is given by E(est) = E=l 7juwj = js(t), 

say, where u = et. Thus, the moment-generating function 
of S = N_1 sj is given by qs(t) = [C(t)]N. Consider 

written as 

(A.3) 

d 

E ju Cj1 for i=1,...,d, 
j=l 

where 

=j-Pr(S=cj) for j=1,...,d. (A.4) 

The d equations in (A.3) are linear in ~j. Solving this system 
of linear equations, we can determine all the 3j's that give 
the probability distribution of S. 

To illustrate all the calculations required to determine 
the probability distribution of S, consider a simpler ver- 
sion of the SPRT example introduced in Section 5. Rescal- 
ing the ratios through multiplication by 1.75 followed 
by rounding to the nearest integer results in the most 
compact possible distinct group scores-namely, w = 
(-2,-1,1,2). Solving Equation (A.1) for the four roots 
yields u = (-4.516,-.494, 1, 1.9188) when ,t = -/o, and 
u = (-2.1239,-.2367, .5729,1) when Lu = pl. Choosing 
absorbing barriers [a] = 4 and [b] = -4 the only possible 
terminating values of this SPRT-that is, possible values for 
S-are c = (-5,-4,4,5). Subsequently solving the sys- 
tem of four equations in four unknowns given by Equation 
(A.3) gives J = (.2912,.6489,.0494, .0104) when ,a = po 
and C = (.016,.0706,.6367, .2767) when / = i1. Based on 
Equations (2.1) and (2.2), this SPRT thus has a probabil- 
ity of acceptance and ASN, respectively, of .9402 and 5.26 
when p = /i and .0866 and 5.70 when u = ,1. 

[Received August 1994. Revised November 1995.] 
k 

s(t) = - 7jiu = 

j=l 

1. (A.1) 

This is a polynomial in u, which has degree d = max(w)- 
min(w). Let ul,...,Ud denote the d roots of (A.1), and 
assume that ui 54 uj for i : j. The roots are unique so long 
as E(s) 5 O. When the underlying process parameter 0 is 
such that E(s) = 0, then u = 1 is a double root. 

Now consider Wald's fundamental identity (Wald 1947, 
A: 16) for a random walk between two absorbing barriers, 
E{eSt[0s(t)]-N} = 1, which holds for any t in the complex 
plane such that the moment-generating function of s exists. 
Because by definition )s (ui) = 1, substituting ui for et in 
the fundamental identity gives the d equations 

E(us)=1 for i=-,...,d. (A.2) 

We may obtain the probability distribution of S by condi- 
tioning each of the d left sides of the fundamental iden- 
tity on the terminating value of the process. Let [a] be the 
smallest integer > In A and [b] the largest integer < InB. 
Then, because all wj's are integer, the only possible ter- 
minating values of the random walk are ([b] + min(w) + 
1), ([b] - min(w) + 2),..., [b] for acceptance of 0 = 0o 
and [a], [a + 1],..., ([a] + max(w) - 1) for acceptance of 
0 = 01. Let c,,..., cd denote these d terminating values of 
the random walk. Then, the d equations of (A.2) may be 
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