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Outcome measurement is a
cornerstone of quality im-
provement. Continuous out-
come monitoring provides

an approach to guide improvements in
quality of care by providing feedback
about the overall effects of changes in
practice. Monitoring can be used to de-
tect a change in outcomes so the process
of care can be examined, reinforcing ben-
eficial practices and eliminating factors
that degrade performance. Alternatively,
monitoring can be used to prospectively
evaluate single or multiple interventions.
In a culture of change, driven by innova-
tion and the incorporation of empirical
research-based evidence (evidence-based
medicine), continuous monitoring of

outcomes has the potential to direct the
evolution of practice toward higher qual-
ity.

In medical applications, as in industry,
process performance may be better un-
derstood with evaluation of the conse-
quences of process interventions and pro-
vision of sequential information (1).
Some quality surveillance applications
have been described in the medical liter-
ature, including monitoring clinical out-
comes in colonoscopy (2–4), pediatric
cardiac surgery (5), and adult thoracic
surgery (6). Continuous surveillance ac-
cumulates evidence to detect subtle
changes, may detect cyclic changes, and
can offer contemporaneous feedback and
analysis.

Process monitoring may include Sh-
ewhart p charts and the cumulative sum
(CUSUM) procedure. The p chart can de-
tect large changes in a rate of occurrence,
and the CUSUM is suited to detecting
small persistent changes in an event rate
over time (7).

Manufacturing and industrial applica-
tions typically have homogeneous input
specifications, so traditional control
chart approaches make no adjustment for
different risks of failure. In contrast, pa-

tients referred to intensive care units
(ICU) are heterogeneous in their clinical
presentation and physiology. Case-mix is
a term that broadly describes the consid-
erable variability in patients’ condition
and severity. Incorporation of a validated
risk of death adjustment to control chart
analysis is conceptually similar to model-
ing the effects of confounding variables in
a controlled study. In risk-adjusted (RA)
outcome monitoring, the confounding
factor is mortality risk.

In the RA p chart, the observed mor-
tality rate is compared with control limits
estimated around the predicted mortality
rate accounting for case-mix, patient
numbers, and random variation (Appen-
dix 1). As with outcome analysis with the
standardized mortality ratio, repeated
sample periods will increase the probabil-
ity of false alarm in a predictable manner.

Steiner et al. (8, 9) developed a RA
CUSUM procedure for continuous moni-
toring based on the likelihood ratio. They
propose an efficient graphical method for
identifying when there is either a sub-
stantial decrease or increase in RA mor-
tality (Appendixes 2 and 3).

In this report, an RA p chart and a
two-sided RA CUSUM chart are applied to
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Objective: To present graphical procedures for prospectively
monitoring outcomes in the intensive care unit.

Design: Observational study: risk-adjusted control chart anal-
ysis of a case series.

Setting: Tertiary referral adult intensive care unit: Princess
Alexandra Hospital, Brisbane, Australia.

Patients: A total of 3398 intensive care unit admissions from
January 1, 1995, to January 1, 1998.

Conclusions: Risk-adjusted process control charting proce-
dures for continuous monitoring of intensive care unit outcomes
are proposed as quality management tools. A modified Shewhart
p chart and cumulative sum process control chart, using the
Acute Physiology and Chronic Health Evaluation III model mortal-
ity prediction for risk adjustment, are presented. The risk-ad-
justed p chart summarizes performance at arbitrary intervals and

plots observed against predicted mortality rate to detect large
changes in risk-adjusted mortality. The risk-adjusted cumula-
tive sum procedure is a likelihood-based scoring method that
adjusts for estimated risk of death, accumulating evidence
from outcomes of all previous patients. It formally tests the
hypothesis of a change in the odds of death. In this application,
we detected a decrease from above to predicted risk-adjusted
mortality. This was temporally related to increased senior
staffing levels and enhanced ongoing multidisciplinary review
of practice, quality improvement, and educational activities.
Formulas and analyses are provided as appendices. (Crit Care
Med 2003; 31:1676 –1682)
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data from an ICU data set to monitor ICU
outcomes. The RA is based on the locally
validated Acute Physiology and Chronic
Health Evaluation (APACHE) III (10)
model. This is the first report of outcome
surveillance procedures proposed to con-
tinuously monitor local changes in RA
mortality performance in ICU.

MATERIALS AND METHODS

The data set is drawn from 3398 consecutive
ICU admissions (3159 hospital admissions from
January 1, 1995, to January 1, 1998) to the
Princess Alexandra Hospital in Brisbane, Austra-
lia. The Princess Alexandra Hospital ICU pro-
vides medical and surgical critical care services
to an 858-bed adult metropolitan teaching hos-
pital, which is the regional center for trauma,
major surgery, medical subspecialties, and psy-
chiatry.

The ICU mortality analysis included all eligi-
ble admissions to the ICU, including readmis-
sions. The hospital mortality analysis excluded
all ICU readmissions during an episode of hos-
pitalization to prevent double counting of out-
comes. For each admission, estimates of in-ICU
and in-hospital mortality rates were calculated
with the APACHE III equation (10). The details
of local performance and model validation have
been described (11). The receiver operating
characteristic curve area was 0.90, and calibra-
tion curves and goodness-of-fit analysis indi-
cated that the models with proprietary adjust-
ments for hospital characteristics were well
calibrated at this site during the period of anal-
ysis. Proprietary adjustments to the standard
APACHE III model included the additional vari-
able of pre-ICU treatment period and informa-
tion about the institution size, teaching status,
and region. In the case of the Princess Alexandra
Hospital, a similar hospital model references the
predictions to teaching hospitals of similar size
in the Midwest region of the United States (C
Alzola, personal communication, 1999).

Two control chart approaches to analysis of
RA ICU and hospital mortality data are pre-
sented. Shewhart p charts (Figs. 1 and 2) were
plotted by using semiannual observed mortal-
ity rates compared with APACHE III predicted
mortality rates with control limits set at
�1.96 SD of the predicted mortality. Control
limits are dependent on admission numbers
and case-mix and are calculated from the
APACHE III predicted mortality and an esti-
mate of the SD of the predicted mortality rate.
Appendix 1 provides references and the formu-
las for these estimates. In the design of the
chart, limits were chosen for which, in a single
observation period, the power to detect a dou-
bling or halving of the odds of death would be
estimated as �0.8.

The second chart analysis is a likelihood-
based CUSUM chart to follow RA mortality. In

Appendix 2, the CUSUM approach for contin-
uous monitoring is described in detail. Appen-
dix 3 presents an analysis of the performance
and a description of the surveillance method
in terms of run length characteristics.

The performance characteristics of the RA
p chart and the RA CUSUM can be analyzed
either in terms of the probability of signal
during a period of analysis or the distribu-
tional features of the number of observations
before a signal occurs, under both unchanged
and changed odds ratios (OR). The first ap-
proach, the probability of false alarm and
power of the technique, is familiar. Appendix 1
presents the formulas for this analysis of the
RA p chart. Appendix 3 describes the analysis
of the run length characteristics of the RA

CUSUM. When the RA performance has not
changed, the false-alarm run length is some-
what analogous to a measure of specificity.
Where the RA performance has changed, run
length to signal can be thought of as similar to
sensitivity.

RESULTS

The RA Shewhart p charts plotting
semiannual mortality rates for in-ICU
mortality (Fig. 1) and in-hospital mortal-
ity (Fig. 2) are plotted for the 3-yr period
1995–1997.

In Figure 1, the observed in-ICU mor-
tality was close to predicted, except for

Figure 1. Risk-adjusted Shewhart p-chart of intensive care unit mortality for Princess Alexandra
Hospital, 1995–1997. Modified p chart of semi-annual observed and predicted in-ICU mortality with
�1.96 SD control limits. Expected in-hospital mortality is estimated by the Acute Physiology and
Chronic Health Evaluation III model, adjusted for hospital characteristics.

Figure 2. Risk-adjusted Shewhart p-chart of intensive care unit mortality for Princess Alexandra
Hospital, 1995–1997. Modified p chart of semi-annual observed and predicted in-hospital mortality
with �1.96 SD control limits. Expected in-hospital mortality is estimated by Acute Physiology and
Chronic Health Evaluation III model, adjusted for hospital characteristics.
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the first half of 1997, during which the
observed mortality rate decreased below
the lower control limit of the predicted
mortality. In Figure 2, the observed in-
hospital mortality was higher than ex-
pected, with each of the first three review
period rates falling beyond the upper 1.96
SD control limit.

The data are presented by using two-
sided RA CUSUM charts for the ICU (Fig.
3) and the hospital outcomes (Fig. 4). In
each, the upper CUSUM was designed to
detect a doubling of the odds of death
(ORA � 2), and the lower chart was de-
signed to detect a halving of the odds of
death (ORA � 0.5). When the CUSUM
crosses the control limit (h� or h�),
enough evidence of a change in the ICU
mortality rate has accumulated, and the
CUSUM “signals.” At this point, the CU-
SUM is reset to zero, and monitoring is
resumed.

Figure 3 shows the variation around
the baseline, with no accumulation of
evidence that the odds of an ICU death
are either substantially higher or lower
than expected with the APACHE III ICU

mortality model, in the first 2,600 pa-
tients. However, by admission number
2695, the CUSUM decreased below h�.
Either this signal was a random statistical
event or the odds of in-ICU death were
below predicted. The CUSUM was reset to
zero, and there were no further signals.

Figure 4 presents a different pattern.
The hospital RA CUSUM signaled an in-
creased mortality by patient 533, when
the upper control limit h� was exceeded.
The upper RA CUSUM was reset to zero,
and the upper control limit was exceeded
again at patient 1119. It is reasonable to
conclude that this represents increased
odds of RA hospital mortality during this
period. However, in a prospective appli-
cation, a signal would prompt action, and
subsequent signals would be interpreted
in the context of any actions taken.

DISCUSSION AND
CONCLUSIONS

RA control charting allows continuous
monitoring of ICU outcomes while ac-
counting for dynamic case-mix. Two dif-

ferent approaches are compared: the RA p
chart is a summary charting technique,
and the RA CUSUM is a sequential chart-
ing technique. This case series presents
charts with signals of increased RA mor-
tality exceeding APACHE III predictions
and a signal representing random varia-
tion, or mortality decreasing below pre-
dicted.

The RA p chart analyses compare an
observed mortality rate with the pre-
dicted mortality rate. In this example, by
using �1.96 SD control limits and semi-
annual reviews, the design of the RA p
chart corresponds for a single observa-
tion period to the detection of a doubling
of the odds of death (OR � 2) with a
power of 0.98–0.99 for in-ICU mortality
and 0.93–0.98 for in-hospital mortality.
For a smaller increase in odds of death,
say, OR � 1.5, the corresponding power
estimates are in the ranges of 0.65–0.76
for in-ICU mortality and 0.45–0.59 for
in-hospital mortality. The RA p chart will
demonstrate large differences in RA per-
formance but may be insensitive to small
differences in RA mortality.

However, with six observation periods,
the probability of one or more false
alarms, where the probability of death is
accurately predicted by the RA tool and
where control limits are set at �1.96 SD,
is 1 � 0.956 � 0.26. A false alarm would
occur, on average, approximately every
10 yrs. It is very likely that the three
signals of increased in-hospital mortality
during the initial three semiannual re-
views represent true increased odds of
death relative to the APACHE III predic-
tions. The signals of mortality below pre-
dicted in both the in-ICU and in-hospital
mortality charts may be either chance
events or real differences.

The RA p chart can be designed pro-
spectively to meet meaningful perfor-
mance specifications. For example, to de-
tect a doubling of odds of in-ICU death
with � � 0.05 and 1 � � � 0.9, given the
case-mix of the sample, approximately
300 cases would be required (�14 wks).

With the design of the RA CUSUM, the
average run length to signal, where there
are no changes in the odds of in-ICU
death, is 7150 admissions; that of in-
hospital death is 5400 admissions. This is,
on average, a false signal of increased RA
mortality every 6.3 and 5.1 yrs, respec-
tively. We conclude, again, that the sig-
nals of observed in-hospital mortality ex-
ceeding predicted are probably true-
positive signals. The significance of the

Figure 3. Risk-adjusted cumulative sum (CUSUM) of intensive care unit mortality for Princess Alexandra
Hospital, 1995–1997. Expected in-hospital mortality is estimated by the Acute Physiology and Chronic
Health Evaluation III model, adjusted for hospital characteristics. The control limit h is set at �4.5.

Figure 4. Risk-adjusted cumulative sum (CUSUM) of intensive care unit mortality for Princess Alexandra
Hospital, 1995–1997. Expected in-hospital mortality is estimated by the Acute Physiology and Chronic
Health Evaluation III model, adjusted for hospital characteristics. The control limit h is set at � 4.5
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signals of mortality less than predicted is
unclear.

The choice of a specific control limit is
a management decision, and chart design
balances the risks of false signals and of
not detecting a change in RA perfor-
mance. Figure 5 in Appendix 3 shows the
relationship between average run length
and the changed OR in the context of
in-ICU mortality and the specific control
limit, h � 4.5. For example, the average
run length to signal of the RA CUSUM
when the OR is 2 is 125 cases (�5 wks).

The RA CUSUM may detect real
changes sooner than the RA p chart, sim-
ply because the p chart cannot signal
before the end of each observation period.
The RA p chart requires arbitrary, defined
periods of analysis and so may miss or
delay a signal if changes occur halfway
through a monitoring period. A charac-
teristic of monitoring outcomes for qual-
ity management, compared with con-
trolled interventional studies, is that the
timing of changes may not be controlled
or predicted in advance, or multiple,
staged changes may occur. In contrast,
the RA CUSUM can signal irrespective of
the timing of the change in odds of death
relative to the monitoring period if the
increased OR is sustained. After signal-
ing, the chart will resume accumulating
evidence.

To interpret the significance of signals
on RA control charts, we must consider
the possibilities of random variation, sys-
tematic problems with model fit, and
clinically relevant changes in the quality

of care. Qualitative plots of observed mi-
nus expected outcomes do not account
for the effects of random variation. Such
plots have been used for cardiac surgical
monitoring (12–14) but do not specify
how much random variation in the plot is
expected. Sherlaw-Johnson et al. (15)
provide nested prediction intervals that
have been applied to tracking cumulative
mortality from myocardial infarction
(16). However, the accumulating proba-
bility of false alarm with repeated analysis
makes continuous monitoring of out-
comes difficult to interpret.

In the analysis presented, either ran-
dom variation or a nonsustained reduc-
tion in the odds of death would account
for a lower than predicted mortality in
the later part of the in-ICU and in-
hospital series. However, the longer pe-
riod of an apparent higher than predicted
hospital mortality, with repeat signals, is
less likely to be due to chance.

These techniques are as much a form
of continuous assessment of RA tool cal-
ibration as of the clinical process of care.
Where a change is signaled, either the
model fit or the clinical milieu may have
changed. It is mathematically not possi-
ble to separate the two possibilities, and,
clearly, the model fit is dependent,
among other things, on the clinical pro-
cess. Changes in data collection (17, 18),
patient case-mix (19), admission lead
time (20), discharge practices (21), ob-
served mortality rate (22), rule interpre-
tations, and transcription ambiguities
(23) all can potentially interfere with ICU

mortality prediction systems, including
the APACHE III system. It is essential
that the models for RA be validated on
site and that model or data failure always
be considered as a possible cause for a
signal. This application uses a validated
generalization of an existing model (11),
but the “black box” nature of the
APACHE III system makes it difficult to
analyze the role of the RA model when a
signal is detected. Recalibration of an ex-
isting ICU outcome model (21, 24, 25) or
application of locally developed models
would be equally appropriate and more
transparent.

In this analysis, the data collection
and application of the RA tool were not
altered, and a change in survival is pos-
sible. An improvement in senior staffing
was a discrete milestone that occurred
around admission number 1100. An on-
going multidisciplinary, evidence-based
review of all aspects of patient care fol-
lowed and continues, similar to guide-
lines recently proposed independently
elsewhere (26). No further signals of in-
creased RA mortality were seen in this
analysis.

Considering these caveats, RA out-
come monitoring is proposed as a
method of quality management. General
ICUs seldom have the caseload and never
have the resources to offer controlled
prospective evaluation of incremental
change. Cardiac surgery is a common
group of procedures, yet a power analysis
of 43 Veterans Affairs hospitals in the
United States (1987–1992) (27) found
that only one institution had enough
cases to potentially detect a doubling of
surgical mortality in a 6-mo period (� �
0.05; 1 � � � 0.8). A typical, general ICU
has a myriad of diagnoses. APACHE III
has 95 disease groups and more than 250
diagnoses. Well-designed controlled stud-
ies can demonstrate the effectiveness of a
clinical intervention under test condi-
tions, but application to local clinical
practice conditions may be a concern (6).
Collecting similar patients leads to delays
in data accumulation, with therapeutic
creep and continual change rendering
historical findings obsolete. Excess mor-
tality during case collection may be an
unacceptable price to pay for specificity.
Timely recognition may support further
improvements or prevent unnecessary in-
creased mortality.

Continuous monitoring of RA out-
comes allows a broad evaluation of a clin-
ical milieu. These are not tools to assess a
change that affects only a small number

Figure 5. Average run length of cumulative sum for changes in the odds ratio of risk-adjusted
mortality. The distribution of average run length is based on the case mix of the Princess Alexandra
Hospital intensive care unit and the choice of h at �4.5. An odds ratio of 1 gives an average run length
of 7400, whereas a doubling or halving of the odds ratio should signal by 125 patients on average.
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of patients; they are more suited to mon-
itoring changes that affect all patients or
the entire clinical process. RA monitor-
ing is not a substitute for rigorous con-
trolled evaluation, but, then, controlled
studies are not necessarily practical for
the evaluation of a culture of innovation,
evolution, and incremental change.

This article presents the first continu-
ous monitoring technique of outcomes in
ICU with RA control charting to track
local RA mortality performance. Medical
practice is an evolutionary process,
which, we assume, moves toward im-
proved patient outcomes. The methods
are proposed so that we may contempo-
raneously learn the most from our pa-
tient data, rather than be judged by oth-
ers in retrospect.
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APPENDIX 1

Control Limits and Power Analysis of
Shewhart p Chart. The modified p chart
plots observed mortality rates, predicted
mortality rates, and estimated control
limits. In situations in which the cases
have a differing expectation of mortality,
the usual formulas for calculation of con-
trol limits (28, 29) are modified.

Control limits are dependent on ad-
mission numbers and case mix and are
calculated from the Acute Physiology and
Chronic Health Evaluation (APACHE) III
mortality predictions. An estimate is
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made of the SD of the predicted mortality
rate (15, 30). This leads to

CL �
1
n� �

i�1

n

pi � K��
i�1

n

pi�1 � pi��
[1]

where: CL are the control limits, n is the
number of cases in each block of admis-
sions, indexed by i, pi is the predicted risk
of death, K is the number of standard
deviations chosen for control limits, and
�1.96 SD is equivalent to an alpha error
of .05 for a single observation.

More accurate characterization of the
distribution of the observed mortality for
the Princess Alexandra Hospital data set,
using simulations or a Markov, iterative
approach demonstrates that this estimate
of the control limits is good to �2 SD, but
it becomes less reliable for decision
thresholds beyond. In monitoring health
outcomes, particularly mortality, control
limits beyond of �2 SD may demand an
inappropriately high specificity before
prompting review and action. Also, given
the performance of the RA models, accu-
racy beyond 2 SD may be unrealistic.

The power of the analysis to detect
changes in the RA mortality in any single
observation period can be estimated
given case mix, block grouping size, and
an alternative hypothesis to define risk of
death. This calculation may be useful in
the design of the chart.

Power � 	� � K��
i�1

n

pi�1 � pi� � �
i�1

n

� pi � Qi�

��
i�1

n

Qi�1 � Qi�
� �

� 1 � 	�K��
i�1

n

pi�1 � pi� � �
i�1

n

� pi � Qi�

��
i�1

n

Qi�1 � Qi�
�� [2]

Where 	(x) is the cumulative normal dis-
tribution for the value x and Qi is the
alternative risk of death. In this series, it
is based on an altered odds ratio (ORA). If

ORA �
Qi 
 1 � Qi

pi 
 1 � pi

[3]

then

Qi �
ORA�pi

1 � pi � ORA�pi
[4]

APPENDIX 2

Risk-adjusted Cumulative Sum
Procedure. The development of the
risk-adjusted cumulative sum (RA CU-
SUM) approach has been described in
detail elsewhere (8, 9, 31). A statistic,
Xt, accumulates the score for all pa-
tients from the start of monitoring
until the point of observation. Mathe-
matically, an RA CUSUM chart is cre-
ated by plotting Xt vs. patient number t,
where

Xt � max�0, Xt�1 � wt� [5]

and

t � 1,2,3. . .

X0 � 0 ,

The patient’s score (wt) depends on
three factors: the patient’s estimated
risk of death, pt, the patients outcome
yt, where yt � 0 for a survivor and yt �
1 for a death, and ORA, defining the
alternative level of performance to be
detected. The risk, pt, is provided by an
RA model. The APACHE III model ad-
justed for hospital characteristics is
used. Any existing model such as
APACHE II (32), SAPS II (33), or the
MPM (34, 35) series could be used
(recalibrated if the fit were inadequate),
or a site specific logistic regression
model could be fitted to sample data
and be validated. For “near real time”
monitoring of RA mortality, an inten-
sive care unit (ICU) model with a 30-day
survival end point would, ideally, per-
mit analysis to be only 30 days in ar-
rears.

Because each patient’s mortality risk
may vary, ORA is specified as an OR. In
this example, we design a chart to detect
a doubling in the odds of failure, so we set
ORA � 2. An increase in the OR to 2 is
equivalent to an increase in the overall
ICU mortality rate from the current 9.9%
(16% in hospital) to 18% (27.6% in hos-
pital).

The score, (wt) for each patient is de-
rived using a log likelihood ratio. It is
given by the logarithm of the ratio of the
probability of the outcome observed, un-
der the alternative hypothesis of interest,
which is defined through ORA and pt, to
the probability under the currently esti-
mated risk, defined as pt if the outcome of

interest is death and (1� pt) if the out-
come is survival.

wt

� � log	 ORA

�1 � pt � ORApt�



if yt � 1 �i.e., patient t dies)

log	 1
1 � pt � ORApt



if yt � 0 �i.e., patient t survives�

[6]

The CUSUM can be regarded as a for-
mal sequential procedure for testing the
null hypothesis: H0: OR � 1, vs. the al-
ternative hypothesis, HA: OR � ORA.

When designing a chart to detect
increases in the ICU mortality rate (i.e.,
ORA � 1), the wt associated with mor-
tality are positive, whereas successes
receive a negative score. For example, if
ORA � 2, then a patient who has a
predicted ICU mortality risk of 1%
would contribute a score equal to 0.68
if her or she dies and �0.01 if he or she
lives. A patient who has a predicted
mortality risk of 30% would contribute
a score equal to 0.43 if he or she dies
and �0.26 if he or she lives. The “pen-
alty” for a death of a low-risk patient is
more severe than for a death of a high-
er-risk patient.

To complete the CUSUM design, we
must choose a value for the control
limit (h). For each of the CUSUMs, the
choice of h involves an inherent trade-
off based on the in-control and out-of-
control average run length of the pro-
posed procedure (Appendix 3). For the
CUSUM designed to detect increases
(decreases) in the ICU mortality rate,
setting the control limit h at 4.5 (�4.5)
gives an average run length of around
7,150 patients when the OR is un-
changed.

For presentation on the same diagram
of two CUSUM procedures on the same
data series, we have used the convention
that if ORA � 1,

Xt � min�0, Xt�1 � wt� [7]

and the CUSUM accumulates a negative
value. The procedure signals when Xt falls
below h- � �4.5

APPENDIX 3

Analysis of Performance of the RA CU-
SUM Monitoring Scheme. A CUSUM is
designed to continually monitor the ICU
performance until a signal occurs. The
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procedure will, theoretically, always
eventually signal because the testing
(monitoring) is continued indefinitely.
The number of patients until the CUSUM
first exceeds the control limit is called the
run length of a CUSUM. If the ICU mor-
tality rate has not changed, a signal will
represent a false alarm, and long run
lengths are desirable. If the mortality has
increased substantially, short run lengths
are desirable.

The run length is a random variable
whose distribution represents all the pos-
sible runs that may arise given a partic-
ular overall mortality rate, patient mix,

and the effects of chance. Thus, the aver-
age run length of the CUSUM when the
mortality rate has not changed is some-
what similar to the type I error rate of a
traditional statistical test. Likewise, the
average run length of the CUSUM when
the mortality rate has increased substan-
tially is somewhat analogous to the power
of a traditional statistical test. Determin-
ing the average run length of a CUSUM at
the design stage is computational inten-
sive because it is based on all possible
outcomes for a long series of patients,
but it may be closely approximated (31).
Selection of h represents a trade-off

between false alarms and delay in
detection of a true change in the odds of
death.

To quantify the ability of the CUSUM
procedure to quickly detect increases in
the odds of death, Figure 5 shows a plot
of the average run length against a mea-
sure of the in-ICU performance given in
terms of the RA odds of mortality. We use
the patient mix, in terms of APACHE III
risk of death estimates in the current data
set, to estimate these distributions. We
see in Figure 5 that substantial changes
in the OR result in a rapid decrease in the
expected run length of the CUSUM.
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