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Editor's Note: This article will be presented at the 44th annual Fall Technical Conference, to 
be held in Minneapolis, Minnesota, October 12-13, 2000. 

Statistical Process Control Using Two 
Measurement Systems 

Stefan H. STEINER 

Department of Statistics and Actuarial Sciences 
University of Waterloo 

Waterloo, Ontario N2L 3G1 
Canada 

Often in industry, critical quality characteristics can be measured by more than one measurement 
system. Typically, in such a situation, there is a fast but relatively inaccurate measurement system 
that may be used to provide some initial information and a more accurate and expensive, and 
possibly slower, alternative measurement device. In such circumstances, it is desirable to determine 
the minimum cost-control chart for monitoring the production process using some combination of 
the measurement systems. This article develops such a procedure. An example of its use in the 
automotive industry is provided. 

KEY WORDS: Control chart; Measurement costs. 

Metrology is an important aspect of manufacturing be- 
cause measurements are necessary for monitoring and con- 
trolling production processes. In many situations, however, 
there is more than one way to measure an important qual- 
ity dimension. Frequently the choice between the different 
measurement systems is not clear due to trade-offs with 
respect to measurement cost, time, and accuracy. One par- 
ticular situation that is explored in this article occurs when 
there is a "quick and dirty" measurement device that is in- 
expensive and relatively fast but is not the most accurate 
way to measure and a slower, more accurate and expensive 
measurement device or method. Good examples of this sit- 
uation occur in many manufacturing plants. For example, 
in foundries, the chemistry of molten iron may be checked 
using a quick method, called a "quick lab," or it may be 
sent to a laboratory. In the foundry application, the quick 
measurement is used to monitor and control the process 
because adjustments to composition are required immedi- 
ately and the lab measurement takes several hours. The 
slower lab measurements are used only for after-the-fact 
confirmation. Another example is the use of in-line fixture 
gauges to monitor the production of engine covers. The 
fixture gauges provide approximate measurements for some 
critical dimensions, and a coordinate measurement machine 
(CMM) can be used to determine more precise values. This 
engine-covers example is discussed in more detail later. 

When two measurement devices are available, the current 
process-monitoring approach is to use results from each 
measurement device separately and often for different pur- 
poses. From cost and efficiency considerations, however, it 
is not optimal in most cases to use only one of the measure- 
ment devices to monitor the process output. In this article 
a method for using both measurement systems together to 
monitor the process mean and process variability is pro- 

posed. The basic idea is straightforward. The first measure- 
ment device is inexpensive and quick, so I try initially to 
make a decision regarding the state of control of the pro- 
cess based on results from the first measurement device. If 
the results are not decisive, I measure the same sample of 
units again using the more accurate measurement device. I 
assume that the testing is not destructive or intrusive. No- 
tice that this procedure does not require additional sampling 
because the same sample is measured again if the initial re- 
sults were not conclusive. Not requiring an additional inde- 
pendent sample is an advantage because obtaining another 
independent sample may be difficult and/or time consum- 
ing. 

This idea of using the second measurement device only 
in cases in which the first measurement does not yield 
clear-cut results is motivated by earlier work by Croasdale 
(1974) and Daudin (1992). Croasdale and Daudin developed 
double-sampling control charts as an alternative to tradi- 
tional X control charts. Double-sampling charts add warn- 
ing limits to the traditional control charts in addition to 
control limits. The warning limits are used to decide when 
a second independent sample is needed to reach a con- 
clusion regarding the process's stability. Double-sampling 
charts, however, are not applicable in the two-measurement- 
devices problem because they assume that the same mea- 
surement device measures all samples and that measure- 
ment error is negligible. 

The article is organized in the following manner. In Sec- 
tion 1, control charts for detecting changes in the process 
mean or variability using two measurement devices in com- 
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bination are defined. An example of their use is given in 
Section 2. In Section 3, two-measurement control charts 
are designed to minimize measurement costs subject to a 
statistical constraint in terms of the false-alarm rate and 
power of the resulting charts. Finally, in Sections 4 and 5, 
some implementation issues are discussed and a summary 
of the results is given. 

1. CONTROL CHARTS FOR TWO 
MEASUREMENT SYSTEMS 

The results from the two measurement systems are mod- 
eled as follows. Let 

YijX = Xi +eij, (1) 

Based on the moments of Y1 and Y2, I get 

E(w) = p 

var(w) = (k2(+2) 

+ (k- 1)2(22 + +2) + 2k(1 -k)r2) 
cov(Y1, w) = (02+ S k)/n. 

We obtain the most information about the true process mean 
when the weighting constant k is chosen so as to minimize 
var(w). Denoting this best value for k as kopt and solving 
gives 

kopt -= o2/( + 2). (3) 

where Xi is the true dimension of the ith unit, Yi and Yi2 
are the results when measuring the ith unit with the first 
and second measurement devices, respectively, and eij is 
the measurement error. We assume that the eij's are inde- 
pendent and normally distributed with mean 0 and variance 

2 and that Xi and eij are independent of each other. The 
assumption that the mean of ei equals 0 implies that I have 
compensated for any long-term bias of the measurement 
device. The variability of the two measurement devices 
('1, -2) is assumed to be well known. This is a reasonable 
assumption because regular-gauge repeatability and repro- 
ducibility studies for all measurement devices are often re- 
quired in industry and in any case may be easily performed. 
Because each sample may be measured twice, I assume that 
the measurement is nondestructive. I also assume that the 
actual dimensions of the quality characteristic of interest 
are normally distributed with mean and standard deviation 
equal to ,u and a, respectively. Thus, X - N(u, r2), and 
X ~ N(Cu,2/n). Moreover, without loss of generality, I 
assume that the in-control process has zero mean and stan- 
dard deviation equal to 1. In other words, for the in-control 
process, the X variable represents a standardized variable. 
For nonnormal quality characteristics, a transformation to 
near normality would allow the use of the results presented 
here. 

I begin by defining some terms. Measuring the n 
units in the sample with the first measurement device, 
I may calculate Yi = E 1 Yil/n. If the same sam- 
ple is measured with the second measurement device, 
I obtain Y2 = i=1 Yi2/n. Based on the distributional 
assumptions, it can be shown that Y1 and Y2 are bi- 
variate normal with E(Y1) = E(Y2) = , var(Y1) = 
(C2 + a )/n, var(Y2) = (02 + 22)/n, and cov(Y1,Y2) 
E(cov(Y?, Y21X))+ cov(E(Y+ X), E(Y2X)) = + 2/n = 
(c2/n. Note that Y1 and Y2 are not independent because they 
represent the sample averages obtained by the first and sec- 
ond measurement device, respectively, on the same sample 
of size n. Assuming a2 < a1, Y2 provides more precise in- 
formation about the true process mean than Y1. A weighted 
average of Y1 and Y2, however, provides even more infor- 
mation. Define w as the average of the i weighted sums 
given by 

wi = kkY + (1- k)Y2. (2) 

Using kopt, the variance of w and the correlation coefficient 
relating Y1 and w, denoted pw, are given by the following 
equations, respectively: 

var(ikopt 
- ( 2 2 

\ 
var(w k ) a- ?+ 22 (4 

\ 
- 

a+ o2/n 

and 

Pw p(YI, Wkopt) 
(a 2[02 + 02] + 012r2)1/2 

([2 + o2] [12 + -2])1/2 11 0-1 21 
(5) 

The value of kopt will be close to 0 if the second measure- 
ment system is much more precise than the first device. In 
that case, w almost equals Y2. In general, the bigger the dis- 
crepancy between 01 and 02, the less there is to gain from 
using w over Y2. 

The proposed two-measurement X chart operates as fol- 
lows. In every sampling interval, take a rational sample of 
size n from the process. Measure all units with the first 
measurement device to obtain Y, Y21,..., Ynl. Calculate 
Y1, and if Y1 falls outside the interval [-cl, cl], where c1 is 
the control limit for the first measurement device, conclude 
that the process is out of control. If, on the other hand, 
Y1 falls within the interval [-rl, rl], where rl is the extra 
measurement limit (rl < cl), conclude that the process is in 
control. Otherwise, the results from the first measurement 
device are inconclusive, and I must measure the n sample 
units again using the second measurement device. Combin- 
ing the information from the two measurements on each 
unit in the sample together, I base my decisions on w. If w 
falls outside the interval [-c2, c2], where c2 is the control 
limit for the combined sample, I conclude that the process 
is out of control; otherwise I conclude the process in in con- 
trol. This decision process is summarized as a flowchart in 
Figure 1. 

In many situations it is reasonable to simplify this pro- 
cedure by setting cl equal to infinity. As a result of this 
restriction, based only on the results from the first measure- 
ment device, I can conclude that the process is in control 
or that I need more information, but not that the process is 
out of control. In applications this restriction is reasonable 
so long as the time delay for the second measurements is 
not overly large. 

A two-measurement control chart designed to detect 
changes in process variability, similar to a traditional S 
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Figure 1. Decision Process for Control Charts for the Process Mean Using Two Measurement Systems. 

chart, is also possible. If the measurement variability is sub- 
stantial, however, decreases in the process variability are 
very difficult to detect. Thus, I consider a chart designed to 
detect only increases in variability. Moreover, to simplify 
the calculations somewhat, I do not allow signals based on 
only the first measurement device. This simplification is 
analogous to the version of the chart for the process mean 
in which set cl = oc. The chart is based on two sample 
standard deviations, defined as 

n 

sl = E y(yi-Y- )2/(n-1) 
\ i=l 

and 

n 

SW = w (w- w)2/(n-1). 

where wi is given by (2). The two-measurement-system 
control chart for detecting increases in standard deviation 
operates as follows. If s1 < dl, conclude that the process 
is in control with respect to variability. Otherwise, measure 
the sample again with the second measurement system. If 
s, < dw, conclude that the process is in control; otherwise 
conclude that the process variability has increased. 

In any application involving two measurement devices, 
the first question that needs to be answered is whether just 
one of the measurement devices should be used or if us- 
ing them in combination will result in substantially lower 
costs. It is difficult to provide simple general rules because 
there are many potentially important factors. If the cheaper 
measurement device is quite accurate, however, say 1a < .4 
(relative to a process standard deviation of unity), then there 
is little to be gained by considering the second measure- 
ment device, and it is probably best to use only the first 
measurement device. When the measurement variability is 
larger, a fairly simple decision rule for whether a control 
chart based on two measurement systems is preferable can 
be obtained by considering only the variable measurement 
cost associated with each measurement device. To match 

the performance of a traditional Shewhart X control chart 
with subgroups of size 5 with measurement device i, I need 
samples of size 5(1 + ar). If the variable measurement cost 
associated with the second measurement device is v2 times 
the amount for the first measurement device, then the ratio 
of the variable measurement costs for the charts based on 
measurement systems 1 and 2 is R -= 2(1 + -2)/(1 + - 2). 
Based on experience, the greatest gains from using the two- 
measurement-device control chart arise when R is close to 
1. Generally for a substantial reduction in costs, say greater 
than around 10%, the value of R should lie between .6 and 
8. Otherwise, using only the second measurement device 
is preferred if R < .6, and using only the first measure- 
ment device would be better if R > 8. More specific cost 
comparisons are considered at the end of Section 3. 

2. EXAMPLE 
The manufacture of engine front covers involves many 

critical dimensions. One such critical dimension is the dis- 
tance between two bolt holes in the engine cover used to 
attach the cover to the engine block. This distance may be 
measured accurately using a CMM, which is expensive and 
time consuming. An easier, but less accurate, measurement 
method uses a fixture gauge that clamps the engine cover in 
a fixed position while measuring hole diameters and relative 
distances. 

In this example, the fixture gauge is the first measurement 
device and the CMM is the second measurement device. 
Previous measurement-system studies determined that, for 
standardized measurements, ul = .5 and 02 = .05 approxi- 
mately; that is, the CMM has less measurement variability 
than the fixture gauge. I also know that, on a relative-cost 
basis, using the CMM is six times as expensive as the fix- 
ture gauge in terms of personnel time. I shall assume that 
the fixed costs associated with the two measurement meth- 
ods is 0. Thus, in terms of the notation from the sample cost 
model presented in Section 3, I have fi = f2 = 0, v, = 1, 
and V2 = 6. The main goal in this example was to control 
the process mean. As such, in this example I use a two- 
measurement-system control chart only to detect changes 
in the process mean. Process variability is monitored us- 
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ing a traditional S chart with the results only from the first 
measurement system. 

Solving Expression (9) given in Section 3 of this arti- 
cle, with the additional simplification that cl = oc, gives 
r1lv/ = 2.80 and c2x/n = 2.92, with n = 5.26 for a rel- 
ative cost of 5.65. These values are given approximately 
in Figure 3, Section 3. In this optimal solution the values 
for r and c2 are almost equal. From an implementation 
perspective, setting rl and c2 equal is desirable because it 
simplifies the resulting control chart, as will be shown. With 
the additional constraint that r1 = c2, the optimal solution 
to (9) is rl1 c2/n = 2.89, n = 5.36, with a corre- 

sponding cost of 5.67. For implementation, the sample size 
is rounded off to 5. Thus, the control limits r1 and c2 are set 
at ?1.3. The measurement costs associated with this plan 
are around 10% less than the measurement costs associated 
with the current plan that uses only the first measurement 
device and around 80% less than the cost associated with 
using only the CMM machine. 

Figure 2 gives an example of the resulting two- 
measurement X control chart. On the chart the sample av- 
erages based on the first measurement device are shown 
with an "o," and the sample average of the combined first 
and second measurements (if the second measurement is 
deemed necessary) are shown with an "x." The extra mea- 
surement limit (?ri) for the results from the first measure- 
ment device and the control limit (?c2) for the combined 
sample are given by the solid horizontal lines on the chart. 
If the sample average based on the first measurement lies 
between the solid horizontal lines on the chart, I conclude 
that the process is in control. Otherwise, if the initial point 
lies outside the extra measurement limits, a second mea- 
surement of the sample is required. Using the second mea- 
surement, I calculate the combined sample weighted aver- 
age w = .01Y1 + .99Y2 (based on this weighting, I could 
use just Y2 rather than w without much loss of power in 
this example). If w falls outside the solid horizontal lines, I 
conclude that the process shows evidence of an assignable 
cause; otherwise the process appears to be in control. The 
dashed/dotted line denotes the center line of the control 
chart. In this example, for illustration, the value 1.0 was 
added to all the measurements after the 19th observation 
to simulate a one-sigma shift in the process mean. Fig- 
ure 2 shows that, among these 25 measurements, a sec- 

ond sample was required six times, at sample numbers 7, 
20, 21, 22, 24, and 25. Only samples 21, 22, 24, and 25 
yield an out-of-control signal, however. In the other cases, 
the second measurement of the sample suggests that the 
process is still in control. Of course, the number of times 
the second measurement was needed after observation 19 
is also an indication that the process has shifted. In this 
application, using two-measurement control charts results 
in a reduction in the measurement costs without affecting 
the ability of the monitoring procedure to detect process 
changes. 

3. DESIGN OF CONTROL CHARTS USING TWO 
MEASUREMENT SYSTEMS 

Determining the optimal design for two-measurement 
control charts involves determining the best values for the 
control limits and sample size. As pointed out by Woodall 
(1986, 1987), however, purely economic models of control 
charts may yield designs that are unacceptable in terms of 
operating characteristics. For example, the "optimal" de- 
sign from a purely cost perspective may have such a large 
false-alarm rate that the chart is routinely ignored. For 
this reason, in this article, the optimal designs for two- 
measurement control charts are constrained to satisfy cer- 
tain minimum operating characteristics. I first consider the 
design of two-measurement X charts and then look at two- 
measurement S charts. The MATLAB? computer code that 
determines the optimal design in both cases is available 
from me. 

3.1 Design of Two-Measurement X Charts 

Using the assumption of normality, it is possible to 
determine the probabilities of making the various deci- 
sions illustrated in Figure 1. Let O(z) = e-z2/2/2/ and 
Q(z) = f c((x)dx be the probability density function 
and cumulative density function of the standard normal, re- 
spectively. Moreover, denote the probability density func- 
tion of the standardized bivariate normal as O(z1, Z2,) = 

(27aOl02V1 - p2)-1 exp(-(Z2 - 2pzlZ2 + z2)/(2- 2p2)). 
Then, (6), (7), and (8) give expressions for the probabilities 
that the following events occur: The procedure concludes 
that the process is out of control (i.e., the procedure signals) 
based on results from the first measurement, measuring the 
sample with the second measurement is necessary, and the 

Two Measurement Control Chart 

sample number 

Figure 2. Two-Measurement Control Chart for the Process Mean. 
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combined results from the first and second measurement 
devices lead to a signal: 

P1i() = Pr(signal on first measurement) 

= Pr(Y1 > ci OR Yi < -ci) 

= 1 + Q([-cl - ]/0a) - Q([ci - I]/0-), (6) 

ql (/) = Pr(second measurement needed) 

=Pr(rl < Yi < ci OR - r > Yi > -ci) 

= Q([C1- ]l/T)- Q([r, - -]/a) 

+ Q([-ri - ]/i) -Q([-ci - I]/1*), (7) 

and 

P2(p) = Pr(signal on combined measurements) 

= Pr((w > c2 OR w < -c2) 

and (rl < Y1 < ci OR - r > Y1 > -ci)) 

:= /J (Z1, z2, Pw) dzl dZ2 

ZlE [(rl-1 ,)/7i*,(ci-,)/a ] 
2 E [- o,(-C2-[,)/0*] 

+ J (Z, Z2, Pw) ddz dZ2 

Zj E[(ri-[,)/1 ,(C1 - )/l ] 

Z2 C [(C2-t)/a ,00o] 

x J (ZI1, Z2, Pw) dz1 dz2 

Z1 E [(-ci-,)/aC ,(-rl- ,)/a ] 
z2 e[-o,(-C2-L)/O*] 

+ J )(z1, Z2, pw) dz dz2, 

Zi E[(-c-l,)/a, (-rl-,i)/(7] 

Z2 [(C2- )/ ,oo00] 

(8) 

where 0- = V/(2 + 02)/n and a0 = 

/(-2-2 + _2-2 + -2-2)/(-2 + -2)n. Note that pl,P2, and 
ql depend on the true process mean and standard devia- 
tion. Setting cl equal to infinity implies that pi (p) = 0 for 
all p. 

In this article a cost model based on measurement costs 
is developed. This measurement-cost model is easy to use 
because it requires only estimates of the fixed and vari- 
able measurement costs for the two measurement devices. A 
more complex cost model that considers that all the produc- 
tion costs could be developed based on the general frame- 
work of Lorenzen and Vance (1986). The production-cost 
model is often difficult to apply, however, because costs due 
to false alarms, searching for assignable causes, and so forth 
are difficult to estimate in many applications. 

The goal is to minimize the measurement costs while 
maintaining the desired minimum error rates of the proce- 
dure. Let fi and vi denote the fixed and variable measure- 

ment costs for the ith measurement system, respectively 
(i = 1, 2). In my analysis, without loss of generality, I may 
set v1 = 1 because the results depend only on the relative 
values of the measurement costs. In addition, to restrict the 
possibilities somewhat, the fixed cost associated with the 
first measurement device is set to 0; that is, fi = 0. This re- 
striction is justified because typically the first measurement 
device is very easy and quick to use and would not require 
much setup time or expense. Then, the measurement cost 
per sample is n + (f2 + v2n)ql (/). The best choice for the 
sampling interval must be determined through some other 
criterion, such as the production schedule. There are several 
ways to define an objective function using the measurement 
costs. Because the process will (it is hoped) spend most of 
its time in control, I minimize the in-control measurement 
costs. Using this formulation, the optimal design of the con- 
trol chart using two measurement devices is determined by 
finding the design parameters that 

minimize n + (f2 + v2n)ql (0) 

subject to a = p1(0) + p2(0) < .0027 

and / = 1 - p (2) + P2(2) < .0705, (9) 

where a is the false-alarm rate-that is, the probability that 
the chart signals when the process mean is in control-and 
1 - 3 is the power of the probability that the chart signals 
when the process mean shifts to t1 = ?2. These partic- 
ular choices for maximum false-alarm rate and minimum 
power to detect two sigma shifts in the mean are based on 
at least matching the operating characteristics of a Shewhart 
X chart with samples of size 5. 

Optimal values for the design parameters Cl, c2, r, and n 
that satisfy (9) can be determined using a constrained mini- 
mization approach such as applying the Kuhn-Tucker con- 
ditions. This solution approach was implemented using the 
routine "constr" in the optimization toolbox of MATLAB?. 

Figures 3 and 4 show the optimal design parameters for 
two measurement charts that satisfy (9) for different mea- 
surement cost parameters when setting cl equal to infinity. 
Figure 3 gives results when the second measurement de- 
vice also has no fixed costs, and Figure 4 considers the 
situation in which the fixed cost associated with the sec- 
ond measurement device is relatively large. Figures 3 and 4 
may be used to determine the design parameter values that 
are approximately optimal for two-measurement X charts 
in terms of in-control measurement costs. For measurement 
costs in between those given, interpolation can be used to 
determine reasonable control-limit values. In practice, the 
sample size, n, must be rounded off to the nearest integer 
value. Rounding off the sample size affects the power of 
the control chart but has no effect on the false-alarm rate 
of the procedure. Of course, rounding down the sample size 
decreases the procedure's power, but rounding up increases 
the power. 

Figures 3 and 4 each consist of four subplots that 
show contour plots of the optimal design parameters- 
rl n/, C2 V, and n as a function of ai and 02, the variabil- 
ity inherent in the two measurement devices. Each subplot 
represents four different values of v2, the variable measure- 
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r,*sqrt(n) 

v 1=l 

c2*sqrt(n) n 

zN4 

01 a1 a1 

v2 =2 

0.5 

0.4 

0.3 
0.2 
0.2 

0.1 

0 

01 a1 

v2 =4 

n 

5.5 

0.5 1 1.5 

a1 

QJ 

0.21 

(1 a1 a1 

2 = 6 

n 

o. 

0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 

a1 a1 a1 

Figure 3. Contour Plots of the Design Parameters for the No-Fixed-Cost Case: f1 = 0, v1 = 1, f2 = 0. 

ment cost associated with the second measurement device. 
Optimal values for rl n/, c2 /n, and n in the general case in 
which c1 is allowed to vary are very similar to those given 

in Figures 3 and 4. In general, the optimal value of cl is 
large and consequently does not affect the procedure much 
unless there is a large shift in the process mean. 
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V2 =1 

a1 1 1 

v2 =2 

0. 

0. 

01 01 01 

v2 =4 

01 01 a1 

v2 =6 

01 1 01 

Figure 4. Contour Plots of the Design Parameters for the Large-Fixed-Cost Case: fl = 0, v1 = 1, f2 = 10. 

1.5 

Figures 3 and 4 suggest that the parameters rl /n and 

c2/Jn are the most sensitive to changes in the variability 
of the measurement devices. In general, when the measure- 

ment costs of the two measurement devices are comparable, 
as the first measurement device becomes more variable (ao 
increases), n increases, while rl vn decreases. This result 
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2= 1 2 =4 

a1 a1 

Figure 5. Contour Plots of the Probability That the Second Measurement Is Required With the Process in Control: f1 = 0, v1 = 1, f2 = 0. 

makes sense because it indicates that I rely more on the 
second measurement device when the first device is less 
precise. Conversely, as the second measurement device be- 
comes more variable (02 increases), c2v/n and n increase 
while rl n increases marginally because I rely more on 
the first measurement device. 

Now consider the case in which the second measure- 
ment device is expensive (f2 or v2 large). As the second 
measurement device becomes less reliable (02 increases), 
again I observe that c2/Vn increases while n and rl/n in- 
crease marginally, which makes sense. The pattern appears 
to be counterintuitive, however, when the first measurement 
device becomes less reliable (al increases) because n and 
C2v/n decrease marginally, but rl1/n increases! Does this 
mean that I rely more heavily on the inaccurate first mea- 
surement device? Looking more closely, this apparent con- 
tradiction disappears. As o-1 increases, the optimal rl/n 
also increases, but this does not imply that the decisions 
are more likely to be based on only the first measurement 
device. When the accuracy of a measurement device is poor, 
I expect to observe large deviations from the actual value. 
Thus, the observed increase in rl /n is only taking this 
into account. Consider Figure 5, which shows contours of 
the probability that the second measurement is needed in 
the two cases f2 = 0 and v2 = 1 or 4. The plots in Figure 5 
show clearly that, as the first measurement device becomes 
less accurate, I rely on it less, even though, as shown in 
Figure 3, r l/n increases. 

I may also compare the performance of using two mea- 
surement charts with traditional X using only one of the 
measurement systems. Figure 6 shows the percent reduc- 
tion in measurement costs attainable through the use of 
both the measurement systems as compared with the best 
of the two individual measurement systems. In the case in 
which v2 equals 2, the dotted line shows the boundary be- 
tween the points at which each individual measurement sys- 
tem is preferred. To the right of the dotted line (where the 
measurement variability of the first measurement system is 
large), the second measurement system is preferred. When 
v2 equals 4 and 6, the first measurement device on its own 
is preferred over the second measurement device over the 
whole range of the plot. 

3.2 Design of Two Measurement S Charts 
Now consider deriving the optimal two-measurement 

control chart to detect increases in the process variability. 
Mathematically, the optimal two-measurement S chart that 
minimizes in-control measurement costs is determined by 
finding the control limits d1 and dw that 

minimize n + v2nps, (1) 

subject to ps(1) < .001 and ps(2) > .33, (10) 

where p,(l) = Pr(sl > dilo = 1) = 1 - x2_(d(n - 
1)/(1 + .2)) and ps.(a) equals the probability that the two- 
measurement S chart signals; that is, p,(ao) = Pr(sw > 
dwlsl > di,a). X2_1(x) is the cumulative density func- 

V2=2 V2 =4 V2 =6 

Figure 6. Contour Plots Showing the Percent Reduction in In-Control Measurement Costs Possible Using the Two-Measurement X Control 
Chart. 
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a1 

Figure 7 Percentage Decrease in In-Control Measurement Costs Possible With Two-Measurement S Chart, Assuming f2 = 0. 

tion of a central chi-squared distribution with n- 1 df. 
Using results presented in the Appendix, I may accurately 
approximate p,(ac) for any given actual process standard 
deviation. The choice of .33 is based on the power that 
can be attained using a traditional S chart with no mea- 
surement error, samples of size 5, and a false-alarm rate 
of .001. 

Figure 7 shows the expected percent decrease in mea- 
surement costs that results when using the optimal two- 
measurement S chart rather than the lowest cost traditional 
S chart based on only one of the measurement systems. 
When v2 = 1-that is, both measurement systems are 
equally expensive-using just the more accurate measure- 
ment device is always preferred and it is not beneficial to 
use the two-measurement-system approach. Figure 7 sug- 
gests that large potential savings in measurement costs are 
possible using the two-measurement approach to detect in- 
creases in process variability. 

In practice, a process is typically monitored using both 
X and S charts. Thus, from an implementation perspective 
using the same sample size for both charts is highly desir- 
able. For two-measurement charts, because typically detect- 
ing changes in the process mean is a higher priority, I use 
the sample size suggested by the optimal two-measurement 
X chart. Solving (10) shows that the optimal sample size 
for the two-measurement S chart is usually smaller than the 
sample size suggested for the two-measurement X chart. As 
a result, by using the larger sample size the resulting two- 
measurement S chart will have better than the minimum 
defined operating characteristics. 

Deriving the best values for n, dl, and dw from (10), I 
could prepare plots similar to those in Figures 3 and 4. To 
simplify the design, however; I consider an approximation. 
Based on the range of typical values for measurement costs 
and the measurement variability and assuming f2 = 0, I 
obtain, using regression analysis, the following approxima- 
tions for the optimal control limits: 

d = 1.94- .181 + .28C + .03v2 

dw = 2.7 -. 11l +.22c72-.01v2-.27dl. (11) 

These approximately optimal limits give good results 
over the range of typical measurement variability. 
TECHNOMETRICS, MAY 2000, VOL. 42, NO. 2 

4. IMPLEMENTATION ISSUES 
An alternative approach to process monitoring in this 

context is to use a second sample that is different from 
the first sample-that is, to take a completely new sample 
rather than to measure the first sample again. This approach 
is of course a necessity if the testing is destructive, but it 
leads to increased sampling costs, as well as difficulties in 
obtaining a new independent sample in a timely manner, due 
to autocorrelation in the process. If these sampling concerns 
can be overcome, however, the advantage of using an addi- 
tional sample is that more information about the true nature 
of the process is available in two independent samples than 
in measuring the same sample twice. If feasible, taking a 
new independent sample would be preferred; however, in 
many cases it is not possible in a timely manner. 

In a similar vein, I may consider situations in which re- 
peated measurements with a single measurement system are 
feasible. If repeated independent measurements are possi- 
ble, then, by averaging the results, I can reduce the mea- 
surement variability by a factor of /n. If the measurements 
are very inexpensive, then repeated independent measure- 
ment with one device will eventually yield (using enough 
measurements) a measurement variability so small that it 
may be ignored. Alternately, I could apply the methodol- 
ogy developed in this article in which I consider the sec- 
ond measurement to be simply the results of repeated mea- 
surements on the units with the first measurement device. 
If repeated inexpensive independent measurements using 
the first measurement device are possible, then using those 
measurements would be the preferred approach. This ap- 
proach will work only, however, if I can obtain repeated 
independent measurements of the units, which is often not 
the case. 

5. SUMMARY 
This article develops a measurement-cost model that can 

be used to determine an optimal process-monitoring con- 
trol chart that uses two measurement devices. It is assumed 
that the first measurement device is fast and cheap, but rel- 
atively inaccurate, whereas the second measurement device 
is more accurate but also more costly. The proposed moni- 
toring procedure may be considered an adaptive monitoring 
method that provides a reasonable way to compromise be- 
tween measurement cost and accuracy. 
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APPENDIX: DERIVATION OF THE PROBABILITY 
THAT THE S CHART SIGNALS 

Using the notation of the article, 

x j + (n-1)/22(1 2) 

x j + (n- 1)/2,2(1 p2) 
C2 

where Eij is an element of the covariance matrix, p = 
Z12/V/S1122 is the correlation coefficient, F(x) is the 
gamma function, and I(d, g) = fo td-le- dt is the incom- 
plete gamma function. This infinite sum converges quickly 
unless p is very close to 1 (or -1). 

z=l (Yli -- )2 
A = 

.EL1i (Yi -Y)(wi -w), 

i=i (Yi 
- 

yi)(wi - w) 

Ei=1 (Wi - W)2 
[Received April 1998. Revised July 1999.] 

has a central Wishart distribution with n - 1 df and covari- 
ance matrix given by 

2 12 

E = -2 + k2:, k2(22 + 2) 

+(k - 1)2(02 + c2) + 2k(1 - k)(2 21TL~\ l 

-2 + kc 2- 
I 

(Arnold 1988). Denoting the elements of the matrix A as 
aij, it can be shown that 

Pr(O < all < ciEll,0 < a22 < c2E22) 

(1 - p2)(n-1)/2 p2j 

((n - 1)/2) r(j + (n - 1)/2)r(j + 1) j>o 
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