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In many applications, small parts are counted using a scale. The number of parts is estimated by dividing
the total weight by the (estimated) average weight of an individual part. This procedure avoids count-
ing individual parts and can save time and money and improve the accuracy of counts. In this article
we explore and quantify the effect of the estimation procedure used to determine the average weight,
measurement error, and discretization on the accuracy of the scale count. We present guidelines for the
successful implementation of scale counting and suggest a change in the standard procedure.
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1. INTRODUCTION

In many applications, small parts are counted using a weigh-
ing method called scale counting (see Fig. 1 for an illustra-
tion; and Anonymous 1981 for more background). We count
the parts by weighing them and dividing the total weight by the
(estimated) average weight of each individual part. This pro-
cedure avoids counting individual parts and can save time and
money and improve the accuracy of large counts. By accuracy
we refer to both bias and variability in the counts.

In this article we show how the accuracy of scale counting
depends on

• The variability of the weight of the individual parts,
• The number of parts being counted,
• Calibration, the procedure used to estimate the average

weight of individual parts,
• Measurement error, the resolution, bias, and variability of

the scale.

As far as we know, the nature of these dependencies has never
been extensively studied. The purpose of this article is to pro-
vide some guidelines and recommendations for scale counting.

This article was motivated by several visits to an organiza-
tion that counts and packages automotive parts for shipment
overseas. The warehouse from which the shipments originate
contains more than 3,000 different components, ranging from
engines and transmissions to small fasteners. When we first vis-
ited this operation, a shipment consisted of all parts required to
build 96 vehicles. At the assembly plant, the plan was to unpack
a shipment and build 96 vehicles. In theory, there was no extra
inventory or borrowing from future shipments. To execute this
plan, it was essential to have the correct number of parts of each
type in each shipment. If there were too few of any component,
then the planned number of vehicles could not be assembled,
whereas if there were too many, then there was waste, confu-
sion, and substitutions in future shipments. In our later visits,
the plan had changed. Now parts are shipped in stated volumes,
and there is a small inventory of parts at the assembly plant.
With this plan, the consequences of small counting errors to the
assembly plant is reduced.

In either plan, the shipping organization is responsible for
rectifying and explaining all counting errors detected at the as-
sembly plant, often at a cost far greater than the value of the

parts in error. In an attempt to reduce these costs, we were
asked to audit the scale-counting procedures used throughout
the warehouse. We developed the proposed guidelines and rec-
ommendations as a result of this audit.

With the current shipping plan, the number of pieces for each
part varies from 100 to more than 3,500 (e.g., some common
bolts). Low-volume parts have specific target numbers; high-
volume items are shipped in bulk, so that the count is impor-
tant, but there is only a rough target value. We illustrate the
implementation of scale counting using two parts. Part A is
plastic hose, [Fig. 2(a)], for which the goal of the counting is
to produce bags of exactly 100 units. Part B is a small clamp
[Fig. 2(b)] that must be packaged in groups of about 2,000 units.

Scale counting involves three steps. First, the tray (as shown
in Fig. 1) is placed on the scale, and the scale is zeroed; this
is called taring. Next, in the calibration step, a sample of parts
is hand-counted and weighed to determine an estimate of the
average part weight. Finally, the operator determines the to-
tal weight of a group of parts and determines the count using
the estimated average part weight from the calibration sam-
ple. The software in the scale calculates and displays the count.
There are two versions of the third step. With “bulk” counting,
all parts are placed on the tray at one time, and the count is de-
termined. With “dribble counting,” parts are added and removed
from the scale until the estimated number of parts equaled the
desired target value. In the application, bulk counting is used for
the clamps and dribble counting is used for the hoses. Although
these two procedures have different goals, we show in the Ap-
pendix that the statistical properties of bulk and dribble count-
ing are virtually identical. This near equivalence has also been
verified using simulation. The remainder of the article addresses
bulk counting only, although the results are valid for dribble
counting as well.

At the shipping firm, the calibration step is repeated when-
ever an operator needs to count a particular part due to pos-
sible variability in the average part weight between batches,
and to avoid record keeping. Note that the calibration sam-
ple has size 25 for all parts, which yields a simple calibra-
tion procedure.
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Figure 1. A Counting Scale.

The article is organized as follows. In Section 2 we analyze
the impact of variability in part weight, the number of pieces
being counted, and the calibration procedure on the accuracy
of the scale count. We derive these initial results assuming
a scale with no measurement error and ignoring the discretiza-
tion needed to yield an integer count. Next, we quantify the
effect of relaxing these assumptions and determine when mea-
surement error and discretization can substantially effect the
statistical properties of the count. In Section 3 we propose a new
procedure, called multiple scale counting, that yields more ac-
curate counts than the standard procedure in certain circum-

(a)

(b)

Figure 2. Sample Parts to be Scale Counted (a) Hose, (b) Clamps.

stances. In Section 4 we turn to issues of importance in the
implementation of scale counting. We make recommendations
for changes to the standard practice and provide guidelines for
dealing with the impact of measurement error and discretiza-
tion. Finally, we summarize our results in Section 5.

2. STATISTICAL PROPERTIES OF
SCALE COUNTING

In the calibration step, we count p parts (usually a grab sam-
ple from a bin or basket) and determine their total weight.
We then estimate the average part weight µ by

µ̂ = t̂p
p

, (1)

where t̂p is the total weight of the p parts subject to sampling
error. For the moment, we assume that here are no measure-
ment errors; see Section 2.3. With this calibration procedure,
we cannot estimate the standard deviation, σ , of the individual
part weights.

In the counting step, we measure the total weight of a group
of parts, denoted by t̂n, (again collected as a grab sample) of
unknown size n. Then an estimate of the total number of parts is

n̂ = t̂n
µ̂

. (2)

In practice, the result from (2) is rounded to the nearest integer.
In Section 2.2 we show that, except when the variability in the
count is very small, the effect of rounding is not important.

We denote estimators with a tilde, so, for example, ñ is the es-
timator corresponding to the estimate n̂ given by (2). If n and p
are large (>100 and 5) and the coefficient of variation γ = σ/µ

is small (<.05), then we can accurately estimate the mean and
standard deviation of ñ using statistical differentials (i.e., Taylor
series expansion) retaining terms up to second order (Kotz and
Johnson 1982). We obtain

E(ñ) ∼= E( t̃n)

E(µ̃)

[
1 + var(µ̃)

E(µ̃)2

]

= n

(
1 + γ 2

p

)
= n + β (3)

and

var(ñ) ∼=
[

E( t̃n)

E(µ̃)

]2[var( t̃n)

E( t̃n)2 + var(µ̃)

E(µ̃)2

]

= nγ 2
(

1 + n

p

)
= α2. (4)

In what follows, we ignore any error in these approximations.
Note that the bias β is positive and the ratio var(ñ)/β = p + n.
If we further assume that part weights are independent and nor-
mally distributed for parts selected from the bin, then we can
show, using the method proposed by Cabuk and Springer
(1990), that the estimator ñ is approximately normally distrib-
uted under conditions where the approximations (3) and (4) are
reasonable. The assumption of normality of the part weights is
not critical to the results.
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As pointed out by some reviewers, bulk counting can be con-
sidered in the context of simple random sampling and the es-
timation of a ratio (Cochran 1977; Raj 1968). For instance,
Mendenhall, Ott, and Scheaffer (1971) discussed an example
to determine the number of oranges in a shipment using sim-
ple random sampling. The results in (3) and (4) differ slightly
from the their calculations, because in our case t̃n corresponds
to a sample from all of the available parts and we also assume
that the part weights are independent. Equations (3) and (4) and
the normality can also be derived as approximations from the
properties of simple random sampling.

It is apparent from (3) and (4) that the effectiveness of
scale counting depends on the variability in the individual part
weights (i.e., γ ), the calibration sample size p, and the unknown
group size n. In our application, where n < 3,000, γ ≤ .05, and
p = 25 , the bias is small (< .3) and the standard deviation is as
large as 30. If we increase p to 50, then the standard deviation
is < 21.3. Note that we cannot find the standard error of the
estimate without an estimate of γ that is not available from the
scale counting procedure.

2.1 Effect of Discretization

In practice, the scale count is reported as round(n̂), the inte-
ger closest to n̂ . Here we examine the effects of the discretiza-
tion on the estimator.

We have, approximately, round(ñ) − n = round(ñ − n) ∼
round(N(β,α2)) so we can numerically determine the bias and
standard deviation αround of the discretized estimator for any
values of β and α. For our application, the rounding has mini-
mal effect on the bias because β = α2/(p+n) and p+n > 100.
Because the bias is small relative to the variance, using the sym-
metry of the normal distribution, we can see that rounding has
little effect on the bias. If α is small, then αround can be sub-
stantially less than α. Figure 3 plots αround against α for small
values of α, setting the bias to 0.

If the standard deviation α ≥ .5, we can approximate the ef-
fect of the discretization by modeling round(ñ) as ñ +U , where
ñ and U are independent and U is a continuous uniform random
variable that ranges between −1/2 and 1/2, with E(U) = 0 and

Figure 3. The Effect of Rounding on the Standard Deviation of
the Count.

var(U) = 1/12. In this case, αround ∼=
√

α2 + 1/12 is slightly
increased.

In summary, because the bias is typically small and the stan-
dard deviation exceeds .75, the discretization in the scale count-
ing procedure has little effect on the properties of the estimator.
However, there are dramatic beneficial effects of discretization
when α < .2. This property is exploited in Section 3, where we
introduce the idea of multiple scale counting.

2.2 Effect of Measurement Error

To derive the expressions (3) and (4), we assumed no mea-
surement error. We now relax this assumption and show that the
negative effect of measurement error is usually small.

Suppose that the measurement bias and standard deviation
are βm and σm, constant for any repeated weighing of the
same group of parts. Applying statistical differentials, we ob-
tain the approximations

E(ñ) ∼= nµ + βm

µ + βm/p

(
1 + pσ 2 + σ 2

m

(pµ + βm)2

)
(5)

and

var(ñ) ∼=
(

nµ + βm

µ + βm/p

)2( nσ 2 + σ 2
m

(nµ + βm)2 + pσ 2 + σ 2
m

(pµ + βm)2

)
. (6)

We suppose that the scale has been chosen so that βm/µ and
σm/σ are relatively small and hence these quantities divided by
n or p are negligible. If we ignore negligible terms in (5) and (6),
we have that the bias is E(ñ) − n ∼= β + βm/µ and var(ñ) is
unchanged from (4). The effect of measurement bias can be
substantial.

Note that, as in the current application, we can eliminate
measurement bias using the taring procedure where the weight
of a group of parts is determined as the difference in weight
of the tray with the parts and the tray on its own. Using differ-
encing eliminates the measurement bias, and increases σm by
a factor of

√
2. As shown earlier, this increase has negligible

effect on the bias and standard deviation of the estimator. These
results depend on the assumption that the properties of the mea-
surement system do not depend on the actual weight of the item
or items on the scale.

2.3 Effect of Measurement Resolution

All of the previous analysis has ignored the possible effect
of poor measurement resolution. Measurement resolution is de-
fined by the smallest unit of measurement. For example, we
may measure weights to the nearest 2 g. Then any group of parts
that weighed between 99 and 101 g yields a measured value
of 100 g. We quantify the resolution of a measurement device
as the inverse of the scale’s minimum discrimination weight.
Then, ignoring measurement error, a scale with resolution r that
weighs a part of weight w yields the result round(rw)/r. For ex-
ample, if a scale has a capacity of 20 kg with 10,000 divisions,
then the scale’s minimum discrimination is 2 g, and r = 1/2
(when parts are weighed in grams). Similarly, r = 100 means
that the scale is capable of providing around 2 decimal points.

As before, we can approximate the effect of the rounding due
to the measurement resolution by modeling round(X) as X +U,
where U is a continuous uniform random variable that ranges
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between −1/2 and 1/2. Assuming no measurement error, we
can write

ñ = round(N(rnµ,nr2σ 2))/r

round(N(rpµ,pr2σ 2))/pr
.= pN(nγ,n) + pU/rσ

N(pγ,p) + U/rσ
. (7)

Applying the method of statistical differentials, as in (2) and (3)
to the ratio (7), we get

E(ñ) − n ∼= β + n

12p2r2µ2 = n

(
γ 2

p
+ 1

12p2r2µ2

)
(8)

and

var(ñ) ∼= α2 + 1

12r2µ2

(
1 + n2

p2

)

= n

(
γ 2 + 1

12nr2µ2 + n

p
γ 2 + n

12p2r2µ2

)
. (9)

If r is small, then the bias and the standard deviation can be
adversely affected. Because generally n � p, we know that

n
12p2r2µ2 � 1

12nr2µ2 and n
pγ 2 > γ 2. Thus, to bound the effect

of the measurement resolution on both the bias and variance
of ñ, we compare n

pγ 2 and n
12p2r2µ2 . We can limit the extra bias

and variation added by the resolution to < 50% approximately
by ensuring that n

12p2r2µ2 ≤ 1
2

n
pγ 2 or r ≥ 1

σ
√

6p
.

In the motivating example, the minimum discrimination of
the scales used is 2 g, so the measurement resolution r = .5.
The calibration step uses p equal to 25 parts. Assuming a coef-
ficient of variation equal to .025, the rule of thumb implies that
the average weight of individual parts should be greater than
6.5 g. Otherwise, the effect of the resolution of the scale on the
properties of the estimator is (relatively) substantial.

3. MULTIPLE SCALE COUNTING

As shown in Section 2.1, rounding generally increases var(ñ)

by approximately 1/12. However, when the variance is <.2, the
discretization can reduce the variance (and bias) dramatically.
This large potential reduction in variability suggests an alter-
native scale counting strategy using multiple scale counts. The
idea is simple. To scale count n parts, we divide the n parts
into k subgroups of around m parts each, where km = n. Then
we scale count each subgroup of parts separately and add the
results at the end. By choosing m sufficiently small, we can ob-
tain a count that is extremely accurate. In the extreme, we can
consider subgroups of size 1. In this case, unless there is large
variability in the individual part weights or large measurement
error, the multiple scale count will result in the correct count for
the total number of items; that is, the bias and standard devia-
tion of the corresponding estimate are 0.

When using multiple scale counts, the estimate of the group
size is

n̂mult =
k∑

j=1

round

(
t̂m( j)

µ̂

)
, (10)

where t̂m( j) is the observed weight of the m items in the jth
subgroup, µ̂ is the estimated average part weight obtained from
the calibration step, and mk = n. Note that µ̂ is the same for all
subgroups, because the calibration step is performed only once.

Figure 4. Standard Deviation of ñmult for n = 2,000, σ/µ = .01,
p = 25.

We cannot find a convenient algebraic expression for the
mean and variance of the estimator ñmult when m is small
enough to produce the dramatic reduction in variance. However,
we can numerically calculate the mean and standard deviation
by conditioning on µ̃.

As an example, consider a situation where we wish to scale
count 2,000 items, the coefficient of variation of the individ-
ual part weights is .01, and we use a calibration sample of
size p = 25. Figure 4 plots the standard deviation of ñmult as
a function of the number of subgroups k. We obtain a substan-
tial reduction in the variation by using as few as 20 scale counts
of about 100 items each.

Although the distribution of ñmult is complex, we can de-
rive a simple rule of thumb to determine when multiple scale
counting is beneficial. In Figure 3 we see that the discretiza-
tion substantially reduces the variability in the count whenever
var(ñ) < .22 = .04. Now, using the approximation (4) with sub-
group size m, we want mγ 2(1 + m/p) < .04 or, equivalently,

m <

√
p

γ 225
+ p2

4 − p
2 . For example, for p = 25 and γ = .01,

the rule of thumb suggests that the subgroup size should be less
than around 88 units. This matches closely the results shown in
Figure 4. Note that the maximum subgroup size suggested by
the foregoing rule of thumb increases roughly linearly in 1/γ .
Multiple scale counting is feasible only if the coefficient of vari-
ation of the parts is not too small.

One potential problem with multiple scale counting is that
the number of subgroups may be miscounted. To avoid this
problem, we recommend finishing the multiple scale count with
a scale count of all subgroups together. If the combined result is
close to the desired value, then we have verified that the correct
number of subgroups was used.

4. IMPROVING SCALE COUNTING

The motivation for this paper was an audit of a shipping or-
ganization that used scale counting on a routine basis for large
number of parts. The goal of the audit was to identify opportu-
nities for improvement to reduce counting errors as determined
by the customer. In the earlier discussion, we considered the sta-
tistical properties of scale count estimators and their sensitivity
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to rounding, measurement error, and the resolution of the scale.
Here we consider some practical issues for the improvement of
scale counting. We use the two parts, A and B, for illustration.

4.1 Estimating the Variability of Individual Part Weights

As shown in Section 2, the statistical properties of the scale
count are dependent on the coefficient of variation γ of the indi-
vidual part weights. Without an estimate for γ , we cannot deal
with planning issues, such as the choice of scale and the size
of the calibration sample, or assess the precision of a particular
count. We get no information about the current value of γ from
a single application of the standard scale counting procedure.

We recommend that a small study be conducted periodically
on every part to assess γ . We can conduct this study by chang-
ing the calibration step of a planned scale count so that each
of the p parts is weighed individually. At the same time, the
variability of the scale can be assessed by measuring each of
the parts twice. There is no need to reestimate γ as often as µ,
because the coefficient of variation is not needed to determine
a scale counting result.

In our application, investigations, all with 25 parts, to es-
timate γ for a range of parts (but not all, due to time and
cost constraints) were conducted. For parts A and B, we have
γ̂A = .015 and γ̂B = .039. The same scale is used for each part,
and the measurement error was negligible. Using (3) and (4),
we estimate the bias and standard deviation of ñ for a count
of 100 units of part A as .0009 and .342, and for a count of
2,000 units of part B as .119 and 15.5. For round(ñ), using Fig-
ure 3, the standard deviation is .380 for part A. The other char-
acteristics are unchanged.

For part A, assuming that γ does not change substantially, we
estimate that about 85% of the counts to 100 will be accurate,
with a deviation of more than 1 highly unlikely. With the current
procedure, for part B we can use the standard error to get an
approximate 95% confidence interval (±30) for a future count
of close to 2,000 units. We can reduce this range by half if,
using (4), we increase the calibration sample size to p = 107.

4.2 Checking the Calibration Sample Size

An error in the hand counting of the calibration sample can
lead to a substantial bias in the scale counting procedure. For
example, if the calibration sample size was suppose to be 25
but is actually only 24, then using (3), the extra bias in the count
is around 4%. A larger calibration sample reduces the standard
deviation of the estimate but increases the likelihood of mis-
counting. In our review, we found that several operators verified
the hand count of the calibration sample by adding a specified
number of additional parts to the scale and checking that the
scale count matched the expected total. We use the foregoing
derivations to determine a reasonable number of parts to add.

We denote the number of additional parts by q and the ac-
tual number of parts hand counted in the calibration step by p∗.
Then, after some algebra, we find that the estimated count

has mean p + pq
p∗ (1 + γ 2

p∗ ) and variance qp2γ 2

( p∗)2 (1 + q
p∗ ) approxi-

mately. We want to choose q large enough so that if p∗ does not
equal p, the resulting scale count will likely not yield p + q.
Figure 5 shows contours of minimum value of q needed so

Figure 5. Minimum Additional Size Sample Needed to Check the
Hand Count.

that 95% of the time the checking procedure would identify
a calibration sample whose size differs from the desired num-
ber p.

In our application, the planned calibration sample size is
p = 25. To keep the calibration step uniform for all parts and
to conserve time, we recommended that operators add 20 parts
after weighing the calibration sample and verify that the scale
count reads 45. Based on Figure 5, checking the calibration
count by adding 20 units is adequate for part A but not quite
adequate for part B.

4.3 Asymmetric Loss

The estimated number of parts obtained by scale counting
may be less or greater than the actual number of parts on the
scale. In some applications, the consequences of making a mis-
take may depend on whether the actual number of parts is over-
estimated or underestimated. This is the case in our example of
dribble counting, where sending too few parts is a more severe
problem than sending too many parts. Similarly, in bulk count-
ing, incorrect estimates of the number of parts in a group may
result in errors in the inventory count with overestimates and
underestimates have different consequences.

Unequal consequences for over estimation and underestima-
tion suggest an asymmetric loss function. This suggests that
when dribble counting, we aim for more parts than are actu-
ally needed to make sure at least the desired number of parts is
obtained. Similarly, with a bulk count, we may wish to under-
report the observed scale count.

The amount by which the target should exceed the desired
number of parts depends on the variability and bias in the drib-
ble count, and the level of protection against too few parts
desired. As shown in Section 2, the bias and variability de-
pend mostly on the coefficient of variation of the individual
part weights, and the sample size used in the calibration step.
Suppose, for example, that p = 25 and that we aim for 2% over
the actual target. Figure 6 explores the effect of the coefficient
of variation, and changing either the aimed-for percent over
target or the calibration sample size on the chance the dribble
counting will yield less than n parts. The probability of too few
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(a) (b)

Figure 6. Contours of the Estimated Probability That Scale Counting Yields Too Few Parts (a) p = 25, (b) Aim for 2% Over Target.

parts is determined using (3), (4), and a normal approximation.
Figure 6 is based on the assumption that n = 500 parts are de-
sired, although the results are not very dependent on the value
for n.

In our example, part B is relatively inexpensive, and sending
too few parts is undesirable. Based on Figure 6, if we want to
have only a 1% risk of sending fewer than 2,000 clamps in a
bag, we should aim for roughly an extra 2% of units; that is,
we should aim for 2,040 clamps rather than 2,000. For part B,
adding extra parts was chosen over other ways of improving
the scale count, such as increasing the calibration sample size,
to balance cost and complexity.

4.4 Multiple Scale Counting

Using the rule of thumb, multiple scale counting is feasible
for part A so long as each group consists of less than roughly
50 units. For part A, combining the counts of two groups of
50 units each and taking into account the effect of discretization
reduces the standard deviation of the overall count to .12, result-
ing in the correct count around 98.5% of the time (up from 85%
of the time with one group of 100 units). However, for part B
with its large coefficient of variation, multiple scale counting is
not practical, because the largest group size for multiple scale
counting to be effective is about 20 units, and we wish to count
a total of 2,000 units.

In our application, even for parts such as A, we were unable to
sell the idea of multiple scale counting because of the increased
cost and complexity.

5. DISCUSSION AND RECOMMENDATIONS

The results derived in this article suggest that scale count-
ing can be an effective method of counting parts. However, the
accuracy of the count depends critically on a number of fac-
tors, including the sample size used to estimate the average part
weight, the number of parts that we wish to count, and the co-
efficient of variation of the individual part weights. The effects
of these factors on the estimator were examined in Section 2.
Poor measurement resolution and measurement variability can
have a substantial negative effect on scale counting. We show,
however, that for reasonably good measurement devices, the

negative effect of measurement variability and resolution is
small. Measurement bias, on the other hand, can have a sub-
stantial effect but can be avoided using differencing. Finally,
the discretization used to obtain integer estimates of the count
usually has little effect but can be beneficial in eliminating the
bias and variability in the estimate in certain circumstances.

Choosing an appropriate scale counting procedure is a man-
agement decision in which we must balance the required preci-
sion of the count with the cost and complexity of the counting
procedure. The results of this article provide information to help
make an informed choice.

To summarize, in applications where scale counting is
economical, we recommend the following steps in planning
scale counting:

• Check that the measurement system variability is suffi-
ciently small.

• Estimate the coefficient of variation for the individual part
weights.

• Ensure that the measurement resolution is sufficiently
large.

• Choose the calibration sample size to ensure the desired
precision.

• Aim for more parts than needed if undercounts are more
serious than overcounts.

• Consider using multiple scale counting.

When implementing scale counting we recommend the follow-
ing steps:

• Check the calibration sample hand count (Sec. 3.2).
• Use taring to eliminate the effect of possible measure-

ment bias.

ACKNOWLEDGMENTS

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada. The authors
thank Maria Cruz and Jeffrey Chevers for allowing and en-
couraging studies of scale counting at TDS Automotive. They
also thank the editor for insightful comments that improved
the article.

TECHNOMETRICS, AUGUST 2004, VOL. 46, NO. 3



354 STEFAN H. STEINER AND R. JOCK MACKAY

APPENDIX: CORRESPONDENCE BETWEEN BULK
AND DRIBBLE COUNTING

In this appendix we show that the statistical properties of bulk
and dribble counting are virtually identical. Suppose that the
target for dribble counting is n and the number of parts actu-
ally on the scale is Y . For a bulk count of n units, let X be
the corresponding scale count. Consider any sequence of cu-
mulative sums S1,S2, . . . ,Si, where Si = t̃i/µ̃ and each term
in the sequence arises by adding one more item to the scale.
Because γ is small, we make negligible error assuming that
this sequence is increasing. The value of Y is the index i for
which n − 1/2 ≤ Si ≤ n + 1/2 and thus the scale count reads n.
Rarely, there are two possible values of i depending on how
dribble counting is implemented—namely, whether the last part
is added or subtracted. Suppose, without loss of generality, that
Y = n − k ≤ n. Now in the sequence Sn corresponds to the ad-
dition of k more units to the scale, and because γ is small, the
scale count is likely to increase to n + k. This is true in all cases
except when Si is close to a boundary, which generally does not

happen in a consistent manner. That is, X = n + k with high
probability when Y = n − k. Because this holds for all such se-
quences, it follows that Pr(Y = n − k)

.= Pr(X = n + k), and so
the two counting methods have essentially the same properties.

[Received May 2001. Revised January 2004.]
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