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Monitoring Processes With

Highly Censored Data
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The need for process monitoring in industry is ubiquitous. By monitoring process output, process changes

may be rapidly detected and problems corrected. However, in many industrial and medical applications,

observations are censored due to either inherent limitations or cost/time considerations. For example,

when testing breaking strengths or failure times, often a limited stress test is performed and only a small

proportion of the true failure strengths or failure times are observed. With highly censored observations, a

direct application of traditional monitoring procedures is not appropriate. In this article, Shewhart-type X

and S control charts based on the conditional expected value weight are suggested for monitoring processes

where the censoring occurs at a fixed level. We provide an example to illustrate the application of this

methodology.

Introduction

I
N many industrial applications, censored observa-

tions are collected for process monitoring pur-
poses. For example, in the manufacture of material
for use in the interior trim of an automobile, a vinyl
outer layer is glued to an insulating foam backing.
The strength of the bond between the layers is an im-
portant characteristic. To check the bond strength,
a rectangular sample of the material is cut and the
force required to break the bond is then measured.
A pre-determined maximum force is applied to avoid
tearing the foam backing. Most samples do not fail,
so it is known only that the bond strength exceeds
the pre-determined force. That is, the bond strength
data are censored. The process is monitored by se-
lecting samples across the width of the material at
a given frequency based on the amount of material
produced. The purpose of the monitoring is to ensure
that the bond strength does not deteriorate. Deteri-
oration includes decreases in the average strength or
increased variability. A second example, which we do
not consider in detail here, is the use of plug gauges
to monitor hole size. To measure hole diameter, two
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plugs machined to have diameters at the upper and
lower specification of the hole diameter are applied.
If the larger plug enters the hole, then the diameter
exceeds the upper specification. If the smaller plug
does not enter the hole, then the hole size is below
the minimum specification. For the purpose of pro-
cess monitoring, the actual diameter of the few holes
that fail are measured. Here all diameters within
the specification limits are censored. Similar situa-
tions that result in censored data occur in life testing
and other areas of application. For simplicity we will
always refer to the variable of interest as strength,
although it may be any other censored response.

In these examples, a direct application of an X
and S control chart on the observed strength, where
we ignore the censoring, is reasonable if the censoring
proportion is not large, say, less than 50%. On the
other hand, when the censoring proportion is very
high, say, greater than 95%, it is feasible to use a
traditional np chart where we record only the num-
ber of censored observations. In this article, we pro-
pose conditional expected value weight (CEV) con-
trol charts appropriate for monitoring processes that
produce censored observations. The proposed charts
are superior to traditional methods, especially when
the censoring proportion lies between 50–95%.

This article is organized in the following manner.
We first introduce the CEV charting procedure that
allows for the rapid detection of deterioration in the
process quality when the monitored output is cen-
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sored. Figures needed to determine control limits are
given. The use of the procedure is then illustrated
with the first example described above. Finally, we
determine the power of the proposed procedure and
compare it with more traditional approaches.

CEV Control Charts
for Censored Data

In this section, control charts are derived for de-
tecting mean and dispersion shifts in the process that
produces censored data. We shall assume the ob-
servations are right-censored, though similar results
may be obtained for other forms of censoring. With
right-censored data, the goal of the CEV control
charting is to detect decreases in the process mean
and/or increases in the process standard deviation.
In other words, the two control charts have only one-
sided control limits. As will be shown, it is feasible
to detect such process changes surprisingly well be-
cause they lead to decreases in the censoring propor-
tion, which in turn means that each subgroup pro-
vides more process information. On the other hand,
with right-censored data, it is very difficult to detect
increases in the process mean because such changes
increase the censoring proportion. Similarly, if the
censoring proportion is greater than 50%, decreases
in the process dispersion also lead to more censored
observations. Subgroups with all censored observa-
tions provide very little information about shifts in
the process parameters. Fortunately, in most sit-
uations where we obtain right-censored values, de-
creases in the mean and increases in the dispersion
are the types of process changes we are most con-
cerned with since they represent a degradation of the
process performance.

To derive the charts, suppose that when the pro-
cess is in control, the strength T can be represented
by a normal random variable with mean, µ, and stan-
dard deviation, σ. Other distributional assumptions
such as exponential and Weibull are also possible and
do not change the procedure markedly. Denote the
censoring level as C, that is, the exact strength is
not observed for units with strength greater than C.
Then, the probability of censoring equals

pc = 1 − F (C) = Q

(
C − µ
σ

)
,

where Q(C) is the survivor function of the standard
normal distribution.

CEV Weights

The proposed control charts are based on the sim-
ple idea of replacing each censored observation with

its conditional expected value. Based on these CEV
weights, the subgroup averages and sample standard
deviations are plotted in a manner similar to the tra-
ditional X and S charts. It can be shown (Lawless
(1982)) that the conditional expected value of a cen-
sored observation is

wc = E(T | T ≥ C) = µ+ σ
(
φ(zc)
Q(zc)

)
, (1)

where φ(z) is the probability density function of the
standard normal and zc = (C − µ)/σ. We define the
conditional expected value (CEV) weight, w, of each
unit as:

w =
{
t if t ≤ C (not censored)
wc if t > C (censored) . (2)

The CEV control charts consist of run charts of
the subgroup average and standard deviation of the
CEV weights; we call the resulting control charts
the CEV X and the CEV standard deviation (S)
chart, respectively. This method of deriving sam-
ple averages and standard deviations has a Bayesian
flavor since the calculation of the CEV weights (for
censored observations) depends on the in-control pa-
rameter values µ and σ. In applications, µ and σ are
estimated from in-control process data in the initial
implementation phase of the monitoring procedure.
See the section on initial implementation for more
details of how to estimate µ and σ in practice when
observations are censored. For now, we assume the
in-control values are known.

The idea of using CEV weights is intuitive and
may also be justified based on the likelihood function.
It is well known (Lawless (1982)) that for a subgroup
of size n, the log-likelihood for the right censored case
is

logL(θ) = (n− r) log
[
Q

(
C − µ
σ

)]

+
∑
i∈D

log
[
φ

(
ti − µ
σ

)]
, (3)

where D represents the set of all observations that
were not censored and r equals the number of uncen-
sored observations. It is also known that the optimal
test statistic to detect small changes from the in-
control mean is based on the mean score (Cox and
Hinkley (1974)). In the normal case, the mean score,
denoted m, is defined as the first derivative of the log
likelihood with respect to µ, that is,

m =
∂ logL
∂µ
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=




t− µ
σ2 if t ≤ C (not censored)

φ
(
C − µ
σ

)
σQ

(
C − µ
σ

) if t > C (censored)
.

(4)

Comparing the mean score in Equation (4) with
the CEV weights given by Equation (2) shows that w
equals µ+σ2m for both censored and uncensored ob-
servations. Thus, for normal data, the mean scores
are a linear translation of the conditional expected
value weights, and control charts based on either
will have equivalent operating characteristics. Simi-
lar relations between CEV weights and scores exist
for other distributions. For example, for the expo-
nential distribution, w = θ2m + 1/θ, where θ is the
mean. For control charting, we recommend using the
CEV weights since they have a direct physical inter-
pretation in the original scale of measurement.

Determining CEV Control Limits

For CEV charts, control limits depend in a com-
plex way on the subgroup size and the censoring pro-
portion, pc. There is no simple rule such as the
traditional plus or minus three standard deviation
limits. Instead, Figures 1 and 2, derived from sim-
ulations, are provided to aid in the construction of
control limits for the CEV X and S control charts.
The figures are based on the assumption that pc, the
in-control proportion censored is known. Figure 1
gives the standardized lower control for the CEV X
chart that has a theoretical false alarm rate of .0027.
This particular false alarm rate was chosen to match
the false alarm rate aimed for with the traditional
Shewhart X control chart. Similarly, Figure 2 gives
the standardized upper control limit for a CEV S
chart that yields a false alarm rate of .0027. Note
that the horizontal axes in both Figures 1 and 2 are
on a log scale.

For subgroup sizes between the given values, in-
terpolation between the curves on the plot can be
used. For example, when designing a CEV S chart
with a subgroup size of 8, and an in-control probabil-
ity of censoring equal to .9, using Figure 2 we choose
a standardized upper control of 1.3. The irregular
parts of Figure 1 are due to the discreteness inherent
in the problem.

The control limits shown in Figures 1 and 2 are
standardized in the sense that they give the appro-
priate control limits, given the subgroup size, and

FIGURE 1. Plot of the Standardized Lower Control Limit

(LCL
X

) for the CEV X Chart.

pc, assuming the in-control process has mean of zero
and standard deviation of one. The control limits
appropriate in any given problem may be obtained
using

lower control limit for CEV X chart = LCL
X
σ + µ

upper control limit for CEV S chart = UCLSσ,

(5)

where µ and σ are the in-control process parameters
and LCL

X
and UCLS are the standardized control

limits given by Figures 1 and 2, respectively. Note
that for both charts using a center line is not of much

FIGURE 2. Plot of the Standardized Upper Control Limit

(UCLS) for the CEV S Chart.
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value since the distributions of the sample average
and sample standard deviation of the CEV weights
are highly skewed when the censoring proportion is
large.

Initial Implementation

As with traditional monitoring procedures, the es-
tablishment of CEV control charts requires a two-
step process. The first step, often called the ini-
tial implementation phase, involves collecting a setup
sample from the process while it is in control. When
working with uncensored data, guidelines suggest
that 100 observations or more are required for the ini-
tial implementation of X and S charts. This sample
size restriction ensures that the initial process param-
eter estimates are estimated reasonably accurately
and that any estimation errors can be ignored. See
Quesenberry (1993) for a detailed analysis of the ini-
tial sample size question. From the initial subgroups,
the appropriate control charts are established. If
there is any evidence of instability in the initial sam-
ple, that is, points plotting outside the control limits,
the offending subgroups are closely examined and re-
moved if the cause of the instability is determined.
If any subgroups are removed, the control limits are
re-established.

The following algorithm illustrates the initial im-
plementation procedure for CEV X and S charts for
a specified censoring level C.

1. Collect q subgroups of size n.
2. Estimate the in-control mean and standard de-

viation, µ and σ, using maximum likelihood
(see Appendix A).

3. Determine the censored CEV weight wc using
Equation (1) based on the estimates of µ and
σ, and replace all censored observations with
the value wc.

4. Create one-sided CEV X and S charts by plot-
ting the subgroup averages and standard devi-
ations with control limits determined using the
design Figures 1 and 2.

5. Look for any out-of-control signals (points out-
side the control limits) on the charts. Exam-
ine process conditions at the time any out-of-
control subgroups were collected. Repeat the
procedure from Step 2 if any out-of-control sub-
groups are removed from the sample.

The procedure described above is relatively robust
to imprecise initial estimation of the in-control pro-
cess mean and standard deviation. The CEV chart

design procedure is somewhat self-correcting since,
for example, if the process mean is underestimated,
the resulting control limit on the CEV X chart will
be lower, but the CEV weight assigned to all censored
observations is also smaller. Note that the procedure
estimates the process variability using the complete
sample rather than just the within-subgroup disper-
sion as is regularly done for control charts.

In Step 2, maximum likelihood estimation (MLE)
is suggested because it works well for large samples,
which are typical when considering all the data avail-
able in the initial implementation. Note that chart-
ing maximum likelihood estimates calculated from
each subgroup is not a feasible alternative to the
sample average and sample standard deviation of the
CEV weights. In the extreme case that all observa-
tions are censored, finite MLE’s do not exist. With
small subgroups and substantial censoring this oc-
curs with non-negligible probability. In addition, the
calculation of the MLE’s is iterative, thus requiring
a fairly substantial computational effort that may be
onerous.

The sample size needed to initially estimate the
in-control parameters with precision (Step 2) can be
determined through the expected information con-
tent of a censored sample in terms of Fisher infor-
mation (see Appendix B). Fisher information deter-
mines theoretically how much information regarding
either the mean or standard deviation is lost due to
the censoring. Note also that a different censoring
level can be used in the implementation phase to re-
duce the overall sample size required.

Example

In the glue bond strength example described in
the introduction, an initial sample of 100 subgroups
of size 5 was selected from historical monitoring of
the records. The censoring point C had been set at
the specification limit, here coded at 10 units. This
was well below the tearing strength of the foam. No
charting had been previously undertaken. When out-
of-specification bond strengths were detected, the
process was investigated but typically no action was
taken.

In the data, the first 125 observations of which are
given in Table 1, there was an 86% censoring rate.
The high proportion of out-of-specification readings
was the motivation for the implementation of the
charting procedure. Using the MLE procedure given
in the Appendix A, we estimate the process mean
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TABLE 1. First 125 Observations
of the Example Data

Subgroup # Observations

1 10 9.6 10 10 10
2 10 8 10 10 9.9
3 10 8.9 8.6 10 10
4 8.1 10 10 10 10
5 10 10 10 10 10
6 10 10 10 10 10
7 10 9 10 10 10
8 10 10 10 10 10
9 9.3 10 9.2 10 10
10 10 10 10 8.8 10
11 7.3 10 9.6 10 10
12 10 10 10 9.4 9.9
13 10 10 10 10 10
14 10 10 10 10 10
15 10 10 10 10 10
16 10 9.7 9.1 10 10
17 10 10 10 10 10
18 10 10 10 8.7 10
19 10 10 10 10 10
20 10 10 10 10 10
21 10 10 10 10 10
22 8.7 10 10 10 10
23 10 10 10 10 10
24 10 10 10 10 10
25 10 10 10 10 10

and standard deviation as µ = 11.1 and σ = 1.24.
With a censoring level of 10, we get wc = 11.44 from
Equation (1). This is the weight assigned to all cen-
sored observations in the CEV monitoring procedure.
Based on subgroups of size 5 and an 86% censoring
rate, the standardized control limits for the X and
S charts are −1.13 and 1.62, respectively. These val-
ues may be determined from Figures 1 and 2. Scal-
ing the control limits by the estimated mean and
standard deviation according to Equation (5) gives a
lower control limit of 9.7 for the CEV X chart and
an upper control limit of 2.02 for the CEV S chart.
The resulting CEV X and S charts for the example
data are given in Figure 3.

Figure 3 shows that in the initial implementation
there were no out-of-control points. Thus, the ini-
tial data appear to come from an in-control process.
As a result, we may continue to monitor the pro-
cess for deterioration using the CEV charts with the
given control limits. To reduce the in-control out-
of-specification rate from around 14%, the common
cause of variation must be addressed.

FIGURE 3. Example CEV X and S Charts With n = 5.

CEV Control Chart Performance

In this section the power of CEV X and S con-
trol charts to detect process changes is explored. It
is shown that when the censoring proportion is very
large, the CEV X chart alone suffices to detect both
mean and standard deviation shifts in the process. In
addition, we compare the performance of the CEV
control chart with more traditional control charts,
such as an np chart based on the number of cen-
sored observations and a Shewhart X chart based on
the observed data where censoring is ignored. Fig-
ures 4 and 5 give results for changes in the process
mean and standard deviation, respectively, for differ-
ent initial censoring proportions. For both Figures 4
and 5, the control limits of the charts are determined
from Figures 1 and 2, and thus the false alarm rate
of all the charts is set at .0027. The results are based
on simulation using 200,000 trials for each point. For
comparison purposes, the performance in the uncen-
sored case (pc = 0) is given with a dashed line in each
plot. In Figure 4, the horizontal axis corresponds to
shifts in units of the standard deviation.

In Figure 4 we see that for the CEV X chart,
the decrease in power as the censoring proportion
increases is quite gradual. In fact, for moderate cen-
soring proportions, such as 50% censoring, there is
almost no loss in power to detect process mean de-
creases. On the other hand, for the CEV S chart
shown in Figure 5, the power loss that results from
using censored observations is fairly large for vir-
tually any level of censoring. However, for censor-
ing proportions between .5 and .99, the difference in
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FIGURE 4. Power of the CEV X Chart to Detect Process Mean Shifts (No Censoring Case Given by the Dashed Line).

power to detect process standard deviation shifts is
small. This is because large increases in the process
variability will result in some large negative values
that will be observed even with a large amount of
censoring.

Clearly, based on these results, there is a tradeoff
between information content of the subgroup and the
data collection costs. In many applications the cen-
soring proportion is under our control through the
censoring level C. Setting it so that there are few

censored observations provides the most information,
but will usually also be the most expensive. The op-
timal tradeoff point depends on the sampling costs
and the consequences of missing process changes.

The CEV X chart is also good at detecting
changes in the process standard deviation. This is
illustrated in Figure 6 for subgroups of size 10. Note
that the detection of standard deviation shifts works
only when the censoring proportion is large. This is
because when the proportion censored is very large,

FIGURE 5. Power of the CEV S Chart to Detect Process Standard Deviation Shifts (No Censoring Case Given by the

Dashed Line).
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FIGURE 6. Power to Detect Standard Deviation Shifts

With the CEV X Chart, n = 10 (X with No Censoring

Chart Given by the Dashed Line and S Chart with No Cen-

soring Chart Given by the Dotted Line).

say, greater than 95% censoring, it is difficult to dis-
tinguish between increases in the process mean and
decreases in the process variability. For highly cen-
sored data, increases in the process variability ap-
pears similar to decreases in the process mean since,
due to the censoring, the large positive values are re-
placed by the CEV weight and thus do not appear
large. On the other hand, when there is no censoring,
the large observations will be observed and tend to
cancel the influence of the small observations in the
calculation of the sample mean. As a result, when
the in-control proportion censored is very large, the
process can be adequately monitored using only the
CEV X chart.

Comparison of CEV Control Chart
Performance to Traditional Charts

As a further comparison, we may consider the use
of a traditional control chart like the np chart for
the number censored in each sample and a Shewhart
X chart of the data where we ignore the censoring.
A direct comparison between an np chart and the
CEV X and S charts is difficult due to discreteness
since the np chart can not necessarily be setup to
have a particular false alarm rate. This is illustrated
in Table 2 which gives the decision rules and corre-
sponding probability of a false alarm for np charts
that yields false alarm rates as close to .0027 as pos-
sible.

Figure 7 compares np charts and CEV X charts
when the changes in the censoring proportion are

TABLE 2. np Chart Decision Rule When
n = 5: If Number Censored < x Then Signal

pc x Pr(false alarm)

.50 1 .031

.75 1 .001

.90 3 .009

.95 3 .001

.99 4 .001

due exclusively to mean shifts for in-control censor-
ing proportions equal to .5 and .9. The performance
of the np chart in detecting decreases in the censoring
proportion (caused by decreases in the process mean)
is quite similar to the CEV X chart when pc is very
large. This is not surprising since when the censoring
proportion is very large, little additional information
is available in knowing the few observed non-censored
values. Figure 7 suggests that as the censoring pro-
portion increases, the performance of the two charts
converge. In Figure 7, the control limit of the CEV
X chart has been adjusted so that it yields approxi-
mately the same in-control false alarm rate as the np
chart. Note that the power curves for the two differ-
ent proportions censored are not directly comparable
since they have different false alarm rates.

As discussed above, the ability of np charts to de-
tect decreases in the process mean is comparable to
the CEVX chart when the in-control proportion cen-
sored is large. However, when the changes in the pro-

FIGURE 7. Comparison of Performance Between CEV

X and np Charts, n = 5 (CEV X Chart Given by Dashed

Line).
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FIGURE 8. Comparison of Performance Between CEVX
and NaiveX Charts, n = 5 (No Censoring Given by Dashed

Line, CEV Charts Given by Solid Lines, and Naive Charts

by Dotted Lines).

portion censored are due to increasing dispersion, the
np chart does not do as well as the CEV S chart.
This is clearly evident, for example, if the censoring
proportion is 50% as increases in the process disper-
sion do not lead to changes in the proportion cen-
sored. In general, the np chart will perform poorly if
the process changes do not lead to large decreases in
the proportion censored since the np chart can not
distinguish between changes to the process mean and
standard deviation.

The comparison between the CEV X chart and
the traditional Shewhart X chart is also difficult. A
naive application of anX chart would ignore the cen-

soring and set a lower control limit at X −3σ̂/
√
n,

where the standard deviation estimate is given by ei-
ther s̄/c4, or R /d2, where s̄ and R are the average
subgroup standard deviation and average subgroup
range, respectively, and c4 and d2 are control chart
constants (Ryan (1989)). By “ignoring the censor-
ing,” it is meant that the censored values are used
as if they are actual observed failure strengths. This
naiveX chart would ignore the skewness of the obser-
vations introduced by the censoring and thus would
not have the desired false alarm rate. For example,
assuming 90% censoring, the naive method would
yield an X chart with almost a 10% chance of sig-
naling when the process is in control. This is clearly
unacceptable. However, using a procedure similar
to that presented for the CEV charts we may de-

rive a lower control limit for the Shewhart X chart
where censoring is ignored that gives the desired false
alarm rate. Figure 8 shows a comparison between the
power of the CEVX chart and the naive ShewhartX
chart with adjusted control limits. The figure shows
that for highly censored data the CEV X chart has
superior performance, substantially so for very high
censoring rates. Note also that the CEV X chart
is preferable to the naive Shewhart X chart because
with the CEV chart the sample average can be inter-
preted as an estimate of the process mean.

Summary and Conclusions

In applications where observed data may be cen-
sored, traditional process monitoring approaches,
such as X and R charts, have undesirable proper-
ties such as large false alarm rates or low power. In
this article, adapted control charting procedures to
monitor the process mean and standard deviation
applicable when observations are censored at fixed
levels are proposed. The proposed charts are based
on the idea of replacing all observations by their con-
ditional expected values and then charting standard
statistics of these CEV weights. The CEV weights
are equivalent to likelihood-based mean scores if the
underlying distribution is normal. Control limits for
CEV control charts given are derived from simula-
tion of the sampling distributions of the subgroup
statistics assuming that the in-control distribution is
known.

There are many variations of the proposed charts
that we do not consider. The monitoring procedure
we have constructed is derived assuming the process
has an underlying normal distribution, but the same
methodology is applicable to other distributions. In
addition, since the amount of information in each
subgroup to detect process changes is small when
the censoring is severe, cumulative sum charts based
on the average CEV can be constructed. The pro-
cedure defined here is a fixed one-sided (type I) cen-
soring scheme. There are many other practical cen-
soring schemes to be investigated. The plug gauge
example mentioned in the introduction has two-sided
censoring. In many applications, the censoring may
not be fixed but be due to one or more competing
risks. In the bond strength example, if the force re-
quired to break the bond or tear the foam backing,
whichever occurred first, was measured, then a dif-
ferent charting methodology is required to monitor
the bond strength process.
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Appendix A: Maximum
Likelihood Estimation

Using the log-likelihood function in Equation (3)
we may derive maximum likelihood estimates for the
process mean and standard deviation from normal
censored data. We present an iterative approach due
to Sampford and Taylor (1959) since it uses CEV
weights. The Sampford and Taylor method is an
application of the expectation-maximization (EM)
algorithm discussed by Dempster, Laird, and Ru-
bin (1977). The procedure is iterative and involves
replacing each censored observation with its condi-
tional expected value, given by Equation (2) where
we replace µ and σ with the current best guess for
the process mean and standard deviation denoted µ̂0

and σ̂0. Based on these CEV weights, we re-estimate
the process mean and variance as:

µ̂1 =
n∑

i=1

wi

n
, σ̂1 =

n∑
i=1

(wi − µ̂0)2

r + (n− r)λ(zC)
, (A1)

where

λ(z) =
φ(z)
Q(z)

[
φ(z)
Q(z)

− z
]
.

Note that λ(z) always lies between 0 and 1, being
near 1 when the censoring proportion is small and
near 0 when the censoring proportion is large. As a
result, the term r+ (n− r)λ(z) can be thought of as
a sample size, adjusted for the number of censored
observations.

To find the MLE’s, we iteratively apply Equa-
tions (2) and (A1) to the data until the estimates
converge. The iterations rapidly converge (less than
10 iterations) to the MLE’s so long as good initial val-
ues are employed. In most cases, good initial values
are the sample mean and sample standard deviation
obtained by ignoring the censoring.

Appendix B: Expected Information
in Censored Samples

The relative value of censored and uncensored
samples of the same size may be compared using
Fisher information. The inverse of the Fisher infor-
mation gives the asymptotic variance of the max-
imum likelihood parameter estimates. Expected
Fisher information is defined as the expected value
of minus the second derivative of the log likelihood
function. In the censored normal case, we may de
rive the information matrix I from the log-likelihood
expression in Equation (3).

FIGURE B1. Plot of the Censored Sample Size Multiples

Needed to Match the Estimation Precision of an Uncensored

Sample.

Figure B1 shows the relative sampling size re-
quired to match the sampling variability in an un-
censored sample for the mean and standard devia-
tion. Note that for small censoring proportions we
can estimate the mean and standard deviation rela-
tively well. However, when the censoring proportion
grows it becomes increasingly difficult to estimate
the process mean and standard deviation. Also, our
ability to estimate the process mean degrades more
quickly than our ability to estimate the process stan-
dard deviation as the proportion censored increases.
For example, with 50% censoring we need only 1.5
and 2.5 times the uncensored sample size to esti-
mate the mean and standard deviation, respectively,
as well as in the uncensored case. However, when
the censoring rate is 95%, the required sample size
multiples are 51 and 31, respectively.
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