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Con® rmation sample control charts

S. H. STEINER²

Traditional X and R control charts are used widely in industry, but do not
respond quickly to small or moderate changes in the process output.
Con® rmation sample control (CSC) charts to detect changes in the process
mean and process variability are proposed. These new control charts have sub-
stantially better operating characteristics than X and R charts. CSC charts require
that any unusual observed sample be con® rmed through an independent con® r-
mation sample taken from the process. This makes CSC charts appealing to
production personnel since the charts require the veri® cation of bad news. The
implementation of CSC charts is illustrated, and ® gures are given that allow the
determination of appropriate design parameters.

1. Introduction

Control charts such as X and R charts are widely used in industry to monitor
quality. These charts are e� ective at detecting large departures from the in-control
condition. Other process monitoring methods, such as Cumulative Sum (CUSUM)
and Exponentially Weighted Moving Average (EWMA) charts, are good at detect-
ing more moderate persistent process shifts, but are more complicated to implement
since they are sequential in nature accumulating information from previous observa-
tions. As a compromise, a number of researchers have investigated adapting the
simple Shewhart type control charts to take into account some, but not all, the
previous observations.

One approach, which has a long history, is using supplementary runs rules in
conjunction with the X and R charts. Runs rules were ® rst popularized in the
Western Electric Company’s Statistical Quality Control Handbook (1956). There
are a large number of possible runs rules that have been suggested and it is not
clear which subset is the best for any particular application. All runs rules try to
identify some pattern in the process data that shows evidence of some non-random
behaviour. Examples include 2 out of 3 successive points at 2 standard deviations or
beyond, and 7 successive points on one side of the centre line. The addition of runs
rules to standard X and R charts can make the charts more sensitive to process
changes, but at the cost of more frequent false alarms. This is especially true when
runs rules are applied to R charts since the distribution of the sample range is not
symmetric. Also, the addition of runs rules makes the interpretation of the control
charts more di� cult.

Another approach is the Variable Sampling Interval (VSI) control chart. VSI
charts adjust the sampling interval based on the current observation. If there is some
evidence (but no out-of-control signal) that the process may have shifted the
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sampling interval is shortened. This has the e� ect of reducing the number of non-
conforming parts produced if there is a moderate process shift. The VSI approach is
most e� ective when applied to sequential charts such as CUSUM charts since, in
that case, sample statistics plotting close to the control limit have accumulated
substantial evidence against the in-control hypothesis. CUSUM and EWMA VSI
charts are discussed in Reynolds et al. (1990), and Saccucci et al. (1992) respectively.
However, VSI charts have also been created for Shewhart charts (Cui and Reynolds
1988, Reynolds et al. 1988), NPcharts (Vaughan 1993), and combined Shewhart and
CUSUM charts (Amin and Ncube, 1991).

Other related work considered the adjustment of the sample size in response to
the observed sample. Variable sample size (VSS) control charts are discussed by
Sawalapurkar et al. (1990) and Prabhu et al. (1994). VSS control charts require
samples of di� erent sizes depending on the previously observed sample statistics.
By increasing the sample size when the process shows moderate evidence of an out-
of-control condition, the sampling e� ort is more concentrated during out-of-control
periods and the expected time to detect process shifts can be reduced. To ease
implementation di� culties typically only two di� erent sample sizes are used.

Both the VSS and VSI approaches are fairly complex to implement since either
the sample size or the sampling interval changes over time. As a result, although the
procedures have been shown to have better run length properties than standard
Shewhart charts they have not been widely implemented.

Simpler approaches include Croasdale (1974) and Daudin (1994) who suggest
double sampling X control charts that occasionally require a second sample.
Croasdale and Daudin suggest adding warning limits to the standard control
charts in addition to control limits. In their methodology any sample mean that
falls between the warning limit and the control limit is considered an indeterminate
sample, and in that case a second independent sample is taken to provide more
information. In the Croasdale (1974) procedure the ® nal in-control/out-of-control
decision after an indeterminate initial sample is based solely on the second sample.
Daudin, on the other hand, bases the decision on the combined sample. In both cases
the ® rst and second sample sizes need not be the same size.

Double sampling charts, VSI charts, VSS charts, and X control charts with
supplementary runs rules are compared in terms of power in Costa (1994). Costa
concludes that all these methods are superior to standard Shewhart X charts, and
that Daudin’s double sample method is the best at detecting moderate shifts in the
process mean. He also concludes that VSS charts detect small shifts of less than one
standard deviation unit more quickly than a corresponding VSI scheme, but that this
result is reversed for larger mean shifts.

In this article, the con® rmation sample control (CSC) chart is proposed and
explored in detail. Using CSC charts, whenever a sample of poor or questionable
quality is observed an independent con® rmation sample is immediately taken to
verify that the original observation was not a ¯ uke. The desire to con® rm bad
news, i.e. out-of-control signals, is well known, and discussed in the context of
traditional control charts by Pitt (1987). The CSC procedure is very simple since
the second sample is always the same size as the ® rst, and both resulting sample
points can be plotted on a single control chart since they are compared to the same
control limits. In this article, CSC charts are developed to detect both process mean
and process standard deviation shifts.
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Con® rmation control charts are similar to the double sampling methods pro-
posed by Croasdale and Daudin, but are easier to implement and, unlike the Daudin
approach, the proposed procedure has the advantage of being a very simple adapta-
tion of the standard combined X and R charts. While CSC charts are slightly more
complicated to administer than X and R charts they are easier to implement than
double sampling charts since the initial and con® rmation sample sizes are the same,
the control limits used to classify the initial and con® rmation samples are the same,
and the results of the procedure can be easily summarized on a single chart. Also,
unlike double sampling procedures, CSC charts provide an alternative to the tradi-
tional pair of X and R charts. Compared with X and R charts, CSC charts provide
an improved ability to detect process shifts, while retaining a small false alarm rate.
This increased power arises since the CSC chart is partially sequential in that the
total number of observations sampled may be doubled depending on the outcome of
the initial sample.

In section 2, two versions of the con® rmation sample control chart are de® ned
and appropriate design parameters are derived. A comparison between CSC charts,
traditional X and R charts, and double sampling charts in terms of operating char-
acteristics and expected sample size is made in section 3. Finally, section 4 discusses
the implementation of CSC charts and provides a numerical example.

2. Con® rmation sample control charts

The basic idea underlying CSC charts is to allow for a con® rmation sample if the
initial sample does not lead to a clear conclusion. The CSC chart is designed so that
while the process is stable, a con® rmation sample is rarely needed. In this way, the
sampling requirements of CSC charts are only marginally greater than the tradi-
tional Shewhart chart when the process is in-control. However, as a consequence of
sampling more extensively only when the process exhibits some evidence of instabil-
ity, moderate size process shifts are detected more quickly. To avoid a time delay in
the detection of a process shift the con® rmation sample is obtained as soon as an
addition sample from the process can be obtained that is independent of the initial
sample.

Two versions of CSC charts are proposed. In both cases con® rmation control
limits are de® ned that are used to determine if the initial sample provides clear
evidence that the process is still in-control. The chart can be operated using only
con® rmation control limits, called the stand-alone CSC chart, or it can be designed
to have both con® rmation control limits and traditional control limits, called the
joint CSC chart. Stand-alone CSC charts are easier to administer, but are slightly less
sensitive to large process shifts. In most applications, the stand-alone CSC chart is
recommended because it is easier to understand and administer. However, if espe-
cially good protection against large process changes is required, or if detecting pro-
cess variability changes is critical, the joint CSC chart is more appropriate.

Both versions of CSC charts are similar to the traditional Shewhart control
charts. In both versions a rational sample of size n is taken from the process on a
regular basis, say every two hours. For each of these initial samples we calculate a
test statistic denoted A. If deemed necessary a second independent con® rmation
sample of the same size is taken. Denote the test statistic calculated from the con-
® rmation sample as B. The test statistic used depends on the intended purpose of the
control chart. For example, the test statistic could represent the sample average X,
the sample range R, or the sample standard deviation s. De® ning the upper and
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lower control limits as UCL and LCL , and the upper and lower con® rmation sample
control limits as UCSL and LCSL respectively, the decision procedures for the two
versions of CSC are given in ¯ owchart form in ® gures 1 and 2.

The derivation of appropriate con® rmation and control limits depends on the
type of chart (X or R or s) and the desired operating characteristics. Traditionally,
Shewhart control charts have control limits set at plus and minus three sigma. For
example, control limits for X charts are set at X 3R d2, where R d2 is an estimate
of the variability of X derived from subgroup ranges, andX is an estimate of the true
process mean (Montgomery 1991). Using three sigma limits, and assuming that the
estimates of the process mean and variability are good, and that X follows a normal
distribution, leads to an expected false alarm rate of 0.0027. Thus, when the process
is in-control (the process mean has not changed from the initial value) the chart will
signal a shift 0.27% of the time. This false alarm rate has been found to provide good
results in industrial applications.

Based on the decision procedures of the stand-alone CSC chart and the joint CSC
charts given in ® gures 1 and 2, the probability of a signal (concluding the process is
out-of-control) assuming ® xed values for the con® rmation and control limits is given
by (1) and (2)

P signal stand-alone P UCSL 2 P LCSL 2 1
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Take an initial sample 
of size n, calculate q A

LCSL<q A <UCSL

Conclude process is 
in-control

yes

Take confirmation 
sample of size n, 

calculate q B
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q A &q B >UCSL OR 

q A &q B <LCSL 
Conclude process is 

out-of-controlyesno

Figure 1. Stand-alone CSC chart decision procedure.
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Figure 2. Joint CSC chart decision procedure.



P signal joint P UCSL UCL P USCL P LCL

P LCL LCS P LCSL P UCL

P UCL P LCL 2

Determining reasonable values for the control and con® rmation limits for the
CSC charts can be accomplished by closely mimicking the traditional control limits
design procedure. We set the overall false alarm rate at 0.0027 and assume that false
alarms in either direction are equally undesirable. Then, (1) suggests that the stand-
alone CSC con® rmation limits should be set to yield 0.0367 tail probabilities
0 0367 0 0027 2 when the process is in-control. In other words, for the

stand-alone CSC chart we set the UCSL and LCSL such that P UCSL
P LCSL 0 0367 To derive appropriate control and con® rmation limits for
the joint CSC chart we assume further that false alarms due to the initial sample and
the con® rmation sample should be approximately equally likely. Then, the joint CSC
con® rmation limits and the control limits should be set to yield approximately 0.0256
and 0.0007 tail probabilities. Thus, for the joint CSC chart we set UCSL , LCSL ,
UCL and LCL such that P LCSL P UCSL 0 0256 and
P UCL 0 0007. Note that the values of the con® rmation limits in the stand-
alone and joint versions of the CSC chart are not the same.

When monitoring the process mean we may assume by the central limit theorem
that, as long as the distribution of the underlying Xs are close to normal, the sample
mean will be approximately normally distributed. In that case, since the normal
distribution is symmetrical the con® rmation and control limits are set at ^ ^ ,
where ^ is an estimate of the mean of , and ^ is an estimate of the standard
deviation of , and k is chosen to give the desired tail probabilities.

Denote kSA kC and kS as the standard deviation multiples needed for the stand-
alone CSC chart con® rmation limits, and the joint CSC chart control and con® r-
mation limits respectively. Using the inverse of the standard normal cumulative
distribution function gives kSA 1 79. Rounding o� this suggests that kSA 1 8 is
a good choice for the stand-alone con® rmation limits. Thus, to monitor the process
mean a stand-alone CSC chart would have a con® rmation limit at X kSA

^
X

X 1 8^
X. Similarly, tail probabilities of 0.0256 and 0.0007 respectively suggest

kC 1 95 and kS 3 2. Thus, for the joint CSC chart the con® rmation and control
limits would be set at X kC ^

X X 1 95^
X and X kS ^

X X 3 2^
X respect-

ively (see table 1).
A con® rmation sample control chart to monitor the process variation (R or s

chart) can be designed in a similar way. However, unlike the distributions of the
sample mean, the distribution of the sample range and sample standard deviation are
skewed. As a result, the use of probability limits (as discussed by Ryan 1989) are
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Type of limit Limits

Stand-alone CSC con® rmation limit X 1 8^
X

Joint CSC con® rmation limit X 1 95^
X

Joint CSC control limit X 3 2^
X

Table 1. Suggested con® rmation and control limits
for CSC X chart.



recommended. To determine appropriate limits, critical values of the appropriate
distribution that lead to the desired upper and lower tail probabilities must be
determined.

The distribution of the sample range depends on the sample size, and under the
assumption that the individual observations are normally distributed has been tabu-
lated by Harter (1960). Barnard (1978) gave a computer routine for the calculation
of percentage points of the range distribution assuming the underlying values are
normally distributed with mean zero and variance unity. Using the Barnard algor-
ithm (AS 126, 1978) the critical values of the distribution of the sample range for
upper and lower tail probabilities of 0.0367, 0.0256 and 0.0007 were derived and are
given in table 2, where Dy is de® ned such that Pr R Dy y. To set appropriate
limits for a CSC range chart we need to use the appropriate values of Dy. For
example, the stand-alone Range CSC con® rmation limits are set at LCSL
D0 0367 ^X and UCSL D0 9633 ^X, where ^X is derived as R d2, with R calculated
from previous data, and d2 equal to the well known control chart constant
(Montgomery 1991). Similarly, the con® rmation and control limits of the joint
Range CSC chart are set at LCL D0 0007 ^X LCSL D0 0256 ^X UCSL
D0 9744 ^X and UCL D0 9993 ^X

Assuming that the individual observations are normally distributed the appro-
priate control limits for a CSC standard deviation chart can be determined using the
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Joint CSC Stand-alone CSC

n D 0 0007 D 0 0256 D 0 9744 D 0 9993 D 0 0367 D 0 9633

2 0.0012 0.0454 0.0651 2.9535 3.1566 4.8326
3 0.0495 0.3067 0.3685 3.4828 3.6708 5.2384
4 0.1748 0.5996 0.6807 3.7941 3.9738 5.4820
5 0.3325 0.8552 0.9446 4.0137 4.1877 5.6560
6 0.4932 1.0717 1.1649 4.1826 4.3522 5.7911
7 0.6454 1.2564 1.3512 4.3192 4.4856 5.9012
8 0.7861 1.4160 1.5112 4.4337 4.5973 5.9939
9 0.9249 1.5557 1.6509 4.5320 4.6933 6.0740

10 1.0328 1.6795 1.7744 4.6180 4.7773 6.1444

Table 2. Percentiles for the distribution of the range.

Joint CSC Stand-alone CSC

n G 0 0007 G 0 0256 G 0 9744 G 0 9993 G 0 0367 G 0 9633

2 0.0064 0.0321 0.0458 2.0886 2.2322 3.3995
3 0.0259 0.1610 0.1935 1.8177 1.9145 2.7020
4 0.0789 0.2704 0.3069 1.6832 1.7603 2.3873
5 0.1364 0.3503 0.3867 1.5991 1.6649 2.1986
6 0.1891 0.4099 0.4453 1.5402 1.5983 2.0697
7 0.2353 0.4562 0.4902 1.4959 1.5485 1.9745
8 0.2754 0.4934 0.5260 1.4611 1.5094 1.9006
9 0.3103 0.5239 0.5553 1.4327 1.4776 1.8411

10 0.3408 0.5497 0.5798 1.4090 1.4511 1.7918

Table 3. Percentiles for 2
n 1 n 1 1 2



chi-square distribution since if X N 2
X then n 1 s2 2

X
2
n 1, where s is

the sample standard deviation. De® ne Gy such that Pr s Gy y. The values of Gy
for the appropriate critical values given in table 3 were derived using the function
c̀hi2inv’ in the statistics toolbox of MATLAB. Thus, the stand-alone con® rmation
limits are set at LCSL G0 0367 ^Xand UCSL G0 9633 ^X, where, for standard devi-
ation charts, ^X equals s c4 with s equal to the average subgroup standard deviation
derived from previous data, and c4 is equal to another control chart constant.
Similarly the con® rmation and control limits for the joint CSC chart are set at
LCL G0 0007 ^X LCSL G0 0256 ^X UCSL G0 9744 ^X and UCL G0 9993 ^X.

3. Comparing CS C charts with X and R control charts and double sampling

control charts

In the previous section CSC charts were designed to match the false alarm rates
of traditional control charts. This section compares the power of the resulting CSC
charts to detect process shifts with the power of traditional X and R control charts.
The results show that the power of the CSC charts to detect moderate process shifts
is substantially higher than for X and R control charts. In addition, this section
compares the expected sample sizes required by both the CSC type charts and
Daudin’s (1994) double sampling charts

The power of stand-alone and joint CSC charts to detect process shifts is deter-
mined from (1) or (2) respectively. The results shown in ® gure 3 were derived assum-
ing that the individual observations are normally distributed and, without loss of
generality, assuming that the in-control process has mean zero and variance one.
Figure 3 shows the theoretical probabilities that a standard X control chart and the
stand-alone and joint versions of a CSC chart will not signal, when the subgroups are
of size ® ve. These plots of the power are often referred to as operating characteristic
curves, or OC curves. Clearly, the CSC charts are better at detecting deviations from
nominal. For example, at a mean shift of one standard deviation unit, the standard
X chart has a signal probability of 0.22 while both versions of the CSC chart have a
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signalling probability twice as large at 0.44. However, this comparison is not com-
pletely fair since the CSC chart will occasionally require a second sample, thus
increasing the average sample size.

The expected sample size for stand-alone and joint CSC charts is given by (3)
and (4).

E n stand-alone n P UCSL P LCSL n 3

E n joint n P UCSL UCL P LSL LCSL n 4

Fortunately, for an in-control process the expected increase in sampling e� ort is
quite modest. For example, for the stand-alone CSC chart when the sample mean is
centred at the nominal value, only around 7.2% of observations will fall outside the
con® rmation sample limits and thus require an additional sample. For joint CSC
charts, in-control processes lead to a con® rmation sample only 5.1% of the time.
When the process is out-of-control, on the other hand, the expected additional
sampling requirement can be substantial since a con® rmation sample would be
required more often. However, while the process is out-of-control, typically rapid
detection of an out-of-control situation is the highest priority with sampling costs
being secondary.

As another comparison, the operating characteristic (OC) curves for stand-alone
and joint mean CSC charts with samples of size 3 are almost indistinguishable from
the OC curve for a traditional X control chart with samples of size 5. Daudin (1994)
gives the double sampling control chart that matches the operating characteristics of
the traditional Shewhart chart at shifts of zero and 1.79 sigma units and has the
minimum expected sample size in-control. The òptimal’ double sampling chart uses
an initial sample of size two with a possible second sample of size four. This double
sampling chart also has a virtually identical OC curve as the traditional X control
chart with samples of size 5. As a result, it is feasible to compare these four di� erent
charts in terms of their expected sample sizes for di� erent levels of mean shift. Figure
4 shows this comparison. The traditional Shewhart chart always has a sample of size
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® ve, the stand-alone CSC, joint CSC, and the double sampling chart all have vari-
able expected sample sizes that depend on how likely it is that the con® rmation
sample will be needed. Figure 4 shows that indeed the double sampling chart has
the lowest in-control expected sample size. However, for moderate shifts in the mean,
the di� erence in expected sample size between the double sampling chart and the
CSC charts is small, especially when compared with the joint CSC. Also, for these
design parameters the joint CSC approach has the smallest expected sample size for
large mean shifts. Note that the joint CSC is a special case of double sampling and
thus it is possible to de® ne a double sampling procedure that exactly matches the
joint CSC shown. Figure 4 shows that there is a trade-o� associated with the design
parameters of the procedure. By optimizing the in-control performance of the double
sampling chart we have derived a procedure that is not optimal, in terms of expected
sample size, for large mean shifts.

In ® gure 5, OC curves for an R chart, and stand-alone and joint range CSC
charts are shown for subgroups of size ® ve and ten. Similar results are obtained
when comparing traditional Shewhart s charts with standard deviation based CSC
charts, but are not shown. The results suggest that for detecting process variability
changes the range-based CSC charts are better than traditional R charts, but that the
di� erence is less pronounced than for CSC charts designed to detect process mean
shifts. For example, when using subgroups of size 5, the R chart signals with prob-
ability 0.31 when the process standard deviation has doubled, while the stand-alone
CSC and joint CSC charts signal with probabilities 0.38 and 0.44 respectively. Figure
5 also suggests that for process variability shifts the di� erence between the stand-
alone and joint versions of CSC is larger, with the joint CSC chart performing better.
This implies that if detecting process variability changes is critical then the joint CSC
chart would be the best choice.

We may also compare the average run length of the combined X and R charts
and CSC charts for detecting both process mean and process standard deviation
shifts. Figure 6 shows average run length contours for the combined X and R charts
and the combined mean and range-based stand-alone CSC charts. Each individual
chart is designed to have an ARL of 370 when the process mean equals zero and the
process standard deviation is unity. This corresponds to the point on each contour
plot marked with a cross, where the ARL of the combined charts is approximately
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185. Figure 6 clearly illustrates the e� ectiveness of the combined mean and range
stand-alone CSC Charts in comparison to X and R Shewhart charts. Notice that
when the process standard deviation is slightly smaller than the in-control value both
procedures have ARLs that are longer than the in-control ARL. This is undesirable,
but is hard to avoid since detecting a small decrease in the variability is di� cult.

4. Implementation of CS C charts

CSC charts are easy to implement in practice. However, the idea that the con-
® rmation sample is an additional independent sample drawn from the production
process rather than a re-measurement of the initial sample should be emphasized
when explaining the procedure to production personnel. Since the con® rmation (and
control) limits are the same for both the initial and con® rmation samples the results
of the procedure can be displayed on a single chart. To keep track of initial and
con® rmation sample results we use s̀ ’ to denote initial samples, and ` ’ for con-
® rmation samples. Whenever both an initial and con® rmation sample are required
the results are plotted at the same time period and are joined together with a line. To
create a reasonable run chart, points from di� erent time periods are connected using
the midpoint between the initial and con® rmation sample results.

This is illustrated for a combination stand-alone version of the mean and stan-
dard deviation CSC chart in ® gure 7. For this example the process is in-control,
normal with mean zero and variance unity. Using subgroups of size ® ve the con-
® rmation limits are set at 0 8 and 0.8 for the mean chart and 0.39 and 1.6 for the
standard deviation CSC chart. In the generated sample of 50 time periods ® ve
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con® rmation samples were required, four times due to a point outside the con® rma-
tion limit on the mean chart, and once due to a point outside the con® rmation limits
on the standard deviation chart. There are no signals in the charts of ® gure 7. At
subgroup number 29 the initial and con® rmation subgroup means are outside the
con® rmation limits on opposite sides, but from ® gure 1 this does not lead to a signal.

To implement a joint CSC chart the procedure is similar, but there are four limits
on each chart. To aid the interpretation, di� erent colours for the con® rmation and
control limits are recommended.

5. Conclusions

Con® rmation sample control charts are a good alternative to traditional X and R
control charts in situations where an additional independent con® rmation sample
can be quickly obtained if necessary. Con® rmation sample control charts have better
power to detect changes in either the process mean or the process variability than
traditional X and R charts. This is accomplished by taking an additional sample only
when there is some evidence of instability. As a result, CSC charts have an intuitive
appeal to production personnel who often wish to con® rm bad news before acting
upon it.

Con® rmation sample control charts are very easy to implementation in practice.
Since the scheme restricts the initial and con® rmation samples to be the same size the
results of the procedure can be summarized in a single control chart.
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