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Summary. In industry, process monitoring is widely employed to detect process changes rapidly.
However, in some industrial applications observations are censored. For example, when testing
breaking strengths and failure times often a limited stress test is performed. With censored
observations, a direct application of traditional monitoring procedures is not appropriate. When the
censoring occurs due to competing risks, we propose a control chart based on conditional expected
values to detect changes in the mean strength. To protect against possible confounding caused by
changes in the mean of the censoring mechanism we also suggest a similar chart to detect changes
in the mean censoring level. We provide an example of monitoring bond strength to illustrate the
application of this methodology.

Keywords: Competing risks; Process control; Scores; Type | censoring

1. Introduction

In some industrial situations, the value of a product or process characteristic may be
censored. This censoring may arise for a variety of reasons. For example, the censoring may
be due to time constraints, as in some life testing applications, or due to design, as in proof
loading lumber to test breaking strengths, or due to competing risks, as in some strength
testing applications where there are two or more failure modes. The observed response values
may be right censored, left censored or interval censored. For example, in the testing of
switches, a sample from production is subjected to a life test. However, owing to time
constraints, the testing continues either until all the switches have failed or a set time has been
reached. This yields right-censored responses. Another example that yields interval-censored
data is the use of plug gauges to monitor sizes of holes. To measure the diameter of a hole,
two plugs machined to have diameters at the upper and lower specification of the hole
diameter respectively are applied. If the larger plug enters the hole, then the diameter exceeds
the upper specification. If the smaller plug does not enter the hole, then the hole is below the
minimum specification. For process monitoring, the actual diameters of the few holes that
fail are measured. Here all diameters within the specification limits are censored. An example
of competing risks censoring occurs in the automotive industry and provides the main
motivation for this work. An adhesive is used to attach a vinyl fabric to polyvinyl chloride
foam backing for use in the interior of a car. The strength of the adhesive bond is a key
characteristic and it is of interest to monitor the mean of the bond strength. However, during
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testing, the breaking strength of the bond is not always observed since the foam backing may
fail first. For some units, the bond strength (in pounds per square inch) of the adhesive is
observed, whereas for other units we only know that the adhesive bond strength is greater
than the load level at which the foam failed. Similar situations that result in censored data
occur in many other areas of application.

It is often desirable to monitor the mean (and/or variability) of a critical response.
However, when responses are censored as in the examples described above, using statistical
process monitoring methods that are naively based on the observed values (i.e. ignoring the
censoring) is not effective. If the censoring is ignored, the resulting control chart will not have
the desired operating characteristics. In particular, the chart will typically have a large false
alarm rate. This problem arises because the distribution of the observed values is highly
skewed owing to the censoring. However, even if we design the control chart using prob-
ability limits (based on the skewed distribution) to ensure the desired maximum false alarm
rate, the resulting naive chart will have low power to detect changes in the process mean.

In this paper we consider the case of competing risks censoring. The problem of
monitoring using observations censored at a fixed level has been explored in conjunction with
various distributional assumptions for the strength of the primary failure mode in Steiner and
MacKay (1999, 2001). In the case of censoring at a fixed level, we set the desired censoring
level on the basis of cost or time considerations. However, in the case of competing risks, the
picture is more complicated because the censoring level varies. This means that the properties
of any monitoring procedure will change if the behaviour of the competing risk(s) changes,
and that changes in the primary failure mode may be masked by changes in the behaviour of
the other failure mode(s). For example, in the adhesive strength example, we wish to use the
results of strength tests on samples of units collected over time to monitor the performance of
the production process. If the strength of the bond produced shows a substantial decrease we
would like to know as soon as possible. Decreases in the bond strength signify serious
problems since the adhesive may no longer successfully perform its function. However,
changes in the strength of the foam (the competing risk) can make this monitoring difficult,
especially if the mean foam strength decreases. In this paper we propose a monitoring
procedure for a censored response that arises from competing risks. The procedure is
designed so that it can also detect changes in the behaviour of the competing risk.

The paper is organized in the following manner. In Section 2 we define the notation
and derive the likelihood for a censored sample. The fundamental idea underlying the
methodology proposed is the conditional expected value (CEV) weight. These weights are
defined in Section 3. Section 4 addresses the question of how to design control charts based
on the CEV weights. It also compares the effectiveness of exponentially weighted moving
average (EWMA) CEV control charts and Shewhart-type CEV charts. Section 5 discusses the
implementation of the CEV chart in the context of competing risks. In that case, the
effectiveness of the CEV chart depends on the probability of censoring. As a result, in
addition to the EWMA CEYV chart for the process mean, an EWMA CEYV chart for the mean
of the censoring mechanism is recommended. The use of EWMA CEV charts in the adhesive
example is described in more detail in Section 6.

2. Preliminaries

To fix the notation, let 7 and C represent the strength of the primary failure mode and the
strength of the censoring mechanism respectively. The censoring mechanism represents the
effects of all other possible failure modes. We shall refer to the strength of the primary failure
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mode and the strength of the censoring mechanism as the process strength and censor
strength respectively. We shall assume that the censoring is in the right-hand tail, although
similar results may be obtained for other censoring patterns. If ¢ and ¢ represent the actual
process and censor strengths for any measurement, then we observe (y, §), where

y =min(z, ¢)
and
5— 1 if ¢ < ¢ (failure due to the primary failure mode, i.e. not censored), a1
10 otherwise (failure due to some competing risk, i.e. censored).

To model the process, assume stability for the moment, and denote the probability density
functions of the process and censor strengths as f(¢) and g(c) respectively. Similarly, denote
the corresponding cumulative probability functions as F(¢) and G(c) respectively. We assume
that f and g are continuous distributions, although the methodology may be adapted to
handle discrete observations. More importantly, we assume that 7 and C are statistically
independent, an assumption that cannot be assessed with observations given by expression
(1) (Lawless, 1982). Then, for an observation with observed strength y, the likelihood con-
tribution can be written g(y){1 — F(y)} if the observation is censored and f(y){1 — G(»)} if the
observation is not censored. This likelihood contribution can be summarized as

SO = Fy=*(1 — G ().
Thus, the likelihood for an independent sample of n observations is

n

LAt = F)) ™| TT(1 = GO 20" @

i=

Note that the likelihood can be written as the product of two factors, one dependent on f
and one dependent on g. In what follows, we assume normality of the process strength and
censor strength distributions, i.e. T~ N(u,, o) and C ~ N(u,, o2). Other distributional
assumptions such as exponential, log-normal and Weibull are possible and do not change the
procedure markedly.

As we shall see later, applying the monitoring procedure proposed requires estimates of the
process parameters derived from some initial data. This corresponds to the usual set-up phase
for X- and R-charts where a set of 20 or so subgroups of data are collected to construct the
control limits. Assuming normality, we may derive maximum likelihood estimates (MLEs)
for the underlying process parameters by using expression (2) (Lawless, 1982). In a similar
manner, assuming independence of failure modes, the censor mean and standard deviation
can be estimated. For our example, using previously collected process data, and assuming
normality, the MLEs for the in-control bond failure mean and standard deviation are 17.1
and 2.3 respectively. Similarly, the MLEs for the in-control mean and standard deviation of
the strength of the foam (censor strength) are 18.9 and 3.9 respectively. Since these values are
estimates of the in-control process we denote them u, = 17.1, oy = 2.3, u, =18.9 and
o, = 3.9. Of course, when the data are censored, less information about the process mean
and variance than usual is available. The theoretical sample sizes needed to match the
estimation precision obtained with uncensored data can be determined by using expected
(Fisher) information (Steiner and MacKay, 1999).
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3. Conditional expected value weights

The key idea used in the subsequent monitoring procedures is to replace all censored
observations with their CEV. Using the notation from expression (1), we define the CEV
weights for the process strength as

y ifé=1(>e t <o),
w = E(t|po, 09, ¥, 6) = My = po)/oo} o0 3
(Ulpo, 99, 3, 0) {M0+UOQ{(J/—M0)/00} if6=0(Ge t>c) ©)
where ¢(z) = exp(—z*/2)//(27) and Q(z) = [ ¢(x) dx are the probability density function
and the survivor function respectively of the standard normal distribution and y, and o,
equal the in-control process mean and standard deviation respectively, estimated using
maximum likelihood as discussed in the previous section. In the calculation of w, all
uncensored observations are unchanged, whereas all censored observations are replaced by
their corresponding expected value conditional on their observed censor strength (Lawless,
1982). For example, in the adhesive strength problem, suppose that when testing a particular
unit the foam breaks at 15.1 Ib in~2. In other words, we observe y = 15.11b in™%, and § = 0.
Using expression (3) we replace this censored value with the adhesive strength that we would
have expected if the observation had not been censored. In this case, since we estimated
to = 17.1 and o, = 2.3, from expression (3) we obtain w=17.9 Ib in~2. The values of
expression (3) can be tabulated for any application, thus easing implementation of the
proposed control chart.

The CEV weights have intuitive appeal since they have a direct physical interpretation. By
design, when the process is in control, the expected value of CEV weights, as defined in
expression (3), is g, the process mean. In Appendix A we show that they can also be
motivated through the score function. In fact, the CEV weights are a simple linear
transformation of the scores. This direct connection with the score function shows that the
sample average of the CEV weights forms a good test statistic to monitor the process.
However, the distribution of the average of the CEVs, denoted w, is complex and is affected
by the number of censored observations that are expected, which in turn depends on u,, o,, .
and o,. The distribution of w is skewed, becoming more skewed as the proportion censored
increases.

The idea behind the CEV weights works equally well for other distributions, such as Weibull
or log-normal distributions, but in general they are not a simple linear transformation of the
scores. For more details see Steiner and MacKay (2001).

Although the MLEs are recommended for estimating the in-control process parameters,
they are not a good alternative to the CEV weights for the small subgroup sizes that are
typically used in on-going process monitoring applications. This is because the MLEs have a
large sampling variability for small samples, and if all observations in the sample are
censored the MLEs are not defined. The probability that all observations are censored equals
p", where 7 is the sample size. Assuming normality, p = Pr(§ = 0) = Q{(i, — p,)/+/ (0 + c2)}.
When p is large and the sample size is small, this is a non-negligible probability. In addition,
the calculation of the MLESs requires iteration that may be considered onerous.

4. Control charts based on conditional expected value weights

We establish a monitoring procedure for the mean of a process that produces observations
censored owing to competing risks in the usual manner, i.e. we follow the five steps given below.
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Step 1. determine the subgroup size (denoted n), frequency of sampling, statistic to be
monitored, type of control chart, etc.

Step 2: collect an initial sample of m subgroups. For this initial sample, derive maximum
likelihood estimates for pg, g, 1, and 0. See Section 2.

Step 3: determine trial control limits. This can be accomplished by simulating the dis-
tribution of the average subgroup CEV weight.

(a) Randomly generate a large number of subgroups (say 10000) of the size n for the
actual process and censoring strengths using the parameter estimates from step 2.

(b) For all observations, determine the observed strength y and whether the observation
is censored or not, §, using expression (1).

(c) Replace all observations with their CEV weight, given by expression (3), and
determine all the subgroup averages w.

(d) Determine appropriate control limits from the empirical distribution of w.

Step 4: check the initial sample against the trial control limits to determine whether the
process was in control. Remove out-of-control subgroups, and iterate through steps 2—4 if
there is evidence of instability. Otherwise move to step 5.

Step 5: continue on-going monitoring with the trial control limits.

4.1. Determining control limits

In step 3(d), we determine appropriate upper and lower control limits based on the
distribution of w. We set the control limits to yield any desired average run length (ARL)
when the process is in control. The ARL is defined as the average number of subgroups
required before the chart signals. While the process is in control the ARL before a signal
should be long; however, when the process is out of control we would ideally have a short
ARL.

The appropriate choice of control limit depends on the type of chart. For a Shewhart X-
type chart we choose appropriate percentiles of the simulated distribution of w. For example,
to give the standard false alarm rate of 0.0027 (which corresponds approximately to an in-
control ARL of 370) we set control limits to the 0.135 and 99.865 percentiles.

Consider again the adhesive strength example. Say we wish to monitor the process for
decreases or increases in the bond strength using subgroups of size 12. We used step 3 of the
design algorithm described at the start of Section 4 to determine appropriate control limits.
Simulating the distribution of w using 10000 subgroups, the appropriate percentiles yield
Shewhart control limits equal to 15.2 and 18.8.

Using the distribution of w, we may also design other types of control chart. For example,
an EWMA chart for the process mean is given by Z, = Aw; + (1 — N\)Z,_, where w; is the
average CEV weight of the n units in the ith subgroup, and Z;, = y,. Appropriate EWMA
control limits depend on the subgroup size and both the in-control censor mean and standard
deviation. Generally, EWMA limits can be obtained by using a suitable discretization of the
distribution of w and a Markov chain approximation (Steiner, 1998). However, a reasonable
approximation may be given directly from appropriate percentiles of the distribution of w.
For example, when the EWMA smoothing parameter A equals 0.25 choosing the 1st and 99th
percentiles results in in-control ARLs of between 300 and 450 approximately. Similarly
choosing 0.5 and 99.5 percentiles gives ARLs of between 1000 and 1400, and choosing 1.5
and 98.5 percentiles gives ARLs between 175 and 225. The results are relatively insensitive to
the proportion censored (assuming that it lies between 0.25 and 0.75) and the relative
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magnitude of the standard deviation of the censoring mechanism. Generally, as either the
proportion censored or the standard deviation of the censoring mechanism increases, the
ARL decreases slightly. Using this idea, in the adhesive strength example, control limits for
an EWMA chart with A = 0.25 would be 15.6 and 18.4 if we wished an in-control ARL of
around 400.

4.2. Comparing exponentially weighted moving average and Shewhart conditional
expected value control charts

In Section 4.1 we illustrated the design of both Shewhart and EWMA control charts. In the
context of CEV charts for competing risks it is of interest to compare the power of EWMA
and Shewhart CEV control charts to detect changes in the process mean. The results, shown
in Fig. 1, are derived by using simulation. Clearly, both Shewhart and EWMA CEV charts
are good at detecting decreases in the process mean. However, the EWMA CEV chart is
substantially better than the Shewhart chart at detecting increases in the process mean. Note
that with both types of charts the ARL depends greatly on the in-control censoring pro-
portion. With 75% censoring, the Shewhart chart’s ARL does not peak when the process
mean is 0 because of skewness in the distribution of the average of the CEV weights.

In the adhesive strength example the estimated proportion censored (in control) is 35%. At
this level of censoring the performances of Shewhart and EWMA CEV charts to detect
changes in the process mean are comparable. However, the ARLs of the EWMA chart are
somewhat better, especially for detecting increases in the process mean. As a result, in further
discussion of the example in Section 6, we design and implement EWMA CEV charts.

5. Monitoring the competing risks process

The distribution of the sample average of the CEV weights (w) depends on the mean and
standard deviation of the competing risk. As a result, changes in the censoring distribution
can mask critical changes in the actual failure distribution. For example, a CEV control chart
for the process mean alone would not do a good job in detecting increases in the process
mean that are coupled with decreases in the censor mean. We explore this problem by using a

500, . . » . . . . 550 —r— T T ™

450} s00r

450 r
400

400}
3sof-
300

-

T 250}

<
200
150

100}

501

-1 -0.8 0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
Process Mean

(a)

Fig. 1. Power of CEV process mean control charts ( , EWMA chart; «-eeeevee , Shewhart chart): (a) 25%

censoring; (b) 75% censoring
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standardized process where yy = 0 and p, = 0y = o, = | in control. Fig. 2 shows contours
of the ARL of the EWMA CEV chart for different combinations of process and censor
means. The EWMA CEV chart is designed to have an ARL equal to 500 when the process is
in control. In Fig. 2, we see that if the censoring mean decreases by 1 standard deviation unit
to 0 and simultaneously the process mean increases by 0.5 standard deviation units to 0.5 the
ARL is still close to 500. As a result, an EWMA CEYV chart for the process mean will not be
effective in detecting the change described.

For this reason, we suggest also monitoring the mean of the censoring mechanism. Of
particular interest are decreases in the censor mean since then less information is available
about the actual failure strength distribution. However, increases in the censor mean may
also negatively affect the EWMA CEV control chart since, as the censoring rate decreases,
the variability of the CEVs increases. This may result in larger false alarm rates.

Through symmetry, an EWMA CEV control chart for the censor mean can be designed
using the procedure outlined in the previous section by reversing the roles of the process and
censoring failure strengths. An example is given in Section 6.

The effectiveness of combining EWMA CEV control charts for both the process and the
censor means is explored by showing their combined power in detecting simultaneous
increases and decreases in the process mean and/or censor mean. For this illustration,
consider CEVs determined from expression (3) in two cases. First, we look at a situation
where the censoring rate is around 25% (uy, = 0 and oy = 0,y = u, = 1). Second, we consider
a case with a 75% censoring rate (uy = 0, 0y = 0y = | and p, = —1). In the 25% censoring
case, using the control limit design algorithm suggested in Section 4.1, the lower and upper
control limits for the EWMA CEYV chart are set at —1.05 and 0.95 respectively for the process
mean, and at —0.91 and 0.55 respectively for the censor mean.

The contour plots of the ARL in Fig. 3 show the effect of simultaneous changes in the
process mean and censor mean. For example, when the censoring level is 25%, a process
mean shift from 0 to 0.5 coupled with a censor mean shift from 1 to 0.5 yields an ARL of
around 15. Fig. 3 suggests that the combined charts react relatively quickly to any change in

1.5

50
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Censor Mean
b
0

<

-0.5

5
1000
1 1 °
0 0 1 1

p
5 .5 2
Process Mean

Fig. 2. ARL contour comparison for an EWMA CEV chart for the process mean (uy =0; 0g = 0; = 0, = 1)
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censor mean
censor mean

K L L .
-1 -0.5 15 2 1 0.5
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Fig. 3. ARL contour comparison for combined EWMA charts (o0;=0,=1): (@) =0 and p, =1
(approximately 25% censoring); (b) po = 0 and pq = —1 (approximately 75% censoring)

the mean from the in-control condition. Of course, it is easier to detect changes in the pro-
cess mean when the censoring rate is smaller. The ARLs in Fig. 3 are derived assuming
independence between the two EWMA charts. This assumption is reasonable away from the
in-control conditions where only one of the charts is likely to signal. The contour plots in Fig.
3 suggest that the combined EWMA charts quickly detect any changes in the process mean.
The only exception is when the censoring proportion is large, where increases in the process
mean that occur at the same time as small decreases in the censor mean will be difficult to detect.

Another possible solution to the potential masking effect of changes to the censor mean is
to monitor the proportion censored. This approach is not explored in detail in this paper.
Monitoring the proportion censored could be accomplished by using a cumulative sum chart
on the number of censored units in each sample. Increases or decreases in the censoring
proportion signify that changes in the process mean may be masked. An appropriate
cumulative sum chart that takes into account the inherent discreteness in the number of
censored observations may be designed by using the methodology described in Steiner et al.
(1996).

6. Example

Consider the adhesive strength example described in Section 1. To ensure the quality of the
adhesive bond produced we shall monitor this process for decreases or increases in the bond
strength and/or foam strength by using a combined EWMA CEV chart for the process and
censor means. For the monitoring, subgroups of size 12 were obtained each day.

As discussed in Section 2, the MLEs for the in-control strength of the bond and foam are
estimated to be p, = 17.1, 0y = 2.3, p, = 18.9 and o,y = 3.9. At these levels, the censoring
rate of the strength test while the process is in control is approximately 35%, which matches
our experience. On the basis of this information, expression (3) gives the CEV sample weights
w used in the charts for the process mean. Reversing the roles of the bond and foam
strengths, expression (3) also gives the weights for the censor mean. Denote these weights v.
An example of the calculation of the weights for the 12 units in the first subgroup is given in
Table 1. For this subgroup, we calculate w = 17.5 and v = 18.4.
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Table 1. Example of the weight calculation
Parameter Results for the following units:
1 2 3 4 5 6 7 8 9 10 11 12
Yi 151 183 167 19.1 139 135 143 163 145 152 143 200
6 0 1 1 1 0 0 0 1 1 0 1 1
w; 179 183 16.7 191 17.5 174 17.6 163 145 179 143 20
v; 15.1 21.6 207 222 139 135 143 206 198 152 198 222
19 EWMA chart for qdheslve strength 19 EWMA chart for adhesive strength
10 15 20 25
22 EMWA chart for foam strength 2 EMWA chart for foam strength
16, . L 16, R A o
o] 5 10 15 20 25 ~
subgroup number 0 5 su?:group nur?\ger 2 %
(a) (b)

Fig. 4. Examples of EWMA CEV control charts for censored data: (a) decrease in adhesive strength after
sample 20; (b) decrease in foam strength after sample 20

We shall use two EWMA charts: one designed to monitor the mean adhesive strength and
the other designed to monitor the mean foam strength. On the basis of the simulation
discussed in Section 4.1 we set the lower and upper control limits for the EWMA CEV chart
for the mean adhesive strength at 15.6 and 18.4. Interchanging the roles of the adhesive
strength and foam strength we can use the same design algorithm to determine appropriate
control limits for an EWMA CEV chart for the foam strength. We obtain lower and upper
control limits of 16.6 and 20.7. v

Fig. 4 shows two examples of the combined EWMA CEV control charts for the process
and censor means. In both cases, the first 20 samples represent an in-control condition. In
Fig. 4(a) the effect of a decrease in the adhesive strength is simulated. After observation 20
the decrease in the adhesive strength is simulated through a decrease of 1 standard deviation
unit in the adhesive strength mean. This decrease in the adhesive strength results in a number
of signals in the EWMA CEV chart for the adhesive strength. In the two plots in Fig. 4(b) the
effect of a simulated decrease in the breaking strength of the foam of 1 standard deviation
unit at observation 20 is shown. This decrease in the censor strength is clearly evident in the
signals for the EWMA CEV chart for the foam strength after observation 20.

7. Summarizing remarks and conclusions

In applications when observed data may be censored, traditional process monitoring
approaches have undesirable properties such as large false alarm rates or low power. When
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the censoring comes from competing risks, adapted control charting procedures to monitor
the process based on CEV weights are proposed. The CEV weights are equivalent to the
likelihood scores and are thus optimal if the underlying distribution is normal. Since changes
in the censoring level may mask changes in the process mean, we propose the simultaneous
use of two EWMA CEV control charts to monitor both the process mean and the censor
mean. The theoretical properties of such charts are shown to provide excellent protection
from process changes.
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Appendix A: Justifying conditional expected value weights by using the score
function

Utilizing the normality assumption, the CEV weights can also be justified by a likelihood argument.
Consider the score, denoted s, which is defined as the first derivative of the log-likelihood (given by
expression (2) with n = 1) with respect to u evaluated at the in-control process mean and standard
deviation, i.e.

L=l

o5

o{(c — po)/ oo}
o Q{(c — po)/ o0}

These scores do not have a direct physical interpretation but are the basis for an optimal test statistic
to detect small shifts in the process mean (Cox and Hinkley, 1974). Note that the scores given by
expression g4) are equivalent, under a rescaling, to CEV weights given by expression (3). In particular,
w = g + os for both censored and uncensored observations. Thus, the scores are a linear translation
of the CEV weights, and the CEV weights are also optimal. We know that

E[0{log(L)}/ 0] =

so it follows that the mean of w equals p;, independent of the mean and variance of the censor strength,
when p, = yy and o, = 0. However, the standard deviation of the CEVs depends on the mean and
variance of the censor strength. As either the censor mean or variance changes in such a way that the
probability of censoring increases, the standard deviation of w decreases.

if £ < ¢ (not censored),

Q)

S =
if ¢ > ¢ (censored).
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