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Introduction 

An important goal of quality improvement in manufac- 
turing is the reduction of variability in product character- 
istics. Producing more consistent output improves product 
performance and can reduce manufacturing costs. 

The problem can be simply demonstrated. Suppose a 
process produces output with an important quality charac- 
teristic Y (see Fig. 1). The current process performance, 
measured using an appropriate sampling scheme over a 
long enough period to capture most of the variation, is 
shown by the histogram. The goal is to reduce variability 
in Y while targeting the process at or near the nominal 
value. In this article, we focus on variation reduction and 
assume implicitly either that any reduction obtained does 
not move the process mean significantly away from its 
target or that we can retarget the process mean without 
affecting the process variability. 

Processes are managed using a control plan that de- 
scribes how the process should be operated and specifies 
the mechanisms through which the quality of a product will 

be monitored, controlled, and verified. In this context, 
reducing the process output variation requires either the 
modification of a current control plan or a change to the 
process itself. Changes to the method of operation corre- 
spond to the idea of a living control plan as discussed in 
the Automotive Industry Action Group (AIAG) reference 
manual, Advanced Product Quality Planning and Control 
Plan ( 1 )  referred to in the automotive industry quality stan- 
dard, QS-9000. A living control plan is constantly modi- 
fied and improved as more information and insight on the 
process becomes available. 

Reduction in output variation can be accomplished by 
changing the way the process operates in a number of dif- 
ferent ways. In our experience, however, all variation re- 
duction approaches can be classified into one of the follow- 
ing five generic strategies: 

1. Introducing or tightening output inspection 
2. Introducing or improving feedback control 
3. Reducing variation in process inputs 
4. Introducing or improving feedforward control 
5. Desensitizing the process to input variation 

Each of these five strategies is currently used in indus- 
try. A sixth strategy, which we do not assess in detail, is 
to discard all or part of the existing process and start again 
with a new method or technology. In some situations, this 

Copyright @ 1997 by Marcel Dekker, Inc. 
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MxKAY AND STEINER 

Figure 1. Process diagram. 

sixth strategy of replacing the existing process (or part of 
it) may be the only viable option. For example, we may 
purchase a new gauge to improve the accuracy of our 
measurements or use a new supplier whose products are of 
higher quality. However, in the spirit of continuous im- 
provement, we believe that it is cost-effective to consider 
strategies 1-5 first. In any case, strategy 6 could be con- 
sidered an extreme example of strategy 5, where the pro- 
cess is desensitized by changing the process radically. 

All variation reduction strategies are dependent on the 
ability to measure precisely the process output Y and pos- 
sibly input(s) X. As a result, studies that examine the short- 
term variability [gauge repeatability and reproducibility 
(R&R)] and long-term stability of the measurement system 
should be carried out prior to any variation reduction ex- 
ercise. In this article, we assume that the measurements 
obtained are reliable (i.e., that the measurement system 
itself is not the major source of variation). 

The choice of an effective strategy depends critically on 
knowledge of the existing process. Key aspects of this 
knowledge include stability, predictability, ability to adjust, 
and identification of the causes of the variation. The avail- 

Output of Original Process 

ability and cost of attaining this knowledge provides an 
important input to a decision on which process variation 
reduction strategy is most applicable. 

The goal of the article is to contrast and compare each 
of the variation reduction strategies, highlighting the re- 
quired process knowledge, potential costs, benefits, and 
drawbacks of each method. We discuss each strategy in 
detail, providing information on how the strategy works 
and when it works. For each strategy, we give simple 
examples and discuss more complex extensions. This infor- 
mation is summarized in Table 2. The thought process 
required to choose judiciously is explored through a de- 
tailed example on a crankshaft machining process. We 
hope that this discussion will provide guidance to quality 
practitioners faced with a variation reduction problem. 

Output Inspection 

' Output inspection is the simplest variation reduction 
strategy and is virtually always applicable. Assuming 100% 
effective 100% inspection, the variability is reduced by 
identifying and then scrapping or reworking all items that 
have values of Y beyond selected inspection limits. The 
more the limits are tightened, the greater the reduction in 
variation. The effect of tightened inspection is illustrated in 
Figure 2. Imagine inspecting and sorting units based on 
whether they fall between the dashed lines shown, where 
any units falling outside the limits are either scrapped or 
reworked (and then reinspected). Clearly, this selection of 
units reduces the overall variability in the product that is 
shipped subsequently. 

Output inspection is very versatile. It can be used suc- 
cessfully in any situation where the output characteristic Y 

Output of Process with Inspection 

Figure 2. Output inspection example. 
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can be determined in advance of shipping the product to a 
customer. Output inspection is especially appropriate when. 
the quality dimension is critical and the process produces 
only the occasional outlier or flier while all other units 
exhibit very little variation. For example, in the production 
of aluminum pistons, the diameter of each finished piston 
(as well as a number of other key characteristics) is mea- 
sured by an automated gauge after the piston temperature 
is controlled. Pistons with large or small diameters are 
scrapped. In such a situation, the costs associated with 
100% inspection, including installation and operation of the 
automated gauge, are warranted due to the high production 
volume and the critical nature of the product characteris- 
tic. Assuming no inspection error, the 100% inspection 
strategy has the advantage of being able to guarantee that 
no units with quality characteristic outside the inspection 
limits will be shipped to a customer. 

Output inspection has a number of significant negative 
features. The cost of reducing variability by tightening the 
inspection limits may be very high due to increased rework 
and scrap costs and lost capability. Also, the cost of inspec- 
tion itself may be large if new gauging or additional labor 
is required. In addition, measurement or inspection errors 
will result in increased variability. As a result, given the 
propensity of people to make inspection errors, most suc- 
cessful applications use automated inspection. 

One common modification of this strategy is inspection 
sampling, where not every unit is measured. One approach 
is to define lots, where lots are accepted or rejected based 
on the quality of a sample taken from the lot. Accepted lots 
are shipped and rejected lots are 100% inspected or oth- 
erwise disposed. If we know that lot-to-lot variation is large 
and within-lot variation is small, then inspection sampling 
is effective. Thus, using inspection sampling, variation may 
be reduced by redefining a lot, changing the inspection 
limits, or changing the lot acceptance criteria. Compared 
to 100% inspection, inspection costs are reduced. How- 
ever, overall variability will not be reduced to the same 
degree. Note that if the process is stable, then partial in- 
spection is a poor strategy. Deming (2, Chap. 15) showed 
that in this case either no or complete 100% inspection is 
optimal. 

Feedback Control 

Feedback control is a simple concept that may lead to 
complex procedures. The idea is to monitor the current 
output characteristic Y and to make adjustments to the pro- 
cess based on the observed output. By making appropriate 
adjustments, we compensate for changes in unidentified 

process inputs, thus reducing the variability in future val- 
ues of Y. The effect of a simple feedback control plan is 
illustrated in Figure 3. The panel on the left shows the 
output of the original process. The panel on the right shows 
the output of the same process when feedback control is 
applied. The feedback control mechanism involves retarget- 
ing the process to zero whenever the process output ex- 
ceeds the adjustment limit. The amount of adjustment is 
based on the last observed process output. Figure 3 dem- 
onstrates the resulting reduction in variability of Y. 

Feedback control can be successfully applied when three 
conditions are satisfied. First, the process must exhibit 
substantial structural variation (3). Examples of structural 
variation include drift due to tool wear and stratification 
due to batch-to-batch variation. Second, there must be an 
adjustment procedure to retarget the process. Finally, the 
time to measure the output and adjust the process must be 
small relative to the rate of change of the process. 

A feedback control scheme is defined by its adjustment 
procedure that tells us when and how much to adjust, and 
its sampling frequency. Increased knowledge of the process 
behavior may be used to improve the feedback control 
scheme. For example, better knowledge of the nature of 
the structural variation can be used to change the sampling 
frequency or the adjustment rule. 

As an example, feedback control is used to reduce varia- 
tion in the concentration of silicon in molten iron in a 
foundry. Iron is sampled at a fixed frequency from the 
output stream and the concentration of silicon is determined 
in the sample. Based on the observed concentrations, ad- 
justments are made (upstream) to the feed rate of silicon 
in the melting process. Another common example is the 
use of procedures based on first-off measurements, where, 
for example, a machining tool's setup may be changed 
based on measurements taken on the first few products in 
a batch. Once a good setup is achieved, no further process 
measurements are taken. 

The major advantage of feedback control is that it re- 
quires little knowledge of the causes of variation. Like 
output inspection, it only uses information obtained from 
the final product. 

There are a number of drawbacks to feedback control. 
A major danger is overadjustment (tampering). If the pro- 
cess is stable (i.e., it does not exhibit structural variation), 
then adjusting on the basis of the output will lead to in- 
creased variability. This is illustrated in the famous funnel 
experiment; see Ref. 2, pp. 327-328. Another drawback 
is that the process measurements and adjustments may be 
expensive. Finally, due to the feedback nature of the con- 
trol, there is an inherent time delay. To identify when an 
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Original Process Output Process Output Using 
Feedback Control 

Adjustments Made Here 

0 50 100 0 50 100 
Observations Observations 

Figure 3. Feedback control example. 

adjustment is required, we must first observe some output 
values that are significantly different from the target value. 
Thus, feedback control is always reactive. 

There are many variations of feedback control; see Ref. 
4 for further details. Specific examples include acceptance 
control charts (5) and Pre-control (6,7). Most feedback 
control systems use a function of recent output values, not 
just the last value, to determine if an adjustment is neces- 
sary. If the drift in Y is as regular as shown in Figure 3, 
we could also base adjustments simply on the time or the 
number of units processed (or any other cheaply measured 
variable highly correlated with the output dimension Y). 

Reduction of Variation in Process Inputs 

As the saying goes "garbage in, garbage out." If there 
is a large amount of variation in process inputs, then it is 
difficult to produce consistent output. One improvement 
approach in this environment is to reduce the variability in 
oneor more inputs. For ease of discussion, we assume, for 
the moment, a single important input X. See Figure 1. The 
input X may be a characteristic of raw materials or com- 
ponent parts, a changing environmental factor such as heat, 
or any other process input that changes over time. From 

the point of view of the process that produces X,  the prob- 
lem of reducing variability in X is analogous to reducing 
variation in Y and we have created a recursion in the prob- 
lem definition. 

The effect of reducing the variability in an input is il-  
lustrated by the variance transmission plots shown in Fig- 
ure 4. In this example, most of the variation in Y is due 
to variation in the input X. As a result, if we reduce the 
variability in the input X as shown, the variability in the 
output Y will also be reduced substantially. 

There are three basic conditions necessary for this strat- 
egy to work. First, we must be able to identify an input X 
that has a causal influence on the output Y.  Second, we 
must identify an X that is a major source of the variation 
in Y. Third, we must be able to reduce the variation in X. 

There are many tools for discovering the identity of 
such an X. We may use observational studies such as con- 
trol charts, multivari studies (7). and regression, or we may 
use designed experiments which require an intervention in 
the process. It is important that the identified factor X is 
a significant factor influencing the variation in the output. 

This approach is proactive. The control of the process 
is moved upstream, which may reduce cost and complex- 
ity, and less effort may be needed to monitor the process 
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Original Process Process with Reduced Variation in X 
I 

Y Y 

Variation I Variation 
in Y in Y 

I 
I 
I 
I 
I 

Variation in X X Variation in X X 

Figure 4. Variance transmission between input X and output Y. 

output Y. An example of this strategy occurred in the 
machining of the aluminum pistons described previously. 
A variation transmission study identified the piston diam- 
eter after an intermediate operation ( X )  as the major source 
of variation in final piston diameter. The variation of X was 
reduced by instituting improved operator instructions and 
training at the intermediate operation. 

One difficulty with this strategy is that first we must 
identify an X, which is both an important contributor to the 
variation in Y and which is causally related. This may 
prove arduous and involve significant study costs. Second, 
reducing variability in X may be very difficult and/or 
costly. Third, tightened specifications on X moves the re- 
sponsibility for control of the process upstream, and pos- 
sibly outside the influence of local management. 

Figure 4 shows a continuously varying input X. How- 
ever, in many cases, X is discrete. For example, X could 
represent multiple suppliers or multiple machines in parallel 
processing operations. In this case, reducing variation in X 
could be accomplished by reducing the number of suppli- 
ers or establishing procedures to reduce differences among 
the suppliers. Also, in general, the situation where a num- 
ber of important X variables can be identified should be 
considered because in typical applications, there are many 
inputs that are sources of variation. With any input factor 
that satisfies the three given conditions, reducing the varia- 
tion in that input is a viable output variation reduction strat- 
egy. However, the resulting reduction in variation of the 
output Y depends on how strong a source of variation X i s  
and how successfully we can reduce its variability. Fortu- 
nately, based on the Pareto principle, we can usually focus 
on only the one or two most important X factors because 
they typically contribute the majority of variation 
in Y. 

Feedforward Control 

Using feed-forward control, we adjust the process in 
response to measurements made on an input X, anticipat- 
ing the effect on the output Y. If the measured value of X 
provides a good prediction of the corresponding output Y, 
feed-forward control can reduce variation in Y by adjust- 
ing the process to compensate for different X values. Fig- 
ure 5 demonstrates the effect of adjusting Y based on 
knowledge of X and the relationship between X and Y. 

Feed-forward control works under restrictive conditions. 
First, we must identify an X that is an important source of 
variation in Y. Second, the relationship between X and Y 
must be well known and stable over time. Third, we must 
be able to measure X in a timely way. Finally, there must 
be a way to adjust the process to compensate for the 
changes in X. 

Feed-forward control can be very effective if the above 
conditions are satisfied. A simple example is the use of 
setup procedures based on the properties of the raw mate- 
rials. Feed-fonuard control is an attractive alternative be- 
cause it is proactive and because it is not necessary to 
measure the output Y. 

There are substantial costs and risks associated with 
feed-forward control. Costs arise because we need to de- 
termine the relationship between X and Y, measure X, and 
adjust the process repeatedly when appropriate. As with 
feedback control, there is a danger of overadjustment if 
there is a measurement problem with X or if the relation- 
ship between X and Y is not well understood and stable. In 
addition, repeated process adjustment may be impractical 
or costly and may introduce undesired side effects. 

Applications of feed-forward control are not always 
easily identified. Consider selective fitting, the technique 
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Figure 5. Feed-forward control example. 

of sorting and matching component parts to get good as- 
sen~blies. Selective fitting has been used to reduce varia- 
tion in clearance between pistons and cylinder block bore 
walls by matching piston and bore diameters. This is feed- 
forward control because we measure the dimensions (X) of 
the pistons and bores and use that knowledge to adapt the 
matching process. Note that this adds complexity to the 
assembly process. 

Process Desensitization 

Desensitization of the process aims to reduce variabil- 
ity by making the process more robust to the variability in 
process inputs. This is also called parameter design as dis- 
cussed by Taguchi and Wu (8) and Nair (9). Desensitiz- 
ing the process works by identifying and exploiting inter- 
actions between important varying inputs X and other 
normally fixed process parameters such as machine set- 
tings. In this context, Taguchi calls X a noise factor or 
variable. Figure 6 demonstrates how modifying the rela- 

tionship between Y and X by changing other process pa- 
rameters results in less variation in Y over the same range 
of variability in X. 

Typically, the settings of the control parameters that 
yield a more robust process are identified through a de- 
signed experiment which uses both X and selected process 
parameters (called control parameters) in the experiment. 
The experiment must be designed so that interactions be- 
tween X and the control parameters can be identified. 

Process desensitization is a desirable strategy because 
once it is complete, no further action is required. Taguchi 
and Wu (8) cite several examples, including the famous Ina 
tile case. Another example involved the reduction of varia- 
tion of the sulfur concentration (Y) in molten iron, where 
X was the uncontrollable amount of sulfur in the scrap iron 
being melted. It was known that Y was highly dependent 
on the amount of sulfur (X) in the scrap iron. An experi- 
ment identified a new way to run the desulfurization pro- 
cess that reduced this dependency and, hence, reduced the 
variability of Y. 
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Variation in X X Variation in X X 

Figure 6. Desensitizing the process example. 

It is difficult to predict when desensitizing the process 
will work. This is one of its great weaknesses. Also, mak- 
ing a process more robust requires a great deal of process 
knowledge. Determining appropriate settings of the control 
parameters usually requires expensive designed experiments 
that may fail to determine process settings that lead to 
improvement. Also, the new process settings may lead to 
extra costs. 

In theory, making a process more robust can be accom- 
plished without any knowledge of the factor X, even its 
identity. Taguchi recommends identifying X (the noise fac- 
tor) and then conducting an inner-outer array experiment 
in which X is controlled. An alternative is to define an 
experimental run as the operation of the process over a 
period of time sufficiently long to allow the unknown X to 
vaty substantially. The process variability is measured over 
each run and is then used as the response in the analysis 
of the experiment. However, without knowing X, we run 
a significant risk of determining a more robust setting that 
is only better under the limited operating conditions used 
in the experiment. It is also more difficult to identify pro- 
cess parameters that may be used to reduce the variation 
when X is not identified. Process desensitization without 
knowledge of X is illustrated by the speedometer cable 
example (1 1,  p. 367). The goal was the manufacture of 
speedometer cables that had very little variation in the 
shrinkage along the length of the cable. An experiment was 
designed that varied process factors. Based on the results 
of the designed experiment, new process settings were 
determined that resulted in less shrinkage variation; how- 
ever, the identity of a cause for variation was not reported. 

Choosing a Strategy-An Example 

In any application, a decision must be made as to which 
strategy or combination of strategies should be used. To 
demonstrate the thought process required, we consider an 
example from the machining of crankshafts. 

Journal diameter is a key product characteristic on 
machined crankshafts. To keep the discussion simple, we 
consider only one diameter of the several that are mea- 
sured. Y is the diameter of the shipped product. The ma- 
chining process at the start of the variation reduction effort 
with respect to the diameter (called the initial process) is 
illustrated in Figure 7. 

The raw castings, identified by hour, date of casting, 
and mold number, were processed by one of four grind- 
ers and subsequently automatically 100% inspected. All 
crankshafts that did not conform to the after-grinder speci- 
fication were either scrapped or reworked. All in-specifi- 
cation parts were subsequently lapped to improve the sur- 
face finish. After the lapping operation, all output was 
again automatically 100% inspected at the f m l  gauge, with 
parts not conforming to the final product specifications 
yielding scrap or rework. At any time, if an operator no- 
ticed a significant number of rejects due to small or large 
journal diameters at either gauge, he or she asked for an 
adjustment of all the grinders. Also, periodically, if the 
final output quality was deemed poor, the inspection lim- 
its at thc intermediate gauge were changed. Thus, initially, 
the process was controlled using a combination of inspec- 
tion and feedback control. 
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Figure 7. Crankshaft production process. 

Grinder 1 

Grinder 2 

Grinder3 

Grinder4 

The initial process had a process capability C,, = 1, 
which was considered too low. As well, there was an un- 
acceptably high level of scraplrework. The objective was 
to reduce long-term variation in the journal diameters of 
finished crankshafts, and decrease costs. The question of 

- 

- 

Lapper 

- Parts 

Scrap or Rework Scrap or Rework 
Pans and Parts and 

Possibly Adjust Possibly Adjust - Grinders Grinders 

interest was how to select an appropriate variation reduc- 
tion strategy. 

A required preliminary step in our investigation was 
studying the measurement systems utilized. This is funda- 
mental because we base much of our process knowledge 
and control decisions on measurements, and, indeed, the 
whole impetus for conducting this variation reduction ex- 
ercise is based on the measurements. To determine the 
quality of the measurement systems, both the short-term 
variability and the stability of both gauge measurements 
were examined. A gauge R&R study (10) showed that both 
gauges were capable in the short term; in other words, the 
amount of the variation introduced by the measurement sys- 
tem was small compared with the typical process variation. 
A stability study of the gauges where a master part was 
measured every 2 h, however, showed that the intermedi- 
ate gauge was unstable. This was fixed by performing 
extensive maintenance on the intermediate gauge. The 
measurements on the master part also identified a calibra- 
tion problem because there was a systematic difference 
between the measurements obtained with the two gauges. 
This problem was alleviated by retargeting the intermedi- 
ate gauge. Based on these studies, an ongoing program was 
established to ensure the measurement systems remain 
stable, capable, and calibrated. Once confidence in the 

measurement system was established, we turned to the goal 
of variation reduction. 

The simplest approach, because it does not require any 
additional process information, was tightening the inspec- 
tion limits at the final gauge. This approach could be eas- 
ily implemented because inspection was already performed. 
The consequence would be not only reduced variation in 
Y but also an increase in scrap and rework and lost capac- 
ity, which, in this case, was considered too expensive. 

Determining whether any of the other strategies were 
feasible required more information about the process. The 
first step was to determine current process performance in 
terms of stability and structural variation of the output 
measurement. This required monitoring process perfor- 
mance at the final gauge. To gain as much process infor- 
mation as possible, we used measurements from all units, 
even those that were rejected by the inspection scheme. X 
and R control charts based on five consecutive parts mea- 
sured every 2 h at the final gauge are shown in Figure 8. 
The control charts show that the process was stable and did 
not appear to exhibit structural variation over time. As a 
result, feedback control did not appear to be a viable strat- 
egy. At this point, a more extensive study (e.g., one that 
tracks output from every crankshaft) could be considered, 
as additional study may show that exploitable structural 
variation does exist. However, this analysis was postponed 
to pursue more promising avenues. 

The remaining variation reduction strategies require the 
identification of an input X that is an important source of 
variability in the final journal diameters. A study was con- 
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Table 1. Analysis of Variance Table for Crankshaft Example 

MKKAY AND STEINER 

DEGREES OF SUM OF MEAN 
SOURCE FREEDOM SQUARES SQUARE F P 

Grinder 3 98.38 32.79 32.56 0.000 
Error 20 20.14 1.01 
Total 23 118.52 

ground by a grinder that typically yielded larger incoming 
diameters. For this feed-forward control scheme, an esti- 
mate of the average diameters that would result from each 
grinder would be needed. A potential problem with this 
approach was that to ensure the lapper was compensating 
correctly, each grinder's average output diameter must 
either stay constant over time or, occasionally, be reesti- 
mated. This feed-foward strategy was similar to the one 
discussed previously and was also rejected because it would 
lead to a bottleneck at the lapping operation. Desensitizing 
the process to the variation in grinder targets was also 
rejected because, as mentioned previously, there were no 
process parameters in the lapping operation that could fea- 
sibly be changed. 

This left reducing the differences between the grinders 
(reducing variation in X2) as the logical alternative. Based 
on Table I ,  we anticipated that removing the between- 
grinder variation would reduce the variation in the before- 
lapper diameter from approximately 5.2 to 1.0. This was 
accomplished by realigning the four grinders so that their 
output was targeted to the same nominal mean value. The 
results of implementing these changes in the process 
showed a decrease in the variation of the final diameters 
and a substantial reduction in the amount of scrap and re- 
work generated by the process at both the intermediate and 
final inspections. The intermediate and final inspections 
were retained to monitor the success of the new control 
plan and to protect against poor quality. 

This example presents a successful application of varia- 
tion reduction and illustrates the thought process followed. 
However, reduction in variation itself should be an ongo- 
ing process. For example, based on our experience with 
grinders, we suspect that the average output value of each 
grinder will drift over time. This implies that the imple- 
mented variation reduction strategy will only be effective 
in the short term. This anticipated structural variation in X 
was not evident previously because when measuring X, the 
output from the different grinders was mixed together and 
the drift is probably fairly slow. This suggests that by plot- 
ting the after-grinder diameter for each of the grinders 
separately, over a longer time, structural variation may 

become evident. These plots can be obtained by either 
changing the intermediate gauge into four separate gauges, 
one for each grinder, or keeping track of which grinder 
was used for each part. If this structural variation exists, 
we anticipate that keeping the grinders aligned can be ac- 
complished using feed-back control on the diameter after 
grinding. Identifying the exact nature of this feed-back 
control requires more information and is currently the 
object of further study. Determining the best feedback 
control scheme will require an understanding of the costs 
associated with retargeting, grinder maintenance, down- 
time, and so forth and an understanding of the variability 
caused by the grinder itself. 

In this example, there are also many other process 
changes that could lead potentially to variation reduction. 
At each iteration of our analysis, we tried to focus on the 
major source of variability because it provides the great- 
est potential for improvement. However, in subsequent 
variation reduction exercises, different sources of variation 
will be most important, and different strategies will likely 
be most appropriate. 

Summary and Conclusions 

This article compares and contrasts five 'variation reduc- 
tion techniques. We believe these five techniques, either 
singly or in combination, encompass all possible variation 
reduction methods. The goal of the article is to describe 
and explain the various methods and to aid the practitio- 
ner in making a judicious choice of technique. The process 
knowledge requirements and potential riskstof 'the differ- 
ent variation reduction methods are summarized in Table 
2. By keeping in mind the various strategies and their 
strengths and weaknesses, a practitioner will be able to 
make better decisions regarding process information that 
should be obtained and how best to improve the process. 

Choosing an appropriate variation reduction strategy is 
not a linear process. At each stage, there are many options 
and there is no recipe. In each variation reduction exercise, 
we try to learn enough about our process so that the fea- 
sible strategies are determined. However, it is often the 
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STRATEGIES FOR VARIABILITY REDUCTION 135 

Table 2. Summary of Information and Process Requirements of the Five Generic Variability Reduction Strategies 

VARIABILITY REDUCTION INFORMATION AND PROCESS 
STRATEGY REQUIREMENTS POTENTIAL RISKS 

Introducing or improving Measurement on Y Scraplreworklinspection costs 
output. inspection Inspection errors 

Loss of capacity 
Introducing or improving Measurement on Y Measurement time lag 

feedback control Process targeting procedure Overadjustment 
Stable structural variation in Y 

Reducing variation in X Identity of X Not true X 
Measurement on X Increased cost of inputs 

Introducing or improving Identity of X Not true X 
feed-forward control Measurement on X Overadjustment 

Process retargeting procedure Y = f (X) relationship unstable 
Stable Y = f(X) relationship 

Desensitizing the process . Identify robust process settings May work only in experiment 
Feasible robust process settings New process settings may be more expensive 
Identity of X useful 

quality of our study that determines how much useful pro- 
cess knowledge we obtain. A study can fail to identify a 
process characteristic, such as structural variation, either 
because the characteristic is not present or because the 
study is flawed. For example, in the crankshaft example, 
based on the current data no structural pattern in the after 
grinding diameters is apparent, but structural variation may 
be evident if we look at the output of each grinder sepa- 
rately. This means that as we obtain more process knowl- 
edge, we may be led to designing different studies. Also, 
variation reduction is an ongoing process, with each sub- 
sequent iteration attempting to reduce the variation further. 

Another potential problem, in practice, is that the cur- 
rent process control strategy, such as feedback or feed- 
forward control, masks the operation of the actual process 
and may make it difficult to determine an appropriate varia- 
tion reduction strategy. For more information on overcom- 
ing this difficulty and a good review of process control 
strategies, see Ref. 12. 

For ease of discussion, this article has focused on the 
applications with only a single quality characteristic Y. In 
most practical applications, a product would have multiple 
critical characteristics that must all be controlled simulta- 
neously. In that case, reducing the variation in the output 
is a more difficult problem, as we do not want to reduce 
the variation in one characteristic only to see the variation 
in some other characteristic increase. The complications 
introduced by considering multiple quality characteristics 
simultaneously is worthy of further study. 
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