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Summary. In the manufacture of metal fasteners in a progressive die operation, and other industrial
situations, important quality dimensions cannot be measured on a continuous scale, and manu-
factured parts are classified into groups by using a step gauge. This paper proposes a version
of exponentially weighted moving average (EWMA) control charts that are applicable to monitoring
the grouped data for process shifts. The run length properties of this new grouped data EWMA
chart are compared with similar results previously obtained for EWMA charts for variables data
and with those for cumulative sum (CUSUM) schemes based on grouped data. Grouped data
EWMA charts are shown to be nearly as efficient as variables-based EWMA charts and are thus an
attractive alternative when the collection of variables data is not feasible. In addition, grouped data
EWMA charts are less affected by the discreteness that is inherent in grouped data than are
grouped data CUSUM charts. In the metal fasteners application, grouped data EWMA charts were
simple to implement and allowed the rapid detection of undesirable process shifts.

Keywords: Cumulative sum; Exponentially weighted moving average; Grouped data; Process
shifts

1. Introduction

In quality control, exponentially weighted moving average (EWMA) control charts are used
to monitor process quality. EWMA charts, and other sequential approaches like cumulative
sum (CUSUM) charts, are alternatives to Shewhart control charts that are especially effective
in detecting small persistent process shifts. Although introduced by Roberts (1959), EWMA
charts have only recently had their properties evaluated analytically (Crowder, 1987; Lucas
and Saccucci, 1990). The EWMA also has optimal properties in some forecasting and control
applications (Box et al., 1974).
For monitoring a process, an EWMA control chart consists of plotting

z, =2+ (1 =Nz, 0<A<l, )

versus time ¢, where x, is an estimate of the process characteristic that we wish to monitor, X is
a constant weighting factor and the starting value z, equals an a priori estimate of the
parameter of the monitored process. In equation (1), x, may represent the sample mean,
sample standard deviation or any other empirically estimated process parameter. When the
recursion in equation (1) is written out, the EWMA test statistic z, equals an exponentially
weighted average of all previous observations, i.e.
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Z =2+ ML = Nx_ F A =A%+ ...+ (1 =Nz,

In contrast, tabular CUSUM charts assign equal weight to all past observations since the
CUSUM statistic last equalled 0 (Montgomery (1991), section 7.2). In quality monitoring
applications of EWMA control charts, typical values for the weight \ are between 0.05 and
0.25.

From equation (1), the mean and variance of z,, denoted p, and ‘73, respectively, are easily
derived (Montgomery, 1991). Assuming that the x, are independent random variables with
mean p, and variance o> gives

Mz, = By

and

o =0§(%){1 - —A)z'}gai(if—/\) as t — 0o. )

Control limits for an EWMA control chart are typically derived on the basis of +L o-
limits, where L is usually equal to 3, as in the design of Shewhart control chart limits. The fact
that the z, are not independent is ignored. Thus, the control limits of an EWMA chart used to
monitor the process mean are

ot Loy = Lo [ (525 ) -0 - S ©)

where, in applications, ;. and o, are typically estimated from preliminary data as the sample
mean and sample standard deviation respectively. The process is considered to be out of
control whenever the EWMA test statistic z, falls outside the range of the control limits given
by equation (3). In the limit with A = 1, the EWMA chart is identical with a Shewhart X
control chart.

In some industrial situations, however, collecting variables data on critical quality
dimensions is either impossible or prohibitively expensive, and the data are grouped. The
widespread occurrence of binomial pass—fail attribute data in industry attests to the economic
advantages of collecting pass—fail data over exact measurements. In general, variables data
provide more information, but gauging, or classifying observations into groups based on a
critical dimension, is often preferred as it takes less skill, is faster, is less costly and is a
tradition in certain industries (Schilling (1981), p. 333, and Ladany (1976)). Grouped data are
a natural compromise between the low data collection and implementation costs of binomial
data and the high information content of variables data. Grouped data occur in industry
because of multiple pass—fail gauges, step gauges or other similar measurement devices
(Steiner et al., 1994). A step gauge with k — 1 gauge limits yields k-group data. Pass—fail
binomial attribute data represent the special case of two-group data. For more information
on grouped data, see Haitovsky (1982).

EWMA control charts are designed for variables data and it is not clear how to adapt the
charts to handle grouped data, or what effect grouped data may have on the run length
properties of EWMA charts.

The development of control charting methodology for use with grouped data other than
binomial data started with Stevens (1948), who proposed two simple ad hoc Shewhart control
charts for simultaneously monitoring the mean and standard deviation of a normal
distribution using three-group data. Beja and Ladany (1974) proposed using three-group



Exponentially Weighted Moving Average Control Charts 205

data to test for one-sided shifts in the mean of a normal distribution with known process
dispersion. In the methodology of sequential quality control, Schneider and O’Cinneide
(1987) proposed a CUSUM scheme for monitoring the mean of a normal distribution with
two-group data. Geyer et al. (1996) extended this CUSUM to the use of three-group data,
with gauges symmetric about the midpoint between the target mean and the out-of-control
mean that the chart should detect quickly. Gan (1990) proposed a modified EWMA chart for
use with binomial data. The modified form of the EWMA uses equation (1) but rounds off
the EWMA test statistic and calculates the run length properties by using a Markov chain.
Unfortunately, this solution approach is appropriate only when many failures are expected in
a sample. As a result, the solution procedure typically requires large samples, especially when
the probability of failure is small. Steiner et al. (1994, 1996a) were the first to consider the
general k-group case. They developed methodology for one-sided and two-sided acceptance
sampling plans, acceptance control charts and Shewhart-type control charts. In addition,
Steiner et al. (1996b) considered k-group sequential probability ratio tests and CUSUM
procedures. These k-groups control charts use the likelihood ratio to derive an efficient test
statistic. Steiner et al. (1994, 1996a, b) also gave design procedures for the various types of k-
group control charts, calculated run length properties and addressed the question of optimal
gauge design. These references show that k-group control charts are efficient alternatives to
standard variables-based techniques.

This paper addresses the derivation of the general k-group EWMA control chart. Grouped
data EWMA procedures bridge the gap between the efficiency of binomial attribute pro-
cedures and that of variables-based EWMA charts. An important matter, addressed later, is
how this loss of information in the data affects the performance of the grouped data EWMA
chart in comparison with variables-based EWMA charts. For grouped data, EWMA charts
may be a better choice than a CUSUM chart since, because of the exponential weighting of
past observations, the EWMA smooths out the inherent discreteness. This is an advantage
that allows more flexibility in the design of grouped data EWMA charts than with grouped
data CUSUM charts.

A good example of grouped data in industry occurs in the manufacture of metal fasteners
in a progressive die environment, where the opening gap dimension of a metal clamp, called a
robotics clamp (Fig. 1), was considered critical. This problem was previously considered by
Steiner et al. (1994, 1996a).

Obtaining exact measurements of the gap dimension on the shop-floor was prohibitively
difficult and expensive. The metal used in the clamp is fairly pliable, and as a result using
calipers distorts the opening gap dimension. Another alternative, an optical measuring
device, is expensive and not practical for on-line quality monitoring. As a result, the only

Opening Gap
Dimension

{

Fig. 1. Robotics clamp
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economical alternative on the shop-floor is to use step gauges, where clamps are classified
into different groups based on the smallest diameter pin that the clamp’s opening gap does
not fall through. The step gauge employed consisted of three pins of diameters 53, 54 and 55
thousandths of an inch. Using the given step gauge, units are classified into four intervals
with corresponding interval midpoint weights of 52.5, 53.5, 54.5 and 55.5

From previous measurements, the process mean is known to be currently stable, producing
clamps with an average open gap dimension of 54.2 thousandths of an inch (1) and standard
deviation of 1.3 (¢,). We wish to monitor the stability of the mean width of the opening gap.
Steiner et al. (1996a) proposed a grouped data Shewhart control chart that has an in-control
average run length (ARL) approximately equal to 370, and an out-of-control ARL, at a
mean shift of half a standard deviation unit, of approximately 15.5 and 12.7 for positive shifts
and negative shifts respectively. This was accomplished with a sample of size 12 units. Since
this is a fairly small process shift we would expect to do better with an EWMA chart.

This paper is organized in the following manner. Section 2 discusses two possible grouped
data scoring procedures and recommends unbiased estimate scores for EWMA charts. In
Sections 3 and 4, EWMA control charts for the k-group case are developed and the run
length properties of grouped data and variables data-based EWMA charts and grouped data
CUSUM charts are compared. Section 5 discusses in more detail the metal fasteners example
that motivated this work and Section 6 briefly discusses optimal gauge placement. Appendix
A shows how the run length distribution of grouped data EWMA charts can be approx-
imated by using a Markov chain.

2. Sequential scoring procedures for grouped data

When using grouped data in control charts, the need arises to assign the grouped observations
a numerical value based on their grouping. For pass—fail gauges, observations are usually
treated singly as Bernoulli random variables. However, when observations are grouped
into multiple intervals, a number of different scoring or weighting procedures are feasible.
This paper considers two scoring schemes, namely midpoint scores and unbiased estimate’
scores. In industry, group interval midpoints are used most often. However, as will be
shown, midpoint weights have some undesirable properties, and if some additional process
information is available unbiased estimate scores are a better choice.

Throughout this paper, it is assumed that, although the data are grouped, there is an
underlying continuous measurement that is unobservable. Let X represent the underlying
measurement, and let t; < #, <. .. < #,_, denote the k — 1 end points or gauge limits used to
derive the k-group data. We assume, for the moment, k — 1 predetermined gauge limits. In
many applications, the grouping criterion is fixed since it is based on some standard classi-
fication device or procedure. Section 6 addresses the relaxation of this assumption. Assume
that the random variable X has probability distribution f(x; §) and cumulative distribution
function F(x; ), where @ is the process parameter of interest. Let w; be the group weight or
score assigned to all observations falling into the jth group. Defining £, = —o0 and #, = oo,
the probability that an observation falls into the jth interval is given by

7(6) = F(t;; ) — F(t,y; 6), ji=12 ...,k @)

Ideally, the group weights chosen have a physical interpretation. This makes the inter-
pretation of the resulting control charts easier for the industrial personnel. This implies that
the weight for each group should lie somewhere between the group gauge limits. Strictly
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applying this criterion precludes the use of likelihood ratio weights as suggested by Steiner et
al. (1996a) in the Shewhart control chart context.

Furthermore, often the group weights are used not only in a control chart but also to
estimate the current process mean and variance so that we can calculate process capability
measures. Typically the process mean and variance are estimated as the sample mean and
variance of the group weights. As a result, the properties of these estimates are of interest.
Ideally the sample mean and variance are unbiased estimates of the true process param-
eters. However, this is not possible with group data for all true parameter values. For any
weighting scheme w;, the expected value of the process mean estimate and process standard
deviation estimate at the parameter value 6 are respectively

k
Ew)=4= 21 w; mi(6),
Jj=
. ©)
var(w) = 6% = z; w; () — i
Jj=

where 7,(0) is given by equation (4).

These parameter estimates can be substantially different from the true process values.
Naturally, any bias in parameter estimation adversely affects process capability calculations
and our understanding of the process.

The midpoint approach is a very simple scoring procedure and is often used in industry.
Each observation falling into a particular group is assigned a score equal to the group interval
midpoint. With gauge limits t, midpoint group weights are given as

(3t —1,)/2 forj=1,
W™ =4 (4 +1)/2 for2<j<k-1, ©
Btemr — t2)/2 forj=k.

The midpoint scheme is attractive because it is very simple, and the scores retain a clear
physical meaning. In addition, the midpoint scores can be determined without knowledge of
the underlying process distribution. However, calculating the sample mean and variance of
the midpoint scores can yield biased estimates of the true process mean and variance. Using
equations (5) with group weights defined in equation (6) we may derive the expected bias in
the estimates of the process mean and variance. Fig. 2 shows the results for a range of true
process mean values and t =[—-2, —1, 0, 1, 2]. Fig. 2 illustrates that, using the midpoint
weights when the process is in control, the sample mean is an unbiased estimate of the process
mean (when the gauge limits are placed symmetrically), but the process variance is typically
overestimated.

The midpoint score approach has further difficulty as intervals that extend to —oo or co do
not have true midpoints. In definition (6), end groups are assigned scores based on the most
extreme gauge limits and the distance to the second most extreme scores on either side.
Clearly, although this approach seems reasonable if the groups are of equal width, other
definitions of the weights are possible.

The unbiased estimate weights are derived so that, when the process is in control, the
expected sample mean and variance are unbiased estimates of the process mean and variance.
However, these two conditions do not specify unique weights. As a result, the recommended
unbiased estimate weights also have the smallest sum of squared bias terms at y, and u_,,
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Fig. 2. Expected bias in the parameter estimates:
n_y =—0.5; - - - -, midpoint weights (t=[-2, -1, 0, 1, 2])

, unbiased estimate weights with p, = 0.5 and

where p, and p_, are process mean values on each side of the null that we wish to detect
quickly. Thus, the unbiased estimate weights are derived as the w® weights that minimize

{EW® ) — m¥ + {EWu_) — poa ¥ @)
subject to

EW® o) = po,

var(w®| o) = 0.

For example, when t =[—2, —1, 0, 1, 2] and choosing x; = 0.5 the unbiased estimate weights
are —2.8, —1.4, —0.4, 0.4, 1.4 and 2.8. These weights are different from the midpoint weights
-2.5, —1.5, —0.5, 0.5, 1.5 and 2.5.

Fig. 2 shows the expected bias of the midpoint and unbiased estimate weights for various
values of the true process mean u when the underlying process is normally distributed with
variance equal to 1. In control, i.e. at 4 =0, both methods yield unbiased estimates of the
process mean; however, the estimate of the process variance is biased for the midpoint
approach.

Group weights defined as the conditional expected value of an observation that falls into a
particular group, as given by w,(~°) = E(X|X € jth group, u = py), were also considered. How-
ever, conditional expected value weights have a negative bias when estimating the process
variance while y = 0 and generally introduce more bias into both the process mean and the
variance estimates as the actual process mean changes than either the midpoint or unbiased
estimate weights. As a result, conditional expected value weights are not considered further in
this paper.
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Weights and Gauge Limits

Fig. 3. Unbiased estimate weights fort =[-2, -1, 0, 1, 2]

Calculating the unbiased estimate weights requires knowledge of the underlying process
distribution, or at least information about the group probabilities at both u, and y;. The
unbiased estimate weights are desirable when the group weights are used to estimate process
measures such as process capability directly. Fig. 3 gives an example of how the optimal
weights derived according to expression (7) change with different values of y;, (= —u_;) when
t=[-2, —1, 0, 1, 2]. The broken vertical line shows the resulting weights when u; = 0.5.

As group weights are often used both in control charts and in process capability
calculations, the unbiased estimate scoring approach is recommended if a good under-
standing of the underlying distribution is available. Otherwise, the group midpoint approach
provides reasonably good results. However, the solution methodology that will be used to
derive group data EWMA control charts works with any scoring procedure as long as each
observation that falls into a particular group is assigned the same weight.

3. Exponentially weighted moving average control charts with grouped data

The proposed EWMA control charts for grouped data are based on expression (1), where x,
equals the average group weight assigned to a sample. When the process is being monitored
for mean shifts, the group weights can be given by any weighting procedure that retains the
group ordering, such as one of the possibilities discussed in Section 2. Using grouped data
there are only finitely many possible average group weights, the number of weights being
based on the number of groups utilized and the sample size. Thus there are finitely many
possibilities for x,. The test statistic z, in equation (1), however, also depends on the previous
value z,_,. As a result, the repeated use of formula (1) smooths out the discreteness that is
inherent in the observed values. This section addresses the questions of grouped data EWMA
control chart design and performance.

The performance of EWMA control charts is usually discussed in terms of the run length.
Crowder (1987) used an integral equation approach to derive the run length properties of
EWMA control charts based on variables data. Crowder gave tables of run length results for
various combinations of the parameters A and L in equations (1) and (3). Unfortunately,
Crowder’s approach cannot handle the discreteness that is inherent in the grouped data
EWMA case. An alternative solution procedure, presented in Appendix A, involves
modelling the situation with a Markov chain. For control charts, the Markov chain solution
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Table 1. ARLs for two-sided grouped data EWMA charts, X ~ N(0, 1)
Jnp /oy ARLs for the following conditions:
Continuous t=/-2,-1,0,1,2] t=/[-1,0,1] t=[-1,1]
A=0.25 A=0.10, A=0.25 X=0.10, A=025 X=0.10, A=0.25 A=0.10,
L=2998 L=2814 L=2991 L=2802 L=2821 L=2763 L=298] L=2837
0.0 500 500 498 500 511 498 515 487
+0.5 48 31 52 34 53 35 63 41
+1.0 11.1 10.3 12.1 11.0 13.1 12.1 14.9 13.0
+1.5 5.5 6.1 6.0 6.6 7.0 7.7 7.4 7.8
+2.0 3.6 44 4.1 4.8 5.1 6.1 5.3 6.1
+3.0 23 29 3.1 35 4.1 5.1 4.1 5.1
+4.0 1.7 2.2 3.0 3.1 4.0 5.0 4.0 5.0

approach was first developed by Page (1954) to evaluate the run length properties of a
CUSUM chart. Grouped data with their inherent discreteness appear well suited to the
Markov approach, since the Markov framework requires a discretization of the state space.
The proposed Markov chain solution methodology can also provide approximate solutions
for EWMA control charts based on variables data, and the method proposed was used to
verify the results reported in Crowder (1987).

Table 1 gives ARL values for the EWMA charts based on variables (continuous) data, and
EWMA control charts for different grouping criteria, given by z. The EWMA charts are
designed to detect shifts in the mean of a normal process with an in-control mean of 0 and
variance equal to 1. The process shifts are given in standard error units (o, /4/n = 1/4/n). The
group data EWMA charts are designed to match the in-control ARL of the variables-based
EWMA as closely as possible, but because of the discreteness of the group weights an exact
match is not always possible. The run lengths shown in Table 1 are all derived assuming that
the EWMA starts in the zero state when the process shift occurs. Steady state results provide
a more realistic approximation. However, as shown by Lucas and Saccucci (1990), the zero
state and steady state run lengths are very similar. Fig. 4 plots the results from Table 1 on a
log-scale. The results in Table 1 are generated for the unit sequential case, i.e. n = 1. For

~

In(ARD) ,

t=[-1,0,1]

['19 0’ 1] t=['2, "1’ 0» 1’ 2]-

t=[2,-1,0,1,2] |

N
T

-
T

continuous

continuous

0 0.5 1

15 2 25
vy, /o,

(a)
Fig. 4.

3 35 4

1.5 2 25
Vnu, /o,
(b)

ARL plots comparing grouped data EWMAs with variables data EWMAs: (a) A = 0.10; (b) A = 0.25
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larger sample sizes the grouped data results are slightly better, since there is less discreteness,
but the difference is not substantial for small sample sizes.

Table 1 and Fig. 4 show, as expected, that the grouped data EWMA charts are not as effec-
tive as a variables-based EWMA for detecting process mean shifts. This decrease in efficiency
is due to the information lost when grouping the data. However, the loss of efficiency in
detecting fairly small process mean shifts (say of the order of one standard deviation unit)
is quite small. For very large process shifts, in contrast, the grouped data charts perform
poorly since there is a maximum weight value that any observation can take. In applica-
tions, EWMA charts are typically used to detect fairly small process shifts. This suggests
that grouped data EWMA charts are a viable alternative when collecting variables data is
prohibitively expensive or impossible.

All EWMA control charts have two design parameters, namely A and L, as defined in
equations (1) and (3). Ofttn EWMA charts are designed by specifying a desired in-control
run length and the magnitude of the shift in the process that is to be detected quickly. Lucas
and Saccucci (1990) provided a look-up table of optimal parameter values for the variables
data case. Alternatively, Crowder (1987) provided extensive tables that are also useful for
determining good initial values for A and L. The same general procedure is suggested for
grouped data charts. However, because of the inherent discreteness, the desired ARLs may
not be precisely attainable. As not all state values are attainable, changes to L do not neces-
sarily change the ARL of the EWMA.. Generally, small A-values are good for detecting small
process shifts but are poor for larger shifts, and vice versa for large A. Using the solution
methodology presented in Appendix A, n and L are adjusted until the desired in-control and
out-of-control ARLs are closely met. Large values of L lead to large ARLSs, whereas increas-
ing the sample size n decreases the out-of-control ARL and the problem discreteness. A step-
by-step design procedure is given below.

(a) Find the suggested optimal A- and L-values for EWMA charts based on continuous
data from Lucas and Saccucci (1990). Set the sample size n equal to 1.

(b) Keeping ) fixed, adjust L until the desired in-control ARL is attained. The method-
ology presented in Appendix A can be used to find the in-control ARL for each
combination of A and L.

(c) Determine the out-of-control ARL at the current values of n, A and L.

(d) If the desired out-of-control ARL is exceeded, increment 7, and repeat this procedure
starting at step (b).

It is possible that using this iterative design procedure the sample size becomes too large to
be practical. If that occurs, the desired run length properties are too stringent and cannot be
achieved economically. To alleviate this problem either the desired in-control ARL must be
decreased or the acceptable out-of-control ARL must be increased.

4. Comparison with cumulative sum procedures for grouped data

Both EWMA charts and CUSUM charts are designed to detect small persistent process
shifts. Past researchers (Lucas and Saccucci, 1990) found that there is very little difference
between EWMA and CUSUM procedures in terms of the ARL for detecting persistent
process mean shifts. In this section, the performance of grouped data and variables-based
EWMA charts and CUSUM charts for detecting process mean shifts are compared. The in-
control process is assumed to be normally distributed and, without loss of generality, the
in-control process mean and variance are set to 0 and 1 respectively. As EWMA charts are
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inherently two sided, they are compared with a two-sided tabular CUSUM. A tabular
CUSUM procedure to detect increases in the process mean consists of plotting ¥, = max(0,
Y,_1 +x, — k), where ¥, = 0 and k is a design parameter that specifies an indifference region
(Montgomery (1991), p. 291). The CUSUM chart concludes that the process mean has
shifted upwards whenever Y, > h, where 4 is another design parameter. A two-sided tabular
CUSUM is created by simultaneously monitoring two one-sided CUSUM charts, where the
aim of one is to detect upward mean shifts, whereas the aim of the other is to detect
downward shifts (Montgomery (1991), p. 291). For both the EWMA and the CUSUM charts
based on grouped data we used the midpoint weights as discussed in Section 2, though similar
qualitative results have been derived for other weighting schemes.

The ARL results are given in Table 2. The variables-based CUSUM chart with # = 5 and
k = 0.5 has an in-control ARL of 430, and an out-of-control ARL at a one o-unit shift in the
mean of 10.2. These ARL values are used as the standard. The variables-based EWMA chart
is designed to match these standard ARL values. The grouped data charts are designed so
that their in-control run lengths match the target 430. For the grouped data CUSUM charts,
ARL values are determined using the methodology presented in Steiner et al. (1996b). The
run length results are matched by altering the value of &. However, because of the inherent
discreteness of grouped data, the desired in-control ARL of 430 is not precisely obtainable.
To make the ARLSs easier to compare, the grouped data CUSUM ARLs, presented in Table
2, are theoretical values estimated using linear interpolation between the two closest cases.
For the EWMA grouped data charts the value of L was altered to yield the desired in-control
run length. For the EWMA grouped data chart more flexibility is available and the desired
in-control run length was obtained without using interpolation. This design advantage of
grouped data EWMA charts is discussed in more detail later.

Table 2 shows that for grouped data as well as variables data there is very little difference
between the EWMA and CUSUM charts in terms of run length performance. The CUSUM
chart seems to be slightly better at detecting process shifts that are smaller than the shift that
the chart was designed to detect, whereas EWMA charts appear slightly better for larger
process shifts. However, this pattern is reversed for smaller values of \. -

Although there is little difference between grouped data EWMA charts and grouped data
CUSUM charts in terms of the ARL, there are other reasons why an EWMA chart may be
preferable. First, the grouped data EWMA charts considered here are two sided by design,

Table 2. ARL comparison between two-sided grouped data EWMA charts and two-sided grouped data
CUSUM charts

/oy ARLs for the following conditions:
Continuous t=/-2,-1,0,1,2] t=/[-1,0,1] t=/-1,1]

CUSUM, EWMA, CUSUM, EWMA, CUSUM, EWMA, CUSUM, EWMA,
k=05 X=0.2045, k=05, A=0.2045, k=025 X\=0.2045, k=0.5 X=0.2045,
h=50 L=291I5 h~448 L=2897 h=4074 L=28 h=3691 L=278

0.0 430 430 430 430 430 430 430 430
+0.5 37 39 42 42 42 44 48 52
+1.0 10.2 10.2 11.1 11.0 11.7 12.0 13.2 13.5
+1.5 5.7 5.4 6.0 5.9 6.8 6.7 7.5 7.1
+2.0 4.0 3.7 4.2 4.1 53 5.0 5.7 5.2
+3.0 2.5 2.3 3.1 3.1 4.5 4.1 4.7 4.1

+4.0 2.0 1.8 3.0 3.0 4.4 4.0 4.5 4.0
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Fig. 5. Comparison of the discreteness in the in-control ARL of grouped data CUSUM and EWMA charts with
t=[-1,0,1]

whereas a two-sided CUSUM chart requires either the use of the awkward V-mask or two
one-sided tabular CUSUM charts (Montgomery, 1991). As a result, if two-sided monitoring
of the process is required, variables-based or grouped data EWMA charts are easier to
implement. Second, for grouped data, over time the EWMA test statistic smooths out the
inherent discreteness in the average group weight, whereas a grouped data CUSUM test
statistic remains a simple linear combination of the initial group weights. As a result, grouped
data EWMA charts are more flexible in their design than grouped data CUSUM charts,
especially when the sample size is small. Fig. 5 illustrates this point very effectively. Fig. 5
shows the discreteness in the resulting in-control ARL for grouped data CUSUM and
EWMA charts when the design parameters 4 and L are changed for fixed parameters k = 0.5
and A =0.2. As the parameter values # and L increase, the ARL of the chart should also
increase. Fig. 5 shows that there are many more possible ARL values for an EWMA grouped
data chart. This is a clear advantage when designing grouped data EWMA charts since
typically sequential control charts are designed to have certain ARL characteristics. In Fig. 5,
for the grouped data CUSUM, the slight decreases observed in the ARL of the grouped data
CUSUM as 4 increases represent some errors in the approximation of the ARL.

5. Metal fasteners example

This section illustrates the application of a grouped data EWMA chart to the metal fasteners
example. To aid comparisons with the previously proposed Shewhart chart (Steiner et al.,
1996a), the EWMA sample size was fixed at 12, and since the expected process shift is
relatively small a A-value of 0.1 was used. Setting the L-value so that the in-control ARL of
the EWMA chart matches the Shewhart chart we derive an EWMA chart with A = 0.1,
L =2.54 and n = 12. This grouped data EWMA chart has an in-control ARL of 370 and
out-of-control ARLs of around 7.8 and 5.6 for positive and negative mean shifts of half a
standard deviation unit respectively. These values are significantly better than the corres-
ponding Shewhart chart with the same sample size. Fig. 6 shows the resulting EWMA chart
using the data of Steiner ef al. (1996a). The process was in control for the first 10 samples and
was shifted down approximately one standard deviation unit starting at observation 11. The
EWMA chart shown in Fig. 6 signals at observation 12.
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Fig. 6. EWMA control chart

In this application of the methodology, the resulting EWMA control charts detected the
process shift in the same time that the corresponding group data Shewhart control chart
detected the change. However, the observed process shift was fairly large here, of the order of
one standard deviation unit. For smaller process shifts the derived grouped data EWMA
chart would perform substantially better than the grouped data Shewhart chart.

6. Optimal grouping criterion

The run length results and comparisons presented in this paper assume fixed group intervals.
This is often a reasonable assumption because of the use of standardized gauges. However, in
some circumstances the placement of the group limits may be under our control. In that case,
the question of optimal group intervals for the grouped data EWMA arises. Finding the best .
gauge limits requires a definition of optimal. One possibility is to find the gauge limits that
yield the shortest out-of-control ARL at a given mean shift while having an in-control ARL
of at least ARL,. This is an attractive definition of optimal gauge limit but requires a solution
for different in-control ARLs and different out-of-control shifts. Another approach to finding
good gauge limits is to determine the grouping criterion that gives the best estimate of the
process mean while the process is in control. This is an attractive option since usually the
process will remain in control most of the time, and there is a connection between good
estimation and effective hypothesis testing. The best gauge limits for estimation are found by
maximizing the expected Fisher information that is available in the grouped data. The
expected Fisher information provides a measure of the efficiency of the grouped data
compared with variables data. Steiner ez al. (1996a) derived the best estimation gauge limits
for grouped data to detect shifts in the normal mean or standard deviation, and Steiner
(1994) derived the optimal limits to detect a shift in Weibull parameters.
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Appendix A

This appendix derives the expected value and variance of the run length of grouped data EWMA
control charts. The solution procedure utilizes a Markov chain where the state space between the
control limits is divided into g — 1 distinct discrete states and the out-of-control condition corresponds
to the gth state. The states are defined as

0 =81, 5 + - »» Sg-2, Sg1) = (LCL +y, LCL+2y, . . ., UCL — 2y, UCL —y),

where y = (UCL — LCL)/g and UCL and LCL are the control limits as given by equation (3).
The transition probability matrix is given by

Pits Pis- - Pig
P2, <. Dy R, (1— R)l
P= = , ®
: ; 0,...,0, 1
pgla c oty pgg

where I is the (g — 1) x (g — 1) identity matrix, 1 is a (g — 1) x 1 column vector of 1s and p; is the
transition probability from state s; to state s;. The last row and column of the matrix P correspond to
the absorbing state that represents an out-of-control signal. The R-matrix equals the transition prob-
ability matrix with the row and column that correspond to the absorbing (out-of-control) state deleted.

The group probabilities w,, a=1, .. ., k, as defined by equation (4), and the group weights w,,
a=1, ..., k,asgiven by equations (5) or the solution to equations (6), set the transition probabilities in
the matrix R. Using the defined states s as a discretization, the transition probabilities p; are

T, ifs;—y/2<dw,+(1=N)s; <s;+y/2,
py= / }_'/ i<ty forj=1,2,...,g—1 ©)
0 otherwise,
{ S, for all a such that Aw, + (1 = X)s; = 5, +y/20r dw, + (1 = N)s; < 5, — y/2,
p. =
* 0 if no such a exists.

The expected run length and the variance of the run length are found by using the matrix R. Letting ~y
denote the run length of the EWMA, we have

Pry<f)=({—-R)1,
and thus
Pr(y=16=(R"" =R forr> 1. (10)

Therefore,
Ey) =3 tPry=0)=3 R1=(1-R)™1. (11
t=1 1=1

Similarly, the variance of the run length is
var(y) = 2R(I - R)*1, (12)

where equations (11) and (12) are (g — 1) x 1 vectors that give the mean and variance of the run length
from any starting value or state s;. The mean and variance of the run length that correspond to starting
at z; are easily found by finding the i such that s; — y/2 < z; < 5; + /2. If the control limits are symmet-
ric about z, the corresponding state is s,,.

This Markov chain solution approach approximates the solution, with the accuracy of the approx-
imation depending on the number of states (g) used. Larger values of g tend to lead to better
approximations. However, unfortunately, because of discreteness, the ARL value does not smoothly
approach the true value as g increases. As a result, the regression extrapolation technique suggested by
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Brook and Evans (1972), to find the ARL of a variables-based CUSUM scheme approximated by a
Markov chain, is not applicable here. However, fairly close approximations of the true run length
properties can be obtained by taking the average result obtained using a few fairly large values of g. For
example, the results presented in this paper estimate the true value E(7),_,, and var(y),_, by averaging
the results derived with g = 100, 110, 120, 130, 140, 150. Verification of this approach by using simu-
lation suggests that the derived estimates for the mean and variance of the run length differ from the
true value by less than 2-3% for most group limit designs of interest, with the approximation becoming
worse as the size of the process shift increases.
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