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Abstract. In many industrial and medical applications observations are censored
either due to inherent limitations or cost/time considerations. For example, with
many products their lifetimes are sufficiently long that it is infeasible to nmmﬂ all
products until failure even using accelerated testing. As a result, often a limited
stress test is performed and only a proportion of the true failure times are ob-
served. In such situations, it may be desirable to monitor the process quality usin
repeated lifetesting on samples of the process output. However, with highly nmum
sored observations a direct application of traditional monitoring procedures is not
appropriate. In this article, Shewhart type control charts based on the conditional
expected value weight are developed for monitoring processes where the censoring
occurs at a fixed level. An example is provided to illustrate the application of this
methodology. v

1 Introduction

In industrial applications censored observations are collected for process mon-
itoring purposes. As an example, consider the manufacture of metal electrical
boxes used to cover transformers in residential neighbourhoods. These boxes
are outside and are thus subjected to ravages of nature, and it is undesir-
able and dangerous if they rust. During the production process the boxes
are painted to inhibit rust formation. It is desired to monitor the painting
process to ensure that the rust resistant capabilities of the paint process does
not deteriorate. Of course, even under poor regular conditions the boxes do
not rust quickly and it would typically take years at a minimum before rust
is visible. To speed up the rusting process an accelerated salt fog endurance
test is performed. From each test box a panel is cut, scratched in a prescribed
manner, and then put in a 30° Celsius salt spray chamber. Test units in the
chamber are checked daily for rust, and stay in the chamber until either rust
appears or a maximum of 20 days. The maximum is necessary to limit the
cost of testing, and to allow more rapid feedback. In this way, censored obser-
vations of the time to rust under the accelerated test conditions are obtained.
We may monitor the paint process by analyzing the observed censored data.
Since our goal to detect deterioration in process, the accelerated nature of
the test may be ignored so long as the testing is performed in the same man-
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ner each time, assuming the relationship between accelerated and normaj
conditions does not change. :

Similar situations that result in censored life time data occur in med-
ical applications. In addition, analogous situations may occur with failure
strength data. For simplicity, in this article we refer to the variable of inter-
est as a lifetime although it may just as well be a strength. We assume that
the distribution of the failure times can be modeled with a Weibull distribuy.
tion. We consider the Weibull distribution because it is very flexible and a
popular choice in life testing (Nelson, 1986).

Monitoring the process quality in situations where there is a substantiat
amount of censoring can be challenging. However, if the censoring proportion
is not large, say less than 25%, monitoring the process quality using a direct
application of an X control chart with probability limits on the observed
lifetime is reasonable. This is the approach followed by Schneider et al. (1995).
Also, when the censoring proportion is very high, say greater than 95%, it
is feasible to use a traditional np chart where only the number of censored
observations is recorded (Montgomery, 1991). In this article, we explore 3 °
number of possible monitoring procedures that are superior to the either
of these methods in detecting mean shifts when the censoring proportion
lies between 25-95%. These proposed methods take into account both the
censoring and the fact that the underlying process output distribution is
Weibull. The proposed charts include two likelihood based approached and
three approaches based on the conditional expected value.

To set notation, let W be a random variable whose distribution represents
the failure times. Assuming a Weibull distribution, the probability density
and survivor function of W, f(w;a, 8) and S(w; a, 3) respectively, are given
by (1), where a and § are the scale and shape parameters of the Weibull

respectively.

fwsa ) = Suf e A- m_uv

e (- [2])

With this parameterization of the Weibull, the mean and variance of W, p
and o2 , are given as
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where I'(z) is the Gamma function (Abramowitz and Stegun, 1972). The ,
standard form of the Weibull is given by W* = W/a and has probability
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density function f(w;1,3). Note that the standardized Weibull still depends
on 3. The Weibull distribution is commonly used to model lifetimes because
it is very flexible. The shape parameter, 3, determines whether the failure
rate increases with time (8 > 1) or decreases with time (8 < 1). When 8 =1

the distribution of W is exponential.

In this article, we assume the censoring is in the right tail as is typical
for lifetime data. However, similar monitoring procedures may be derived for
other censoring patterns. Denote the fixed censoring time as C. Then, from

(1), the probability of censoring, denoted pc, equals

pe = exp (—(C/a)?) (2)

It is well known (Lawless, 1982) that the log-likelihood of a sample of n
observations from a Weibull distribution censored at the fixed level C is

log Lw (e, 8) = (n —1)1og S(C; a0, 8) + Y log f(wi; e, B) = (3)
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where w; equals an observed failure time, D represent the set of all obser-
vations that were not censored, n equals the sample size, and r equals the
number of uncensored observations. We shall design monitoring procedures
to detect decreases in the mean lifetime caused by decreases in ¢, since pro-
cess changes that cause changes to the shape parameter § seem less likely.
Notice that this implies that decreases in the mean lifetime are accompanied
by decreases in the process variability. In addition, with a high censoring rate,
detecting decreases in the mean lifetime is possible, but increases will be very
difficult to detect, since such changes would lead to more censoring. As a re-
sult, the proposed monitoring procedures are all one-sided. It is well known
that the Weibull distribution is related to the extreme value and exponential
distributions through simple transformations. Since these other distributions
will be used later we introduce them now. Letting V = Slog(W/a),V has
a standardized minimum extreme value distribution with location and scale
parameters 7 and w equal to zero and unity respectively. The probability
density and survivor function of the general extreme value distribution are

1
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S(v;n,w)
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The mean and variance of V are n + yw and w?n” /6 respectively, where
v = —.577, the derivative of the Gamma function evaluated at unity, or minus

Euler’s constant.

Letting X = (W/a)?, X has a standardized exponential distribution with
mean equal to unity. The probability density and survivor function of the
general exponential distribution are given by (5). The mean and variance of
X are 6 and 6? respectively. . °

f(2;6) = exp(~/6) /0
S(x;0) = exp(—z/9) (5)

This article is organized in the following manner. In Section 2, four distinet
methods for monitoring the process mean frotn samples that contain censored
observations from an underlying Weibull distribution for failure times are dis-
cussed. The methods compared include maximum likelihood and score based
approaches, and two methods based on conditional expected value (CEV)
weights. For each method the appropriate test statistic given in terms of the
original Weibull scale is given. In addition, the determination of an appro-
priate level for the control limit in each case is discussed, and design figures
are given where possible. The control limits are set to give a false alarm rate
of .0027. The choice of .0027 comes from the false alarm rate of the standard
Shewhart X chart. Section 3 compares the monitoring procedures in terms
of their power to detect decreases in the process mean when the monitored
output is censored at different rates. The best choice of procedure depends
on the application, but we recommend the CEV extreme value approach as
the best compromise choice. Finally, Section 4 illustrates the use the pro-
posed CEV extreme value weight control charting procedure in the example
described above.

2  Monitoring Procedures

The goal of the monitoring procedure is to quickly detect decreases in mean
lifetime. To accomplish this the first step is to estimate the in-control pro-
cess performance to provide a benchmark for comparison. In this initial step,
called the implementation phase, the process parameters are estimated from a
fairly large initial sample of the process output, a control chart is built, and we
verify that the initial sample comes from an in-control process (Montgomery,
1991). With an initial censored Weibull sample, we may derive maximum
likelihood estimates (MLEs) for the underlying Weibull parameters using
the likelihood function given by (3). Computational methods for determining
the MLEs from (3) are well documented, and have well known properties.
See Lawless (1982). Of course, with censored observations the Weibull pa-
rameters are less well estimated than when all failure times are observed.
The amount of lost information can be evaluated by comparing the expected
(Fisher) information available in censored and uncensored samples (Escobar
and Meeker, 1986). As a result, the usual recommendation of 20 subgroups



of size 5, or 100 units total, must be increased. Using Fisher information
appropriate sample sizes for any amount of censoring can be established. In
the rest of the article we assume that initial Weibull parameters, denoted
ap and Bo, have been determined from an in-control sample of sufficient size
that the sampling variability can be ignored. This assumption corresponds

to that made in the usual application of an X chart.
Now we turn attention to the ongoing monitoring procedure. An ideal pro-

cedure is able to detect decreases in the mean quickly, has an interpretable
test statistic in the units of the original problem, and is easy to design.
Note also that the procedure should work well with the small samples typi-
cal used in most process monitoring applications. We consider four distinct
approaches: the Weibull CEV, MLE, exponential CEV (or score), and the
extreme value CEV approaches.

2.1 Weibull CEV Method

Traditional X control charts use the sample average as test statistic, and set
control limits at the estimated process mean plus or minus three standard
errors (o/+/n). Thus, a naive application of a control chart in our application
would ignore the censoring and set a lower control limit based on the three
standard deviation unit rule. This is a poor choice in our application since
the position of the control limit does not take into account the substantial
skewness in the distribution of the sample averages caused by the underlying
Weibull distribution and the censoring of the observations. The resulting
naive control chart would have a much lower false alarm rate than desired,
and thus also much lower power. This problem can be alleviated by taking into
account the distribution of the sample average and using probability limits
to set the control limit. However, we can do better still by not ignoring the
censoring. One suggestion is to replace all censored observations with their
conditional expected value (CEV) based on the initial parameter estimates.
In other words, rather than work with the original sample that contains many
observations that are censored at C, we use a sample of CEV weights where
the censored observations are replaced by some weight larger than C.

It can be shown (Lawless, 1982) that assuming a Weibull distribution the
conditional expected value of a observation censored at C, evaluated at oo

and g, is

aol*(zc, 1 +1/Bo) (6)

CEW)=EW|W2>C()= exp(~zc)

where zo = (C/ap)??, and I'*(z,a) = &wno ya~! exp(—y)dy is the incomplete
Gamma function (Abramowitz and Stegun, 1972). The resulting sample of
Weibull CEV weights is defined by

Jw if w < C(not censored) -
mAS\vi AQMAS\V mEVQAom:mo?ﬁv q (7)

The conditional expected value (CEV) weight is a logical choice beca
then the expected sample average equals the process mean. Denotin MM@
mmw%_m of n CEV weights as s;(W),s2(W),.. ., s,(W), the test mﬂmﬁmma o
MWMVHNMLS\W\:, the sample average of the s(W) weights. To distinguish M:M
Mw\ mﬂﬁ%a@m@%ﬁ mwwﬂmm. procedures discussed later we call this approach the

An appropriate lower control limit, one that giv : ili
a false alarm, can be obtained through wwgcwmaosmwowmw%% NM_WMMWONUM;% o
Bo. We may design the chart for the standardized Weibull to ngwbm% mwa
dependence on ag, but unfortunately, the design is complicated by a am e
ams.om on the shape parameter y that can not be removed. As a Smcmum:-
design figures are given for the Weibull CEV approach since a different f v
would be needed for each value of S3y. Bre

2.2 MLE Approach

Another way to monitor for decreases in the mean is to use a likelihood baged
approach. We are interested in detecting decreases in the mean caused b mm
creases in a. Based on the likelihood function (3), the maximum Eﬁ:wooﬂ
omsamﬁm (MLE) for «, denoted &, given By is easily obtained. To avoid po
sible division by zero (when all the observations in the sample are omcmowﬁw

we will use 1/& as test statistic. We get w. = T Siiti+(n— m)C] ~1/Bo
. . . » r = i
Using the notation introduced in the previous section the resulting sample of

MLE based weights is defined by

an = Jw if w < C (not censored)
s(M) AQ if w > C (censored) ’ (8)

Based on (8), the appropriate test statisti i

the MLE oo %H\u MkuH m;.iv%\mw.mzn from each sample of size n for
. Since the test statistic is 1/&, decreases in a will be manifest as increases
in the test statistic. As a result, the MLE approach requires an upper con-
trol limit (UCL). The position of the appropriate UCL for the MLE based
control chart depends on the sample size, and the in-control probability cen-
sored. Figure 1 gives the appropriate UCL derived using simulation to have
a theoretical false alarm rate of .0027, and assuming ay = G, = 1
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Fig. 1. Standardized Upper Control Limit, uclo, for the MLE chart

Through the connection between the Weibull and the exponential distri-
butions, the UCL appropriate in any given example problem equals (aguclo)
where ag and B are the actual in-control process parameter, and uclp is the
standardized upper control limit given by Figure 1.

2.3 Score and Exponential CEV Method

Another likelihood based approach is to use a-scores. The a-score is defined as
the derivative of the log likelihood function with respect to & evaluated at the
parameter values of the stable (in-control) process. Due to their derivation,
the a-scores form the basis of optimal tests for small changes in the process
mean caused by changes in . From (3), a-scores equal

Bo
dlogL ey = Im% + mlw chmv if w < C (not censored) )
Ba p=0o mw Aw@av if w > C (censored)

The corresponding test statistic is given by the sample average of the a-
scores. One general disadvantage of using scores is that they do not usually
have a physical interpretation. However, in this case, the a-scores are a simple
linear translation of the conditional expected value weights derived on the
exponential scale. To see this we determine the CEV weight for censored
observations on the standardized exponential distribution scale. Based on
the translating the censoring time to the exponential scale, we get

CE(X)=E (X | X > (C/a)) = (C/a)?) +1 (10)

Iw\uov

pde¥4
Thus the CEV weight on the exponential scale is

ﬁa H Tw\Qono mmSMQA:oﬁombmoaav
CE(X) if w>C (censored) )

. m.uo::umz:m the a-scores and the exponential CEV weight we see that on
isa linear function of the other. This means that the CEV exponential meth M
is optimal in the same sense as the a-score approach. Translating back to %H
Weibull scale, a sample average on the exponential scale'is equivalent to :mEM

the test statistic ag (31, Amku@\aov?\:v{mc where s(X) is given by (11).

s(X) = ﬁé if w<C ({(not censored)
ayCE(X)Y/P if w > C  (censored) : (11)

The appropriate lower control limit derived using simulation for the expo-
nential CEV weight is given in Figure 2 assuming «g = 3o = 1. The :..Bm_mmw
parts of the figures are due to the discreteness inherent in the problem. The
appropriate control limit given ag and fp is (aglelg) /% | where lelX is
read from Figure 2. q °
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Fig. 2. Standardized Lower Control Limit, lely, for the CEV Exponential chart

2.4 Extreme Value CEV Method

The final approach we shall consider is the CEV extreme value method.
<.<:w this approach the censored observations are replaced by their condi-
tional expected values derived on the extreme value scale. Working with the
standardized extreme value distribution, the conditional expected value for
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a censored observation is

CEWV)=E([V |V > Bolog(C/ap))

o<

-

z=[ log(C /o)

l

ze® exp(—e®)dz /S (B log(C/ag)) (12)

where 5 Is the survivor function of the standardized extreme value distribu-
tion given by (4). The value of CE(V) can be determined through numerical
integration. Given CE(V) from (12) we get the weights given by {13) on the
original Weibull scale.

=4 if w<C (not censored)
s(V) = oo exp(CE(V)/Bo) if w > C (censored) ’
(3-i=1 Bolog(w;i/a) + (n — r)CE(V)) /n, the sample average on the
extreme value scale, corresponds to (][, m&?\vv_\ " or the geometric sample
average, on the original Weibull scale. Figure 3 gives the appropriate lower
control limit for the extreme value CEV approach derived through simulation
to give a false alarm rate of .0027, and assuming oy = By = 1. The appropri-
ate lower control limit for any values of ag and fo is aq mxwtn&\ /Bo) , where
lely is read from Figure 3.

(13)
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2.5 Summary of Methods

As shown, the four distinct methods all correspond to replacing the oma.wmo@m&
observations with a different value. The MLE approach uses C' and adjusted

the denominator, while each of the other methods uses a CEV weight derived
on a different scale. It is interesting to compare the different replacement
values when they are all translated back to the original Weibull scale. Figure
4 shows the resulting replacement value plotted against the censoring time
C'. Note the scales on the plots in Figure 4 are different.

beta = 0.75 beta = 1

N
0w
\
\
\
]

2.5

0N
AY

CEV weight
\
\
CEV weight
o N

o
o o
o
PR S

o

0.5 1 15 0.5 1 1.5
C C

beta = 1.5 beta = 2

n
[3)
n
o w

CEV weight
o

CEV weight
o N

0.5 0.5
L’ oﬁ
0 0.5 1 15 o 0.5 1 15
C C
Fig. 4. Conditional Expected Value Weights as a Function of the Censoring Time
solid line - Weibull CEV, dotted line - exponential CEV, dashed line - extreme
value CEV

Figure 4 shows that the CEV weights are all larger than C, as expected.
However, the values are similar. In fact, the major difference between the
approaches lies more in the test statistic used to monitor for decreases in the
mean, and the ease of determining the control limit. The test statistic for
the Weibull CEV method is the easiest, since we use the (arithmetic) sample
average, as is typically for X control charts. However, the determination
of an appropriate control limit is complicated by a dependence on 3y that
cannot be removed. This is a problem, since it means that it is not possible
to give one figure from which the appropriate control limit can be determined
for any situation. On the other hand, the test statistics for the exponential
CEV and MLE approaches are not simple, since they are not interpretable
in terms of lifetimes and thus may be difficult for production personnel to
understand. The design of control limits for the exponential CEV and MLE
approaches, on the other hand, is easier than for the Weibull CEV approach,
and generally applicable design figures are given in previous sections. From
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this perspective the best approach is the extreme value CEV method. The
extreme value CEV control limits can also be determined independent of 8,
and the test statistic is the geometric sample average. This test statistic is
not as familiar to production personnel as the sample average, but it does
retain interpretability. Of course, in each case, we could simply use the sample
average as test statistic with what every replacement value was suggested.
However, as seen with the Weibull CEV method, then the design of control
limits can not be divorced from the value of §y. Table 1 summarizes the
comparison of the four methods in terms of the replacement value, or censored
weight, test statistic and ease of design.

Table 1. Method Summary and Comparison

Method Censored Test Statistic Design
Weight

Weibull CEV CE(W) > s:(W)/n depends on By

Extreme CEV  aoexp(CE(V)/Bo)  ([Ts:(V)Y/" Figure 3

Exponential ao(CE(X)Y/Po ao(Do0 (si(X)/

CEV ag)Pe /n)t/Po Figure 2

MLE C (r/ >, s:(M))YPo  Figure 1

3 Power Comparison of the Control Charts

In this section, we compare the power of the four control charts, namely the
Weibull CEV, exponential CEV (alpha score), MLE, and the extreme value
CEV methods, for detecting mean shifts in the process. Since the rage of
censoring plays a role, we compare the power of the charts with in-control
censoring rates of 50% and 90%. Figure 5 gives results for subgroups of size
5 or 10, where control limits are determined through simulation to have false
alarm rates equal to .0027. For all approaches other than the Weibull CEV
method, the control limits can be determined from the design figures given in
Section 2. For comparison purposes the performance in the uncensored case
is given with a dashed line in each plot. The Weibull CEV, exponential CEV
and MLE approaches are all virtually indistinguishable in term of power. The
extreme value CEV approach has good power, but is less powerful than the
other methods. The results are given in terms of standard deviation shifts in
the extreme value location parameter because then the results can be gener-
alized as explained below. Decreases in the extreme value mean correspond
to decreases in on the Weibull scale.

286

Qe @ o e
2. s

PriSignal Docreasa i Mean)
4

Pr{Signal Decreasa in Mean)

o

] s
Process Mean Shift

Fig.5. Power to Detect Shifts in the Mean of the Extreme Value Distribution,
ag = 3o = 1, dashed line - CEV Weibull/ CEV exponential/ MLE method, solid
line - Extreme value method

From Figure 5 we see that for moderate censoring proportions, such as
50% censoring, there is almost no loss in power to detect process mean de-
creases. The loss in power becomes more pronounced when the censoring rate
approaches 90%. One reason why we can detect decreases in the mean quickly
even with high censoring rates is that as the mean decreases the censoring
rate also decreases, and thus each sample contains more information. Clearly,
based on these results, there is a tradeoff between information content of the
subgroup and the data collection costs. In many applications, the censoring
proportion is under our control through the censoring level C. Setting it so
that there are few censored observations provides the most information, but
will be the most expensive. The optimal tradeoff point depends on the testing
costs and the consequences of false alarms and/or missing process changes.

Figure 5 can be used to determine the approximate power to detect a
decrease in alpha from g to a; given By for any of the methods. The power
of the Weibull CEV approach actually depends on fy, but the difference is
small for By in the usual range .5 to 2. The horizontal axis gives the mean
shift in terms of the standard deviation units of the location parameter of
the extreme value distribution. Using the relationship between the Weibull
and extreme value distributions, the number of standard deviation units on
the extreme value scale is given by fov/6log(ao/c;)/m . Thus, for example, if
ag = 2.5 and By = 1.25 a decrease to a; = .5 corresponds to a 1.57 standard
deviation shift in the location parameter of the extreme value distribution.
Thus, from Figure 5, our chance of detecting this shift with a single sample
using the exponential CEV method with samples of size 5 and an in-control
censoring rate of 50% is around 80%.

The control charts derived in this article were designed to detect decreases
in mean lifetime caused by decreases to the scale parameter of the Weibull.
However, it is interesting to explore the power of the various methods when
decreases in the mean lifetime are due to changes in the mean holding the
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variance constant. This corresponds to simultaneous changes to both the scale
and shape parameters of the Weibull. As explained in Section 1, this kind of
process change is not as compelling since it implies the shape of the distri-
bution changes. With simultaneous changes to a and A it is difficult to give
general results because the performance will depend on Bo. For illustration
purposes Figure 6 compares the performance of the monitoring procedures
when o = 1. Based on this limited comparison, the Weibull CEV, exponen-
tial CEV and MLE approaches again give very similar power. Now, however,
the extreme value CEV approach is the most powerful. It is not clear why
with the Weibull CEV, exponential CEV and MLE approaches we do better
with 90% than with no censoring.
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Tig. 6. Power to Detect Shifts in the Mean with Fixed Variability, ao = fo = 1,
dashed line - CEV Weibull/score/ MLE method, solid line - Extreme value method

4 Example

In the rust test example described in the introduction, an initial sample of
100 subgroups of size 3 was selected from historical dwo:.;olsm records. H:m
censoring time was 20 days. In the data there was a 70% censoring rate. Using
the MLE procedure described in Lawless, 1982, we estimate ao = »m.o» and
By = 1.51. It was also verified that even though our data are discrete a
Weibull distribution was a reasonably good fit to the data. Based on the
analysis presented in this article, the extreme value CEV method was used.
With a censoring time equal to 20 and ap and fo we get CE(V) = —.023
from (12). Translating this into the original Weibull scale means that all
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censored observations were assigned a weight equal to 47.3. Since the salt
spray chamber has a maximum capacity of 60 units a monitoring procedure
based on subgroups of size 3 was utilized. Thus, with the estimated in-control
Weibull parameters the standardized lower control limit for the extreme value
CEV X chart is —3.2. This value was determined through simulation, but
may be approximated from Figure 3. Scaling the control limits by the in-
control parameter estimates gives a lower control limit of 5.9 for the extreme
value CEV X chart. The resulting CEV X chart for the example data is
given by the first 100 subgroups in Figure 7.
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Fig. 7. Example Extreme Value CEV X charts with n = 3

Figure 7 shows that in the initial implementation there were no out-of-
control points. Thus, the initial data appears to come from an in-control
process, and we should have obtained reasonably accurate parameter esti-
mates. As a result, we may continue to monitor the process for deterioration
using the extreme value CEV charts with the given control limit. The final
20 subgroups are simulated assuming a process shift to oy = 12. These sim#
ulated observations show that the control chart would signals a decrease in
the mean with fairly high probability.

5 Summary and Conclusions

In applications where observed data may be censored, traditional process
monitoring approaches, such as X charts, have undesirable properties such
as large false alarm rates or low power. In this article, adapted control chart-
ing procedures to monitor the process mean applicable when observations are
censored at a fixed levels are proposed. The monitoring procedure is derived
assuming the process has an underlying Weibull distribution. A number of
possible procedures are compared, including procedures based on maximum
likelihood, score and conditional expected value. A chart based on the idea of
replacing all observations by their conditional expected values (CEV) weights
calculated on the extreme value scale is recommended. The procedure is il-
lustrated with an example.
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