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Abstract. Many processes have defective rates measured in parts per million 
(PPM).  When the process yields such a high level of quality, traditional 
methods of process improvement, such as designed experiments, and control 
charts on the number of defectives or the time between defectives, are no longer 
effective.  However, it may still be desirable to monitor and/or improve such 
processes.  In this article, we take a critical look at attempts to apply control 
charts in this situation. As an alternative, we suggest that since defectives are so 
rare, we should carefully study any that are observed.  By comparing the 
characteristics of the defectives to good units, both in terms of their physical 
dimensions and properties, and the process records from their production, we 
may be able to identify the key differences.  Using this type of retrospective 
study, the goal is to identify an explanatory continuous variable or variables that 
can be monitored instead of the number of defectives or the time between 
defectives. 

 
 

1 Introduction 
 

Currently, many processes produce defectives at a rate less than 100 parts 
per million (PPM).  We shall refer to such a process as a PPM process.  For any 
process monitoring scheme, quickly detecting a deterioration in the defective 
rate is desirable.   Since a PPM process produces so few defectives, looking at 
the number of defectives in a sample or the time between defectives does not 
provide much information on per unit basis.  This information problem is 
accentuated if we are not employing 100% inspection.  In this article we will 
address the question: “Can statistical methods be used to monitor changes in the 
rate of defectives in a PPM process?” 

To answer this question we should first clearly define the problem.  We 
assume that each part can be judged defective or not defective.  This is a 
discrete environment where all non defective units are considered equivalent.  
The framework implies that either there is no known underlying continuous 
measurement or that it is not (cheaply) observable.  For example, the 
environment does not include the situation where a part is called defective 
because a continuous measurement is outside of specification.  If this were the 
case, the problem is greatly simplified by monitoring the underlying continuous 
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measurement.  We have also excluded the possibility of using compressed limits 
where it is possible to classify units based on artificial specification limits that 
are narrower than the actual specifications (Geyer et al. 1996).  In this way, the 
problem of PPM defectives can be transformed into one with a much larger 
"defective" rate that is more amenable to standard monitoring methods.   

One suggested monitoring tool for this discrete environment is a control 
chart of the number of defectives or the time between defectives (Montgomery, 
1991, Nelson, 1994, McCool and Joyner-Motley, 1998).  Unfortunately, as will 
be shown, these previously proposed control charts do not work well for 
monitoring a PPM process.  In this article, we suggest that a better approach is 
to focus on the defectives produced and compare them in as many ways as 
possible with good units.  The key is to find out how the defectives are different 
from good units in terms of some other characteristic (or combination of 
characteristics).  Identifying such differences can provide a continuous 
measurement that can be monitored effectively using X  and R control charts. 

This article is organized in the following manner.  In the next section 
previously suggested control chart based approaches are criticized.  We 
demonstrate the weaknesses of using a p-chart to monitor the defective rate 
directly or Shewhart and sequential charts for the time between defectives.  Next 
a possible remedy is discussed. The approach is based on using a retrospective 
analysis to identify explanatory variates whose values are related to the 
defective rate. An example from the automotive industry is given.   

 
2 Critique of Previously Proposed Approaches 

 
One approach to monitor the process performance of a PPM process is to 

use control charts on either the number of defectives or the time between 
defectives.  Control charting has a long and successful history.  The idea is that 
by quickly determining when the process performance deteriorates, the cause of 
the deterioration can be identified and eliminated. Control charts work well 
when the process output can be measured on some continuous scale or when the 
defective rate is not close to the extremes 0 or 1.  

To implement any control chart, we must first observe the process in an in-
control state for long enough to allow us to estimate the in-control process 
performance fairly accurately.  However, with PPM processes there is not 
enough information in the occasional defective item either to set up a control 
chart or to use it effectively. 

 
2.1 Control Chart to Monitor the Proportion Defective 

 
In the case of good/defective process output, a p chart is recommended 

(Montgomery, 1991). Subgroups of size  are taken periodically from the 
process and the proportion of defectives is recorded. To set up a p-chart, the 
standard rule is to set the control limits at 

n

( )0 0 03 1p p p± − n⎡ ⎤⎣ ⎦ , where , 0p
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the in-control proportion defective is estimated as p , the average defective  rate 
in numerous subgroups from an in-control process.   

These control limits, based on a normal approximation, are not totally 
satisfactory if is small as is likely the case in a PPM environment. The limits 
may be improved either by using an arcsin transformation or better yet, by using 
probability limits derived from the binomial distribution (Ryan, 1989).   

0np

However, even with probability limits, there are two major difficulties in 
using and setting up a p chart here.  First, to obtain any reasonable power to 
detect changes in the PPM process, large subgroup sizes are needed. 
Montgomery (1991) recommended subgroup sizes large enough so that the 
probability of finding at least one defective in the subgroup is at least 95%. For 
a defective rate of  this requirement translates into a subgroup size larger 
than 

0p

03 p . When  is small this rule of thumb results in enormous sample 
sizes. For example, assuming the process produces 50 PPM defectives when in 
control, then the 

0p

03 p  rule implies subgroups of a least 60,000 units. A second 
problem is that to set up the chart, we need to estimate  accurately.  
Assuming we follow the standard recommendation to collect initially at least 20 
subgroups in order to set up the chart, in the above example, we must inspect 
1.2 million units (from an in-control process) before we can begin to monitor. 
Similarly, when the defective rate is 5 PPM, the minimum sample size is 
600,000 units and 18 million units are needed just to set up the control chart!  In 
most applications, we suspect that these numbers are so large as to make the 
procedure inoperable. 

0p

 
2.2 Control Chart to Monitor the Time Between Defectives 
 

A clever idea to alleviate the discreteness inherent in monitoring the 
number of defectives is to monitor the time (or number of good units) between 
observed defective units.  Denote the time between observed defectives as X.  In 
this way, we change the problem from one with discrete measurements to one 
with a continuous scale.  Note that we also avoid the difficult problem of 
subgroup definition. This approach makes most sense for processes subject to 
100% inspection. 

Using the time between defectives as a test statistic, we may employ either 
a Shewhart type chart, or some sequential procedure, such as an EWMA chart 
or CUSUM chart (Nelson, 1994). This approach was first suggested by 
Montgomery (1991), and further explored by Nelson (1994), and McCool and 
Joyner-Motley (1998).  Nelson (1994) suggests an individual chart of  (X 
to the power 0.2777) to monitor the time between defectives.  McCool et al. 
(1998) consider a number of different possible test statistics and control charts.  
In particular, they suggest that an exponentially weighted moving average chart 
(EWMA) of  or  would be appropriate. 

.2777X

.2777X ( )log X
Unfortunately, there remain inherent difficulties with this approach in the 

PPM environment.  First, it is expensive to perform the 100% inspection of 
units required to determine the time between defectives.  If 100% inspection is 



 4

not used the second difficulty is exacerbated. Second, a good estimate of in-
control mean time between defectives is needed to set appropriate control limits.  
For PPM processes, the time between defectives is long, and thus the amount of 
time (or number of units) required to gather enough information to allow 
reasonably precise estimation of the mean time between defectives may be too 
long to be practical.  For example, Nelson (1994) suggests that two dozen 
values of the time between defectives, while the process is in control, are 
required to reasonably estimate the mean time between failures.  When the 
process produces 5 PPM defective, the expected number of parts between 
defectives is 200,000.  Thus to get 24 values of X requires about 4.8 million 
units.  

Even if we were able to estimate the in-control mean time between 
defectives accurately the control charts are still not very effective.  For example, 
we may consider some typical results from McCool et al. (1998) for the 5 PPM 
process.  They give the average run length (ARL) for a control chart based on 
the time between defectives.  When the defective rate has increased to 500 PPM 
the ARL is given as 168.85.  However, there are still, on average, 2000 units 
between failures, therefore on average the chart will pick up a change to 500 
PPM defective only after 377,700 units have been inspected.  Looking for 
increases in quality is even worse because the average time between defectives 
increases.  Say the defective rate is reduced to .5 PPM then the ARL is 2.07 and 
this corresponds to, on average, over 4 million parts!  

This problem is not avoided by using a sequential procedure such as an 
EWMA chart.  The performance of an EWMA chart in detecting small shifts 
will be somewhat superior to the Shewhart chart, but the initial implementation 
of the EWMA control chart still requires an initial estimate for the in-control 
defective rate which is not available without massive production volume.   

 
3 A Possible Remedy  
 

The major difficulty in monitoring a PPM process using either the number 
of defectives in a subgroup  or the time between defectives is the small amount 
of information per unit inspected that such data provides.  One solution to this 
problem is to find an explanatory variate or combination of explanatory variates 
that are (strongly) related to the defective rate.  We assume that the identified 
explanatory variate is not the underlying continuous measurement that defines 
defectives and non-defectives, but rather some other product or process 
characteristic.  Naturally, the identified explanatory variate will not be a perfect 
predictor of whether a unit is defective or not.  However, changes in the 
explanatory variate should be related to the defective rate.   

If such an explanatory variate X is found, we can monitor the process using 
this continuous variate rather than based on the defective rate or time between 
defectives.  This approach avoids the discreteness difficulty in the original 
problem.  The problem is how to identify the important explanatory variable(s) 
when there are so few defective units.  The key is to focus on the defectives that 
do occur.  The defectives are compared to good units on as many process and 
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product characteristics, denoted 1, , kX X… , as possible.  This approach was 
promoted by Dorian Shainin (see Bhote and Bhote, 2000) and is the same as the 
idea underlying case/control studies that are widely used to identify risk factors 
for rare diseases in human populations (Schlesselman, 1982).   

To identify important explanatory variates, we model the relationship 
between the defective rate p and the explanatory variates using a logistic 
regression model, i.e.  

 
 ( )logit p  = ( )( )log 1p p−  

   = ( )g X  = 0 1 1 k kX Xβ β β+ + +…  (1) 
  
Note that, in this context, often the best model would include non-linear terms, 
such as ( 2

i i )X t− , where  is the target value for characteristic it iX .  With 
quadratic terms, any deviation of iX  from its target value will increase the 
defective rate.  Of course interaction terms are also possible. The parameters in 
the above model 1β , …, kβ  can be estimated using a sample of defective units 
and a sample of good units using standard approaches (Hosmer et al. 1989).  
The assumption is that each of these samples is representative of the two types. 
Based on such data, we can estimate a function that differs from ( )g X  only in 
the intercept term. That is, we can estimate  
 
 0 1 1

ˆ ˆˆ k kX Xα β β+ + +…  (2) 
 

The intercept term 0β  in ( )g X  is not estimable without knowledge of the 
sampling fraction of good and bad units. In fitting this logistic model, the goal is 
to find explanatory variates whose corresponding model parameters ( iβ ) are not 
zero.  
 
3.1 Required Sample Sizes 
 

An important question relates to the number of good (controls) and 
defective (cases) units that are needed or desirable for the analysis.  Clearly 
when more defectives (and non-defectives) are used in the analysis significant 
explanatory variates can be identified more easily.  However, the number of 
units required will depend on the magnitude of the effect of the particular 
explanatory variate.   

We explore this issue in more detail by considering a single explanatory 
variate and assuming the distribution of the explanatory variate is Normal in 
both the cases and controls.  In most work on sample size requirements in case 
control studies in the medical literature it is assumed that the explanatory variate 
is binary (Schlesselman, 1982).  However, Lubin et al. (1988) consider a 
continuous explanatory variate.  Assuming a single explanatory variate the 
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sample size required for a logistic regression model to identify an explanatory 
variate as significant is equivalent to a comparison of the mean levels of the 
explanatory variate for good and defective units. We let iμ  and iσ  be the mean 
and standard deviation of the explanatory variate for good units (i = 0) and for 
defectives (i = 1).  We find the sample size needed for a size α -level test with 
power 1 β− . 

Following Lubin et al. (1988), the required number of defective units 
(cases), assuming k not defective units (controls) for each case is  

 

 m  = 
( ) ( ){ }
( )

21 22 2
1 0

2
1 0

11 xZ Z k kk
k

α βσ σ σ

μ μ

⎡ ⎤+ + +⎢ ⎥+ ⎣ ⎦
−

 (3) 

 
where 2

xσ  = ( ) ( ) ( ) ( )2 22 2
1 0 1 01 1k k k kσ σ μ μ+ + + − + , and Zα  and Zβ   

satisfy the equations ( )Pr Z Zα α> = , ( )Pr Z Zβ β> =  where Z is a 
standardized Normal random variable. 
To explore equation (3) we set α  = 0.05 and β  = 0.1, and without loss of 
generality consider the case where for controls the distribution of the 
explanatory variate is standardized to have mean zero and standard deviation 
equal to one, i.e. 0μ = 0 and 0σ = 1.  This leads to three unknowns, the mean 
and standard deviation for defectives and the number of controls per case we 
choose. Only the number of controls per case can be chosen by the investigator, 
so these results should be consider simply guidelines. First, we consider the 
situation where we have a single control for each case.  Figure 1 shows contours 
of constant m as a function of 1μ  and 1σ . We see that, as expected, the number 
of cases required decreases as the mean of the explanatory variate for cases 
increases. 
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Fig. 1. Contours of the number of defective units needed 

one control for each case on top, large number of controls for each case on the 
bottom 

 
To give a better idea of the effectiveness of increasing the number of 

controls for each case Figure 2 shows the ratio of the required sample sizes from 
the two plots in Figure 1, i.e. Figure 2 plots 1m m∞ , where  give the 
required number of cases when there are k not defective units (controls) for each 
case. It is interesting that the improvement possible through the use of multiple 
controls is much greater when the explanatory variate is continuous than when 
the explanatory is binary.  Following Schlesselman (1982) using a large number 

km
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of controls when the explanatory variate is binary can decrease the number of 
cases needed by at most a factor of 2. In the industrial PPM context increasing 
the number of controls (non defective units) for each case (defective units) is 
typically inexpensive.   
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Fig. 2.  Contours of the ratio of the required sample size for one control vs. 

many controls 
 
4 Example 
 

Exhaust valve seats are force fitted by insertion into the head of an engine. 
If the valve seat is not installed correctly, it can lead to a catastrophic engine 
failure. The quality of the fit is judged by visual inspection using feeler gauges.  
Given the high volume (four seats per head, two heads per engine, 1500 engines 
per day), 100% inspection is very costly and likely to be ineffective, especially 
since the expected defective rate is low, less than 50 PPM.  

A sample of 25 defective seat insertions was collected over time. Pareto 
analysis showed that there was no evidence that the poorly fitted seats depended 
on location in the head. Since no head had more than one defective seat, the 
remaining three seats on the head were used as controls. 

Eleven measurable, potentially important explanatory variates were 
identified. These are 1 2 3 4, , , , 5X X X X X , measurements of force, work and 
distance taken during the automated insertion process, 6 7 8 9, , ,X X X X , 
dimensional and physical characteristics of the valve seat and 10X  and 11X  
dimensional characteristics of the pocket in the head into which the seat is 
inserted.  
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The explanatory variates 6X  through 11X  were measured on seats after 
insertion and there was suspicion that their values may have been distorted by 
the insertion process. Nevertheless these variates were included in the analysis. 
The plan was to include those characteristics identified as being important in the 
monitoring procedure. However, in that case, they would be measured before 
the insertion process. 

A logistic regression model was fit to the 100 observations. Three 
explanatory variates, 2X , 4X  and 9X  were identified as important. Since 

2X and 4X were measured on every insertion, an automated CUSUM chart 
based on a linear combination of 2X and 4X  was constructed using the software 
available in the insertion process.  The characteristic of the valve seat 9X  was 
monitored separately using an average and range chart based on subgroups of 5 
parts collected with a regular frequency.   

 
 

5 Discussion  
 

In applying the proposed remedy it is important that the identified 
explanatory variates used in the linear combination (2) are truly related to the 
defect rate.  If they are not we will be monitoring a linear combination that may 
well vary in ways unrelated to the defective rate.  In this case, the introduction 
of spurious explanatory variates will “muddy the waters.”   

A typical reaction in industry to very rare defects is to do a complete 
“postmortem,” including a detailed look for the probably causes, on each 
individual defective observed.  While such an approach can yield improvements 
it is flawed unless we link the results from all the “postmortems” in an attempt 
to find some commonality. This idea of looking for commonalities across many 
defects is one of the principles underlying the proposed approach. 

Finally, it should be noted that a designed experiment is not likely to be a 
viable alternative approach to process improvement in the context described in 
this article.  With a binary response (defective / not defective) either very large 
sample sizes would be needed, or the factor levels would have to be set so 
extremely that the conclusions from the experiment would likely not be relevant 
to the current operating conditions of the process. 
 
6 Summary 
 

Monitoring of the defective rate of a process that produces defectives 
measured in parts per million (PPM) is often desirable.  The use of control 
charts to monitor the defective rate of such processes based on the number of 
defectives or the time between defectives is shown to be infeasible.  The sample 
sizes required to set up the control charts are much too large in most practical 
situations.  As an alternative, we suggest a focus on the few defectives that are 
produced.  In particular, we suggest a case/control type comparison of 
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defectives and non-defectives based on as many of their other attributes as 
possible.  If we can find some explanatory variable or combination of variables 
that is associated with defectives (or non defectives) we may be able to 
determine a continuous variate to monitor. 
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