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SUMMARY

A Shewhart control chart is proposed based on gauging theoretically continuous observations into
multiple groups. This chart is designed to monitor the process mean and standard deviation for deviations
from stability. By assuming an underlying normal distribution, we derive the optimal grouping criterion
that maximizes the expected statistical information available in a sample. Control charts based on
grouped observations are superior to standard control charts based on variables, such as X and R charts,
when the quality characteristic is difficult or expensive to measure precisely, but economical to gauge.
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1. INTRODUCTION

In industry, the use of step-gauges and similar
devices is widespread. A step-gauge classifies con-
. tinuous observations into groups rather than measure
them precisely. A step-gauge usually consists of a
number of pins of different diameter; see Figure 1.
Gauging articles is often quicker, easier and there-
fore cheaper than measuring them exactly. Similarly,
exact measurements occasionally require costly
skilled personnel and sophisticated instruments.' In
general, if the step-gauge is properly designed, gro-
uped data is an excellent alternative to exact
measurement since the small loss in statistical
efficiency is often more than offset by savings in
the cost of measurement.

At present, most control charts used for grouped
data represent each unit by either a group endpoint
or group midpoint. These ‘variable measurements’
are then used in charts designed for true variables
measurements, such as an X chart. These ad hoc
solutions have a number of shortcomings. Most
importantly, they introduce a bias into the calcu-
lations of the sample mean. For example, using a
group’s right endpoint will consistently overestimate
the mean. Using the midpoint of each interval as
the ‘representative value’ results in less bias, but
the bias is not eliminated unless the underlying
distribution is uniform. The amount of bias depends
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Figure 1. An idealized six step-gauge
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on the underlying process distribution and the gauge
design, and may be substantial. Consequently, the
bias could adversely affect the workings of any
control charts that are designed for use with exact
measurement. In addition, for either the endpoint or
the midpoint approaches we must consider the end-
group problem. As the end-group extends to either
positive or negative infinity, the group endpoint may
not be finite, and the group midpoint will not be
finite. As a result, to obtain more reliable results,
the fact that the data is actually grouped rather than
produced by exact measurement should be taken
into account in a more direct manner.

Few control charting techniques have been
developed specifically for use with grouped data.
The first contributions were made by Tippett,” and
later, in more detail by Stevens.> They proposed
two simple control charts for simultaneously moni-
toring the mean and standard deviation of a normal
distribution using a two-step gauge that classifies
observations into one of three groups. Stevens®
found the optimal design of the gauge limits by
maximizing the expected Fisher’s information in a
single observation. However, it is not straightforward
to extend Stevens’ methodology to more than three
groups, and it is difficult to derive an operating
characteristic (OC) curve for his charts. Others have
pointed out that, when the underlying distribution
of the variable of interest is known, savings in
inspection costs can be realized by using an attri-
butes plan with compressed (also called artificial)
specification limits. Compressed limit sampling
plans are discussed by Mace,* Ott and Mundel® and
Duncan.®

More recently, advocates of pre-control, some-
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times called stoplight control, have proposed the use
of three classes to monitor the statistical control of
a process. See, for example, Traver,” Salvia,® Shai-
nin and Shainin® and Ermer and Roepke.'® Com-
monly, the classification is based on specification
limits. One class consists of the central half of the
tolerance range, another is based on the remaining
tolerance range, and the third consists of measure-
ments beyond tolerance limits. Pre-control tech-
niques are appealing since they are very simple to
teach and implement. However, the classification
and signalling criteria used are arbitrary, and do not
reflect process capability and are thus not rec-
ommended for process control.

The first to design control charts that are
applicable in the general multiple group case
were Steiner, Geyer and Wesolowsky.!! They pro-
posed using the likelihood ratio of multinomial
probabilities to design control charts to detect one-
sided shifts in a process mean. Essentially these
charts are acceptance control charts, and are optimal
since by the Neyman—Pearson lemma the optimal
partitioning of the accept/reject region is based
on the likelihood ratio of the two specific alterna-
tives.'?

This article extends their work to the two-sided
case and thus to ‘Shewhart’ type control charts. The
methodology presented is very generally applicable;
however, we illustrate the method by monitoring
both the mean and standard deviation of a process
whose output follows a normal distribution. In Sec-
tion 2 two possible approaches to extend the one-
sided chart to a two-sided chart are presented and
contrasted. Solutions for large sample sizes based
on the central limit theorem (CLT) are also
developed. As most Shewhart control charts are used
with small sample sizes, Section 3 discusses adapt-
ing the design when the CLT solution is not
adequate. In Section 4 the issue of step-gauge design
is addressed and it is shown that the proposed
approaches are competitive in terms of efficiency
with the traditional variables based approach.
Finally, an example is presented from our work in
the manufacture of metal fasteners to illustrate the
design and implementation of step-gauge Shewhart
control charts.

2. A k-STEP GAUGE SHEWHART CONTROL
CHART

Our objective is to design a control chart to detect
significant process shifts from 6= 6,, the nominal
value, using grouped data. Thus, we consider the
hypothesis test:

H(): 0=60
H:0=0,0r0=0_

where 0, and 0_, are significant departures in the
upward and downward directions, respectively. Thus,

designing Shewhart charts involves testing a com-
posite two-sided hypothesis test. As a result, no
single uniformly most powerful test exists.'?

This design strategy of specifying an alternative
hypothesis is consistent with the objective of
Shewhart charts to detect any shift from stability.
Specifying the alternative hypothesis simply allows
us to ensure that our control chart will have suf-
ficient power to detect important parameter shifts.
The same design strategy can be used for standard
X charts. For example, for an N(u,07%) process,
choosing the in-control average run length (ARL)
equal to 370-4, and the out-of-control ARL equal
to 1.56, where the alternative mean values are either
mi=po+ 1-50 or pu_, = wy—1-50 results in a tra-
ditional X chart with three sigma limits and a sample
of size five.

The typical Shewhart control chart design problem
is to find the appropriate sample size n and control
limits so that certain conditions on the average run
length (ARL) are satisfied. The ARL is the expected
number of samples required before the chart signals.
Under H, large ARL values are desirable, whereas
under H; we would like short ARLs so that we are
quickly informed that the process has shifted. As a
result, our control chart is designed to have at least
an ARL of ARL¥ under H, under H, and at most
ARL¥ under H, Traditional three-sigma-limit
Shewhart charts are designed so that ARL¥=370.
Equivalently these conditions can be expressed in
terms of error rates for the hypothesis test. We want
false alarms with probability less than a*, and out-
of-control signals with probability at least 1-f*
whenever the process mean shifts either up to 6, or
down to 6_,. Since the number of samples until a
signal follows a geometric distribution we have
ARL§ =1/a* and ARL¥ = 1/(1 — B*).

We propose two possible approaches, In Section
2.1 we show that the composite test can be con-
sidered equivalent to two simple one-sided hypoth-
esis tests for which an optimal testing strategy exists.
In Section 2.2, we present an approch based on a
single hypothesis test. This second approach,
although not optimal, is appealing since it is easier
to implement requiring the maintenance of only a
single chart. A comparison of these two approaches
is made in Section 2.3.

We first provide definitions of some necessary
notation. Suppose that the quality characteristic of
interest is a random variable X that has a probability
function ¢(x;u,0), where u and o are the location
parameter and scale parameter, respectively. In this
article we focus on monitoring the mean and stan-
dard deviation of the normal distribution, but the
aproach is more general and can be applied to
monitor any parameter of any distribution. Thus, for
example, (x;u,0)= [1/0(2m)] exp[—(x — n)*/20%]
for the normal distribution. A k-step gauge classifies
observations into one of k+ 1 distinct intervals. Let
the & interval endpoints be denoted by L, j=1.2,...k
and define #, =-% and #,,, = ». Then, the probability
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that an observation is classified as belonging to
group j is given by

wj(e)=r d0)dx, j=1,.. k+1 (1)

-1

where 6 is the parameter of interest. Let Q be a
(k+1) column vector whose jth element, Q;, denotes
the number of observations in a sample of size n
that are classified into the jth group. Then, the
likelihood of any hypothesis about 0, given a sample
of size n, is equal to

k+1

LR(61Q) = c[ [m(6)% (2)

where the constant of proportionality ¢ is arbitrary
and Ej(:le =An.

2.1 Two sets of weights approach

The optimal solution uses the composite likeli-
hood ratio (CLR) as a test statistic. From (2),
and defining () = {6,,0_,}, the log of the composite
likelihood ratio can be written as

L(6Q) } & (w(e) )

CLR =max In = max In
8=Q) |:L(90|Q) EQJ (0p)

6e£)
(3)

Define z; and z; as random variables (weights)
equal to In(m(6,)/7(6,)) and In(m(0_,)/ m(6))
respectively when the i observation belongs to the
Jjth group. Then, since there are only two alternatives
in {), the test statistic CLR is equivalent (under a
rescaling) to max (z%,77), where

= ginand 7= 2,z /n

i=1 i=1

To attain ARLs of ARLF and ARL¥ under H, and
H, respectively, with the test statistic max (Z%77),
we must find sample size n and control limit A
such that

Pr(max(z*.7) > Al = 6,) < l/ARL*,  (4)
Pr(max(z*,27) > A|0=6,) = 1/ARL*,  (5)
Pr(max(z*,7°) > A|0=0_,) = 1/ARL*,  (6)

Since 7+ and 7z~ are highly negatively correlated
Pr(z+&z~ > A) = 0. Thus, Pr(max(z*,27)>A) can be
very closely approximated by Pr(z*>A) +
Pr(z= > A). As a result, we may consider the two
average weights separately and define two separate
control limits A* and A~. Pr(z*> A*|u_,) and

mality of the average weights, the equality forms of
the equations (5) and (6) can be solved to give the
control limits in terms of the unknown sample size.
We obtain

o (0,)P'(1/ARL*))

A(n)=- \/n +p+(0,) (7)

(6_,)®"(1/ARL,
a(6.) \/fl ) a0 @

A(n)=

where u.+(6),0.+(0) and u.(0),0.(6) are the mean
and standard deviation of the weights 7! and z7,
respectively, when the true parameter value is 0,
and ®7'() denotes the inverse of the cumulative
distribution function of the standard normal distri-
bution. Substituting equations (7) and (8) into
equation (4), the design problem becomes: find the
sample size n such that

Pr(z* > A*(n)|6y) + Pr(z= > A=(n)|6,) < 1/ARL*,
)

Again assuming that the central limit theorem is
applicable, a solution can be found by starting with
n=1 and incrementing n until the inequality (9)
is satisfied.

2.2 One set of weights approach

Another approach is to derive a control chart for
monitoring shifts in a process mean is to compare
the likelihood of 6_, against that of 6,. This tech-
nique is quite commonly used in the sequential
analysis of multi-hypothesis problems.'> The advan-
tage of considering only the two alternative para-
meter values and not the null hypothesis is that it
leads to only one set of weights. The likelihood
ratio of this hypothesis test for a gauged sample of
size n, is given by

k+1 | 01 Q;
LR(Q) = H(;’T((O—)) ) (10)

where

k+1

EQJ':”

Letting A, and A, denote the critical values (the
upper and lower control limits of the plotted statistic,
respectively), then the chart signals that the process
mean has shifted upwards whenever LR(Q) > e,
and signals a downward process mean shift when-
ever LR(Q) < e™c. Equivalently, the process is
deemed in control as long as

k+1 77_(0)
n)\LSElen(’_’ml\)Sn)\U (11)



Let ARLY and ARL¥ be the desired ARLSs under the
null and alternative hypotheses respectively, and let
w; be a random variable such that

_ m(6,)
w;=1In (—71}(0_1)> (12)

when the ith observation falls into the jth group.
Note that the weights w; are different from the
weights z7 and z;. The chart signals if w < A; or

n

w > Ay where W=2w,-/n, and we wish to find n,
i=1

Ay and A, so that

1/ARL*o = Pr(w > Ay|0 = 0,) + Pr(w < A,|0=6,) (13)
1/ARL*, < Pr(w > A0 = 6,) + Pr(w < A,|0=6,) (14)

and

1/ARL*, < Pr(w > A0 =6_,) + Pr(w < A,J0=6_))
(15)

For large sample sizes w will have an approximate
normal distribution with mean w,(6), and variance
0X(0)/n, where

k+1 77(0 )

1a(0) = 2,7, (6) 1“<7r.’( o) ) (16)
k+1 ] 6 2

02(0) = >, (6) ln(:’((e_‘))) —u2(6) (I7)

J=t

The solution methodology is similar to that applied
in Section 2.1. The second term of the right-hand
side of equation (14) and the first term of the right-
hand side of equation (15) are insignificant relative
to the other terms in the expressions, and thus we
can solve for the control limits in terms of the
sample size:

Ay=—0,(0,)r(n) + 1, (6,
A= 0, (6_)r(n) + m(6.,)
Substituting the results into (13) we obtain the
inequality
1/ARL*y = Pr(w > —0,(6,)r(n) + p.,(6,)|60) (18)
+ Pr(w < 0,(0_,)r(n) + p,(6_,)|6,

where

D@ (1/ARL*))
rny=——"57""—"
\/n

As in the two sets of weights case, the appropriate
sample size can be found assuming that w is nor-
mally distributed with mean and standard deviation

as defined by (16) and (17), and incrementing n
from unity until inequality (18) holds.

2.3 Comparison of the one and two sets of
weights approaches

The two approaches are ideally compared by
determining the best ARLY value that can be achi-
eved with the approach for a given fixed ARL}
level. However, owing to the discreteness inherent
in the problem, making this comparison is difficult.
For any given t and n values there are a limited
number of possible ARL¥ values that can be achi-
eved. Unfortunately, this is a disadvantage of any
method that relies on discrete data. As a result, a
more satisfactory comparison can be made on the
basis of the theoretical sample size that each requires
(based on the given CLT solutions) to achieve the
same ARLs. In this manner, we avoid the dis-
creteness in the sample size. For an underlying
N(0,1) process, Figure 2 plots the theoretical sample
sizes required to detect various mean shifts. Figure 2
shows that the one set of weights approach typically
requires only marginally larger sample sizes than
the two sets of weights approach.

The percentage increase in sample size required
for the suboptimal one set of weights approach
grows as u, increases. However, gauging units is
typically very easy and inexpensive; thus, we rec-
ommend the one set of weights approach since the
decrease in efficiency is small and only one chart
needs to be maintained.

3. SOLUTION FOR SMALL SAMPLE SIZES

Since sample sizes must be integers, and the random
variables z%, z; and w, are discrete, the ARLs will
not be exactly as desired. For large sample sizes,
the solution methodology, presented in the previous
section, based on the CLT, gives good results. For
small sample sizes, however, the effect of the prob-
lem discreteness may be significant, and we may

14

127 One Set

of Weights

6+ Two Sets
of Weights

1 1.2 14 1.6 ‘1.8 2
Mean Shift in Sigma Units

Figure 2. Sample size required versus mean shift for the two
proposed approaches: t=[-1,0,1], ARL%=1000, ARL%=2,
o=0, py=-p_
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need to consider the distribution of z* and z* or w.
This analysis is important since samples of size five
are typically for Shewhart charts. For the purposes
of illustration, in this section, we will restrict atten-
tion to w, although a similar analysis is possible
for z-and 7.

The question of what sample sizes are large
enough to give good solutions via the CLT solution
is a difficult one. However, for any problem with a
moderate sample size and number of groups, we
can find the true ARL levels through enumeration.
To determine the actual ARLs for the one set of
weights approach given a sample of size n, a critical
value A and gauge steps vector t, we must determine
all partitions of the n observations into (k+1) groups,
without regard to order, where either LR(p,|Q) >
e™v, or LR(u|Q) < e Let {S} represent the set
of all such partitions that cause the chart to signal.
The probability that the chart signals when the true
value of the parameter is 6, is given by

Pr(LR(6|Q) > e™v or LR(0|Q) < &) (19)

! k+1
> [m2
{S}

Q!Qp!-- Q! 1
Then, the ARL at the null is ARLy, = 1/Pr[LR(1,|Q)
> e or LR(u|Q) < e™:], and the ARLs when 6
equals 6, and 6_, are ARL,,= 1/Pr[LR(1,|Q)>
e™v] and ARLjgowe= 1/Pr{LR(p |Q) < e™1],
respectively (this assumes that the probability of
signalling a downward mean shift when a significant
upward mean shift has taken place, and vice versa,
is negligible). The number of partitions in {S} grows
exponentially as the number of groups increases
and polynomially as the sample size increases. For
moderatly large n and k, we can enumerate all
possible partitions of a sample to find the set {S}.
Given {S}, we can determine the true ARL, and
ARL, (maximum of ARL,,, and ARL,4.) levels, or
determine the control limits that result in the best
possible ARL, level given the constraint ARL¥ >
ARL,. .

For small sample sizes, the distribution of w is
typically skewed toward the null value. As a result,
the CLT approximation will usually overestimate
tail probabilities, and yield control limits that are
larger in absolute value than necessary. This problem
is most pronounced when trying to detect large
mean shifts with few groups and small samples.
When the sample is of moderate size we can correct
the CLT solution by deriving the set {S} to deter-
mine precisely the required n and control limits.
The following algorithm will determine an appropri-
ate control chart design. In Step 3 we use the fact
that the distribution of w is discrete, and thus there
are only a finite number of values for the control
limits that will change the average run length
properties.

1. Determine the smallest integer n that satisfies

2. For the current choice of n, determine the
set {S}.

3. Use {S} to compute the best control limits A,
and A, that ensure that ARL, > ARL}.

4. Given n and A, and A,, use {S} to determine
ARL,,, and ARL 4oun.

5. Incrementally increase n and repeat procedure
starting at Step 2 until ARL,,, and ARL,4oun
are both less than ARLY.

The above algorithm has been coded in MAT-
LAB® and is available from the authors. On a
Macintosh SE/30, determining the ARL, and ARL,
values in TableI for each iteration took less than
75 seconds. To illustrate, we present an example
with three cases where we wish to detect mean
shifts in a normal process. Assume that we desired
a control chart to detect a shift of 2 sigma units in
a standard normal mean with ARL§ = 1000, using a
three-step gauge defined by t=(-1,0,1). From (1)
and (9) we have group weights w=(-6-43, —1-85,
1-85, 6-43) since, for example,

w, = In(0-00135/0-84135) and
000135 = [ Cp(x)dx.

In this example, the gauge limits are symmetric
about u,=0 and u,=pn_,, thus we have Ay=-A,
and we will only consider the upper control limit.
Table I presents the results for ARLY =2, 1-05 and
1-005. For each proposed design we determine the
actual ARL, and ARL, using enumeration. We first
solve equation (18) to determine the CLT solution
for the required sample size and control limit. If
the resulting actual error rates are not sufficiently
small (i.e. if ARL, <<ARL% or ARL, > ARL%}) we
use the enumeration algorithm presented above to
find the optimal location for the control limit, and
increment n until the desired error rates are obtained.
Note that in all cases the ARL, level was sufficiently
large. However, when ARL?¥ =1.005, although the
CLT solution suggested n=11, due to skewness in
the distribution of w we actually required n=12 to
obtain ARL, > 1000 and ARL, < 1.005.

4. OPTIMAL STEP-GAUGE DESIGN FOR
SHEWHART CHARTS

There are two decisions to be made in specifying the
grouping criteria: we must decide how many groups

Table I. ARLs for different designs where ARL¥ = 1000

ARLY% Solution type n Ay ARL, ARL,

2 CLT 6 561 2252 143
1-05 CLT 9 4.53 5076 I-1
1-05 enumeration 9 4.25 2273 1-03
1-005 CLT 11 408 2584 1-015
1-005 enumeration 11 39 2179 1-007
1003

1-005 enumeration 12 36 1124



to use, and how these groups are distinguished. In
general, a k-step gauge classifies units into (k+1)
groups. Clearly, as more groups are used, more infor-
mation becomes available about the parameters of the
underlying distribution. The limiting case occurs when
the variable is measured to infinite precision. However,
given that a k-step gauge is to be used, not all gauge
limits will provide the same amount of information
about the parameters of the underlying distribution. It
is not intuitively clear how best to place the k-steps
of the gauge. We consider these questions in more
detail for the mean and standard deviation of a nor-
mal process.

Shewhart control charts are designed to detect
whenever the process is no longer stable; thus we
are interested in detecting small upward or down-
ward parameter shifts. As a result, the problem of
determining the best gauge limits for control may
be thought of as equivalent to designing the step
gauge limits to obtain the best estimate of 6 in the
neighbourhood of the standard (in-control) value.?
This is also justified because the process should
operate in an in-control state for the majority of the
time. Designing the step-gauge in such a manner is
accomplished by maximizing the expected Fisher
information of the gauged sample at the standard
value. Fisher information is defined as the square
of the derivative of the log-likelihood. However, the
log-likelihood for a sample of size n will be formed
by the sum of n log-likelihoods, each of identical
expectation.'* As a result, it is equivalent for our
purposes to consider the expected information in a
single observation. The expected information in a
sample of size one at 6, E(I(6)), may be obtained
by conditioning on the group into which the obser-
vation is classified. In particular, if e;, e,,...,e.,
denote the unit vectors of length (k+1), then

E(I(6)) = X I(0le,)m(6) = E 6 | db

J=1

k+1 (23! 1 <d71'j(0) )2
(20)

Assuming a normal distribution, and using (1), it
can be shown that the expected information for a
single observation about the mean p and standard
deviation ¢ are respectively

E(I(p)) = Ptiip) E(d’(f—uu) (1310))

m(40) o

(fr(:(i)) (21)
E(I()) = %d’(’l'(“’))z 2(’1 "”("-1;‘2(; ;,-qb(rj;o))z
o o

Without loss of generality, we assume that ‘in-
control’ w=0 and o= 1. The function E(I(6)) is in
general not concave. If we fix the first (k—1) gauge
limits and allow the kth to become arbitrarily large,
the expected information asymptotically approaches
a minimum. Extensive experimentation has indi-
cated, however, that the expected information func-
tion is unimodal, at least in the cases represented
by (21) and (22). As a result, the gauge limits that
maximize the expected information can be found
efficiently using a quasi-Newton method such as the
BFGS algorithm or the Fletcher Reeves algorithm
if the gradient is determined.'”

Table I shows the optimal gauge limits for
detecting mean shifts away from w=0 and the
efficiency of that group gauge design relative to
exact measurement. The efficiency of the gauged
sample is computed by taking the ratio of infor-
mation available in the gauged sample to the infor-
mation in an exactly measured sample. Table III
gives similar results for detecting standard deviation
shifts away from o= 1.

Note that in the o shift case for an even number
of groups, the middle step gauge placement has
arbitrary sign, and is not zero as in the mean shift
case. This is because a group limit placed at =0
(the mean) will provide no additional information
about 0.

Examining Tables II and IIl we notice that the
optimal group limits to detect ¢ shifts are much
more spread out than those that are best for monitor-
ing shifts in . This suggests that a compromise
gauge design be considered in cases where we wish
to monitor for mean and standard deviation shifts
simultaneously. There are many possible ways to
derive a reasonable compromise. We proposed maxi-
mizing the weighted sum of efficiency ratings for
mean and standard deviation est1mat1on In other
words, maximize

Eff(u,0;d) = dEff(p) + (1 - D)Eff()  (23)

where 4 is the weight, Eff(u) is the efficiency of
mean estimation, and Eff(o) is the efficiency of
standard deviation estimation. Often in practice the
detection of mean shifts is given priority. Table IV
gives the optimal compromise group designs for
various number of group limits when the mean
estimation is given a greater weight (d=0-7).

As shown in TablesII, III and IV the use of
more than two or three groups significantly increases
the efficiency of an observation. For example, near
the target value, more information about u is avail-
able in ten five-group optimally gauged observations,
than is available in nine exact measurements. Cle-
arly, if exact measurement is uneconomical a prop-
erly designed gauge may be an excellent alternative.

Tables Ii, Il and IV present optimal designs for
a standard normal in-control process, but they may
also be used to calculate the optimal gauge limits
for any normal process. If the vector ¢ represents
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Number of groups Efficiency t t, ty t, ts tg
2 0-6366 0-0

3 0-8098 -0-6120  0-6120

4 0-8825 -09817 00 09817

5 0-9201 —1-244 -0-3824  0-3824 1.244

6 0-9420 —-1-4468 —-0-6589 0.0 0-6589 1-4468

7 09560 -1.6108  -0-8744  -0-2803 0-2803 0-8744 1-6108

Table IIl. Optimal group limits to detect sigma shifts

assuming that when the process is ‘in control’ o=1 (u=0)

Number of groups Efficiency t 1 1y ta 15 te
2 0-3042 +1.5758

3 0-6522 —1-4825 1-4825

4 0-7074 -1-4520 1-1855 2-0249

4 0-7074 -2-0249 —1-1855 1-4520

5 0-8244 -1.9956 -1-1401 1-1401 1-9956

6 0-8588 -1.9827 —1-1193 0-9837 1-6189 2-3267

6 0-8588 -2-3269 -1.6190 —0-9837 1-1190 1-9821

7 0-8943 -2-3130 -1.6002 -0-9558 0-9558 1-6002 2:3130

Table IV. Optimal group limits to detect mean and sigma shifts d=0-7,

assuming that if the process is ‘in control’ u =10

and o=1

Number of groups Eff(w) Eff(o) h t 4 1y ts te

2 06366 00 0.0

3 07822 0-4664 —0-8487 0-8487

4 0-8685 0-6262 -1-2529 0-0 1.2529

5 09082 0-7384 -1.5500 —0-5295 0-5295 1.5500

6 09333 0-8039 -1.7703 —0-8768 0-0 0-8768 17703

7 09489 0-8486 —1-9481 —1-1366 —0-3889 0-3889 1-1366 1.9481
Opening Gap difficult and expensive. The metal used in the clamp
Dimension is fairly pliable, and as a result, using calipers

/

Figure 3. Robotics clamp

the optimal gauge limits for an N(0,1) process then
¢ =to+ u will be the corresponding optimal limits
for an N(u,0) process.

6. METAL FASTENERS EXAMPLE

This example is suggested by our study of the
manufacture of metal fasteners in a progressive die
environment, and is an extension of the example
presented by Steiner ef al.'' The opening gap dimen-
sion of a metal clamp, called a robotics clamp, was
considered critical; see Figure 3.

However, obtaining exact measurements of the

[N PULL L PR N

distorts the opening gap dimension. Another alterna-
tive, an optical measuring device, is expensive and
not practical for on-line quality monitoring. As a
result, the only economical alternative on the shop
floor is to use step gauges, where clamps are classi-
fied into different groups based on the smallest pin
that the clamp’s opening gap does not fall through.

The process mean is currently stable, producing
clamps with an open gap dimension of 54-2 thou-
sandths of an inch and standard deviation of 1-3.
We wish to monitor for stability in both the mean
and standard deviation of the width of opening gap.
It was desired to creat a control chart that has ARLY
= 200 and ARL% =2 or better when detecting mean
shifts of one standard deviation unit in an upward
or downward direction. We also wish to simul-
taneously test the hypothesis H, : 0= 0, = 1-3 versus
H,: 0=20, or o=0-50,. For the standard deviation
chart we will use the sample size suggested by our
design of the mean shift chart, and set the control
limits so that ARL% =200. In this case, the step
gauge employed has gauge limits (or pins) with
diameters of 53, 54, and 55 thousandths of an inch.
ncino thie efandard ecauge. units are

Ac a raanlt



Table V. Step-gauge design for metal fasteners example

Interval Group u-weight o-weight
(—,53] I -2.97 2-30
(53,54] II -1.03 . -0-86
(54,55] I 0-44 -1.22
(55,) v 250 1-24

classified into four intervals with corresponding
weights calculated from equation (9); see Table V.

Using this step-gauge the design procedure pre-
sented in Section 2.2 suggests a sample size of
n =12 and upper and lower control limits A, = 1-55,
and A, =-1-66 for the mean chart. Enumeration
shows that this design results in ARL,= 3846,
ARL,,, =192, and ARL,4p,=196 for the mean
shift which satisfies our requirement. For the stan-
dard deviation chart, choosing A, =1.30, and
A, =—0-87 results in ARL, =200, ARL,,, = 6-96, and
ARL, 40w, = 3-45. The resulting control charting pro-
cedure for each sample can be summarized as fol-
lows:

1. Take a sample of 12 units from the process.

2. Assign each of the 12 units a p-weight and a
o-weight as given in Table V.

3. Calculate and plot the average p and o weight
for the sample.

4. Search for an assignable cause if the average
m-weight plots above 1-55 or below —1-66 or
the average o-weight lies outside the range
(-0-87, 1.3).

Figure 4 shows the results of this procedure. The
first ten samples were taken from the process at 30
minute interval, and suggest an ‘in control’ process.
The next ten samples are simulated average weights
and show the result of an ‘out of control’ situation
on the control chart. The simulated ‘out of control’
values are based on a N(52-9, 1-3) process, i.e. the
mean has shifted to —u,. At this ‘out-of-control’
setting our mean shift chart has a 51 per cent

2 : :

Sample Number

(1 = 1/ARL,4,,) change of detecting this magnitude
of shift in one sample. Notice that the standard
deviation chart also begins to signal when the mean
shifts down, since many observations in the lowest
(or highest) group may also be indicative of
increased variance. In this example, with the mean
at —u;, there is an 18 per cent chance for each
sample that the standard deviation chart will signal.
However, a quick check of the actual sample would
quickly confirm that the actual shift must have been
in the mean. The efficiency relative to the classical
variables based approach of these grouped data con-
trol charts is Eff(y) =0-8689 and Eff(o) = 0-4203.

Note that considering only the mean shift problem
using the optimal gauge limits for this problem
(from Table II) allows a reduction in sample size.
With gauge limits at 52-9, 542, and 55-5 thousands
of inch, a sample of size 11 with control limits at
1-66 and —1-66 we obtain ARLs of ARL,=294-1
and ARL,,, = ARL 4o, =189. A variables-based
control chart (X chart) designed for the same pro-
pose would require a sample size of 9. Our proposed
three-step gauge control chart requires a larger sam-
ple size to match the power of an X chart, but due
to the savings in measurement costs is an excellent
alternative in this situation.

7. CONCLUSION

A multi-step gauge control chart has been presented
to monitor the stability of the parameter of interest
when observations are classified into one of several
groups. These proposed charts are very easy to use
and interpret on the production floor. We show how
a control chart can be designed to satisfy any speci-
fied ARL criteria. The implementation of this
approach in a progressive die operation shows that
the k-step gauge control chart is a viable alternative
to other control charts, approaching the variables-
based control charts in efficiency. The optimal gauge
design has been derived for monitoring the mean

L5 5

0 5 10 15 20
Sample Number

Figure 4. Sample control charts
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and standard deviation of a normal process by maxi-
mizing the expected Fisher information at the target
value. These charts are applicable in situations where
variables measurements are expensive or impossible,
and yet classifying units in groups is economical.
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