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Until now, mixture errors that cause the actual mixture proportions to differ from those intended have

not been considered in the analysis of mixture experiments. In this article, we show how a Bayesian approach

can account for such errors. A simulation study shows the problems with ignoring these errors and also the

benefits of accounting for them. The proposed approach is illustrated with a semirealistic glass mixture

experiment.
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Introduction

M
ANY products are made by mixing various com-
ponents. Paint, plastic, bread and fruit drinks

are good examples. For such products, it is of interest
to determine what component proportions lead to de-
sirable results in terms of quality characteristics such
as yield or texture. Let xj , j = 1, . . . , q, represent the
proportions of q components, where

∑q
j=1 xj = 1,

and let y represent the quality characteristic of in-
terest. In this case, due to the constraint on the pro-
portions, the feasible region of mixtures is a simplex
(e.g. a triangle for three components).

Mixture experiments, consisting of sets (runs) of
component proportions, allow one to develop a model
for the response y in terms of the component propor-
tions. Scheffé (1958) developed canonical polynomi-
als of various orders to model the mixture response.
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His first-degree model takes the form

y =
q∑

j=1

βjxj + ε, (1)

where the xj are the mixture proportions, the βj are
the linear blending coefficients and the error term ε is
assumed to be N(0, σ2) and independent of the mix-
ture proportions. Note that the model in Equation
(1) does not contain an intercept term β0 because of
the constraint

∑q
j=1 xj = 1. Scheffé’s second-degree

model takes the form

y =
q∑

j=1

βjxj +
∑

1≤k<l≤q

βklxkxl + ε. (2)

See Cornell (2002) for more information regarding
such models and mixture experiments in general.

Until now, errors in the mixture proportions have
not been considered in the analysis of mixture ex-
periments. Steiner and Hamada (1997) studied the
impact of mixture errors about an intended set of
proportions on the resulting response. They found
that the variance is larger than σ2 because of the
transmission of the mixture errors through the ex-
pectation (i.e.,

∑q
j=1 βjxj) of the mixture response

model in Equation (1).

Let us consider a simple example with q = 3 to
see the difficulties in accounting for mixture errors in
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the analysis. Suppose that the intended set of pro-
portions is (0.25, 0.50, 0.25) and that this is achieved
by mixing the amounts (25, 50, 25) in liters. Note
that, even if only one amount is off, say 24 liters
for the first component instead of 25 liters, then the
actual set of proportions is (24/99, 50/99, 25/99) =
(0.242, 0.505, 0.253) and none of the intended pro-
portions are achieved. Even if the errors in the com-
ponent amounts are independent, the errors in the
component proportions are still dependent.

In this article, we show how a Bayesian approach
can account for mixture errors in the analysis of mix-
ture experiments that is easily implemented in com-
monly available software. The benefit is that σ2 is no
longer overestimated, which impacts the inference on
the model coefficients (β’s) and prediction intervals.

An outline of this article is as follows. First, we
discuss mixture errors and present a Bayesian ap-
proach that accounts for them. Through a simula-
tion study, we show the impact of ignoring mixture
errors in the analysis of mixture experiments and the
benefits of the Bayesian approach. Then we consider
a semirealistic example, a glass mixture experiment,
to illustrate the Bayesian approach. Next, we discuss
modeling and assessing mixture errors. Finally, we
end with some conclusions.

A Bayesian Approach for
Handling Mixture Errors

We begin by considering absolute mixture errors,
which can be described by

aj = xj × A + δj , (3)

where δj ∼ N(0, σ2
mix,j). That is, for a mixture for

which the target total amount for all components is
A, xj ×A is the intended amount for the jth compo-
nent, and aj is the actual amount with additive error
δj .

The actual proportion is

zj =
aj

q∑

k=1

ak

, (4)

which will be different from the intended propor-
tion xj . We assume that the σ2

mix,j are known. If
unknown, they can be quantified as discussed in a
later section.

For a mixture experiment in n runs with mixture

errors, assume the ith response yi follows

yi =
q∑

j=1

βjzij + εi, (5)

where zij , j = 1, . . . , q are the actual proportions and
εi ∼ N(0, σ2). Note that the responses depend on the
actual proportions, which are unknown. We assume
a first-degree mixture model, but the Bayesian ap-
proach also handles second-degree and other mixture
model forms.

Next we consider a Bayesian approach that han-
dles mixture errors. Bayesian inference provides un-
certainty in the unknown quantities θ = (βj , j =
1, . . . , q; σ2; zij , i = 1, . . . , n, j = 1, . . . , q) through
the joint posterior distribution. It does so by com-
bining prior information about θ with the informa-
tion about θ contained in the response data y =
(yi, . . . , yn). The prior information is described by
a probability density, π(θ), known as the prior den-
sity and the information provided by the data is cap-
tured by the data sampling model, f(y | θ), known
as the likelihood. The combined information is then
described by another probability density, π(θ | y),
called the joint posterior density. Bayes’ Theorem
provides the way to calculate the joint posterior den-
sity, namely,

π(θ | y) ∝ f(y | θ)π(θ).

Because the data are assumed to be independent
and normally distributed, the data sampling model
or likelihood is the product of n Gaussian densities
as defined by Equation (5) and evaluated at the ob-
served data values, y1, . . . , yn. Any available knowl-
edge regarding reasonable ranges of values for the
βj and σ2 may be incorporated in priors for them.
Otherwise, diffuse priors might be used, such as

βi ∼ N(0, 106), σ2 ∼ IG(10−6, 10−6), (6)

where IG denotes the inverse gamma distribution.
No priors for the zij are required because their dis-
tribution is specified by Equations (3) and (4).

Markov chain Monte Carlo (MCMC) (Gilks,
Richardson, and Spiegelhalter (1996)), such as Gibbs
sampling (Casella and George (1992)), can be used
to obtain simulated draws from the joint posterior
distribution. The marginal posterior of each of (βj ,
j = 1, . . . , q; σ2) can then be used to make infer-
ences about these parameters of interest. Gibbs sam-
pling consists of repeated cycles of draws from the
full conditional distributions, where the full condi-
tional distributions for the mixing experiment are β1
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given (βk, k �= 1, σ2, zij , i = 1, . . . , n, j = 1, . . . , q),
. . . , βq given (βk, k �= q, σ2, zij , i = 1, . . . , n, j =
1, . . . , q), σ2 given (βk, k = 1, . . . , q, zij , i = 1, . . . , n,
j = 1, . . . , q), and z1,1 given (βk, k = 1, . . . , q, σ2,
zij , i = 1, . . . , n, j = 1, . . . , q, i �= 1 and j �= 1), . . . ,
and zn,q given (βk, k = 1, . . . , q, σ2, zij , i = 1, . . . , n,
j = 1, . . . , q, i �= n and j �= q). In the preceding sen-
tence, “given” means that the remaining parameters
are set at their current values. The density of the
full conditional distribution for a specified parame-
ter is identified up to a constant by collecting all the
terms in the joint posterior density, i.e., the product
of the likelihood and prior densities, that involve that
parameter. In simple cases, the full conditional dis-
tributions turn out be well-known distributions that
are easily sampled. In more complicated situations,
such as for mixture experiments with mixture errors,
the full conditional distributions can still be sam-
pled using the Metropolis–Hastings algorithm (Chib
and Greenberg (1995)). Fortunately, the practitioner
does not have to worry about all these details because
WinBUGS (Gilks et al. (1994)) can easily implement
MCMC, as will be shown later in the example.

Simulation Study

We performed a simulation study to investigate
ordinary least squares (OLS) estimates (which ignore
the mixture errors) and Bayesian posterior means
(which account for the mixture errors). The experi-
mental design used was a 10-point augmented sim-
plex centroid design as given in Table 1 for a three-
component mixture. The response model assumed
is the following Scheffé second-degree model (as in
Equation (2), which includes all the two-component
blending terms:

yi = β1zi1 + β2zi2 + β3zi3 + β12zi1zi2

+ β13zi1zi3 + β23zi2zi3 + εi, (7)

where εi ∼ N(0, σ2). For mixture errors, we used the
absolute mixture errors described by Equation (3),
with σmix,j the same for j = 1, 2, and 3 and having
the common value of 7.5, 15, 30, and 60. The tar-
get total amount for all components was A = 1,000.
Note that 7.5 is about 2.25% of the intended com-
ponent amount when xj = 0.333333; 15, 30, and 60
correspond to 4.5, 9, and 18%, respectively. Finally,
note that there is no mixture error when xj=0.

For the simulation study, the mixture experi-
ment was simulated 1,000 times. For each simula-
tion, the linear blending coefficients, the βi, were
drawn from N(25, 25) (i.e., (20.2, 29.8) are the dis-

tribution’s 0.025 and 0.975 quantiles), the two-com-
ponent blending coefficients, the βij , were drawn
from N(75, 25) (i.e., (70.2, 79.8) are the distribution’s
0.025 and 0.975 quantiles), and σ2 was drawn from
InverseGamma(3, 0.01) (i.e., (0.037, 0.127) are the
distribution’s 0.025 and 0.975 quantiles). These dis-
tributions were also used as the priors in the Bayesian
approach. Absolute mixture errors were then added
and the responses drawn as described by Equation
(7).

The results from the simulation study are given
in Table 2. The results for the linear blending coeffi-
cients, β1, β2, and β3, are combined because the mix-
ture experiment design given in Table 1 is symmetric
with respect to the three components. Similarly, the
results for the two-component blending coefficients,
β12, β13, and β23, are combined. These results in-
clude the root mean squared error (RMSE) of the
estimated parameters and the average interval esti-
mate length. For the OLS model fitting, the standard
90% confidence interval was used; for the Bayesian
approach, the central 90% credible interval was used
(i.e., the 0.05 and 0.95 quantiles of the marginal pos-
terior) for each of the parameters. We also considered
the prediction for a single observation at the compo-
nent proportions (0.333333, 0.333333, 0.333333), for
which the expected value is 0.333333(β1 +β2 +β3)+
0.3333332(β12+β13+β23) . Under the RMSE results,
the Bayes/OLS column is the Bayes column divided
by the OLS column. For interval estimate lengths,
the ratio of Bayes and OLS interval-estimate lengths
are computed first for each simulation and the aver-
age of the 1,000 ratios is reported for each parameter.

What do the simulation results suggest? Fore-
most, the response model error standard deviation,
σ, is overestimated if mixture errors are ignored. The
RMSE is about 4, 10, 20, and 50 times larger for OLS
than Bayes for σmix,j = 7.5, 15, 30, 60, respectively.
The OLS estimate of σ bias is 0.038, 0.119, 0.283,
0.641 at σmix,j = 7.5, 15, 30, 60, respectively. That
is, not accounting for mixture errors makes the re-
sponse appear to be more variable than it really is.
This in turn impacts the length of the various in-
terval estimates as seen in Table 2. Especially note
that the OLS prediction intervals are much larger
than the Bayes prediction intervals. This has prac-
tical implications because prediction is an impor-
tant use of the analysis of a mixture experiment. For
the linear blending coefficients (β1, β2, β3), there is
no difference between OLS and Bayes in terms of
RMSE. For the two-component blending coefficients
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TABLE 1. Augmented Simplex Centroid

Design Used in Simulation Study

x1 x2 x3

1.000000 0.000000 0.000000
0.000000 1.000000 0.000000
0.000000 0.000000 1.000000
0.666667 0.333333 0.000000
0.666667 0.000000 0.333333
0.000000 0.666667 0.333333
0.333333 0.666667 0.000000
0.333333 0.000000 0.666667
0.000000 0.333333 0.666667
0.333333 0.333334 0.333333

(β12, β13, β23), the OLS RMSEs are somewhat larger
than those for Bayes as σmix increases; the OLS pre-
diction RMSEs are also somewhat larger. In sum-
mary, the simulation results suggest that there are
tangible benefits by accounting for mixture errors.

Glass Mixture Experiment Example

The immobilization of nuclear waste is an impor-
tant and challenging problem for the United States
and other countries. Vitrification, which turns the
waste into glass, is one technology that addresses this
problem. Hrma et al. (1994) performed a composi-
tion variation study (CVS) in support of a proposed
future nuclear waste vitrification plant. From 1989
to 1994, over 120 nonradioactive glasses were melted
and properties measured in a series of statistically de-
signed mixture experiments. The composition of each
glass is represented by 10 components: SiO2, B2O3,
Na2O, Li2O, CaO, MgO, Fe2O3, Al2O3, ZrO3 and
others (all remaining components). Although several
properties of the resulting glass were measured, we
consider only viscosity. Using the CVS data, Hrma
et al. (1994) empirically fit first- and second-degree
mixture models for loge(viscosity) as a function of
glass composition. The models were then validated
using both internal and external data.

Viscosity was measured at three to five tempera-
tures for each glass. For each glass, these data were
then fitted to a Fulcher equation from which the vis-
cosity at the desired temperature of 1,150oC was pre-
dicted. Table 3 contains the as-batched mass fraction
compositions (xj ’s) of all 23 CSV-I glasses along with
the corresponding Fulcher-predicted viscosity (y) at
1,150◦C.

Samples of all 23 CSV-I glasses were also sub-
mitted for chemical analysis to check the as-batched
compositions. The chemical analysis consisted of av-
eraging the two results from a K/Ni and a Na/Zr
fusion. These analytical results were then com-
pared with the desired as-batched glass composi-
tions. Hrma et al. (1994) attributed the observed
differences to the analyzed compositions being more
variable and in some cases biased as compared with
the as-batched compositions. After accounting for
the analytical biases, Hrma et al. (1994) did not find
significant differences between the as-analyzed and
as-batched compositions. Hence, for the actual glass
experiment, random mixture errors in the as-batched
compositions were not an issue.

For purely illustrative purposes, we suppose that
there were mixture errors in this experiment for
which standard deviations (SD) in mass fractions are
given in the last row of Table 3. Consequently, the re-
sults and conclusions in the remainder of this section
do not reflect on the results originally obtained for
the actual glass experiment by Hrma et al. (1994).

For the mixture errors, we assume that Equa-
tion (3) holds so that xij × A is the as-batched (in-
tended) amount of the jth component in the ith
glass. Because the SDs in Table 3 pertain to pro-
portions, we assume that, for the jth component
amount, σmix,j = SDj × A. When an as-batched
component mass fraction is zero (i.e., the component
is not present), we simply set the corresponding SD
equal to 0 in the analysis.

First, consider the results obtained using OLS to
fit a first-degree mixture model (Equation (1) with
loge(viscosity) as the response) to the as-batched
data in Table 3. Table 4 contains a summary of the
ANOVA results for the fitted model, while Table 5
contains the corresponding parameter estimates and
their standard errors.

Note that there is a significant lack of fit in the
first-degree mixture model. Even though first-degree
mixture models fit some glass properties reasonably
well, many others often have significant lack of fit.
Because of the sparsity of the data, we will ignore this
apparent lack of fit and proceed with a Bayesian anal-
ysis based on a first-degree mixture model. Again,
this decision is appropriate only for illustrative pur-
poses.

We now use the proposed Bayesian approach for
fitting a first-degree mixture model to the data in
Table 3 that accounts for mixture errors. We use
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TABLE 2. Simulation Results: OLS and Bayesian Approach

RMSE Interval estimate length

Parameter OLS Bayes Bayes/OLS OLS Bayes Bayes/OLS

σmix,j = 7.5

β1, β2, β3 3.753 3.753 1.000 0.547 0.222 0.471
β12, β13, β23 4.013 4.005 0.998 2.422 1.531 0.747
σ 0.089 0.024 0.268 0.117 0.068 0.654
Prediction 0.074 0.062 0.833 0.667 0.304 0.533

σmix,j = 15

β1, β2, β3 3.753 3.754 1.000 1.003 0.225 0.269
β12, β13, β23 4.088 4.049 0.991 4.442 2.479 0.678
σ 0.209 0.024 0.116 0.215 0.071 0.390
Prediction 0.135 0.094 0.698 1.222 0.382 0.314

σmix,j = 30

β1, β2, β3 3.754 3.754 1.000 1.976 0.225 0.140
β12, β13, β23 4.378 4.206 0.961 8.747 4.405 0.626
σ 0.470 0.024 0.052 0.424 0.072 0.206
Prediction 0.274 0.179 0.652 2.407 0.551 0.279

σmix,j = 60

β1, β2, β3 3.764 3.754 0.997 4.086 0.225 0.069
β12, β13, β23 5.550 4.779 0.861 18.090 7.296 0.505
σ 1.048 0.024 0.023 0.877 0.071 0.101
Prediction 0.632 0.415 0.657 4.978 0.844 0.207

the software package WinBUGS (Gilks, Thomas, and
Spiegelhalter (1994)) that is available for free down-
load from the Web at URL http://www.mrc-bsu.
cam.ac.uk/bugs/. WinBUGS is extremely easy to
learn and use and, along with a comprehensive user’s
manual (Spiegelhalter, Thomas, and Best (2000)), in-
cludes two volumes of worked examples. The docu-
mentation is very thorough and well written. Win-
BUGS implements MCMC as described earlier to
sample from the joint posterior distribution of the
parameters.

Table 6 gives the WinBUGS code for fitting the
first-degree mixture model to the data in Table 7.
One point of clarification is needed for the second pa-
rameter of the Gaussian distribution: WinBUGS uses
the precision, which is the reciprocal of the variance.
The absolute Gaussian mixture errors were used in
this analysis, and we have taken the intended total

amount of the mixture A to be 1,000. We note, how-
ever, that the results do not depend on the value
of A; thus, reasonable values for A can be chosen.
Note also that the diffuse prior distributions (Equa-
tion (6)) used in Table 6 have almost no effect on the
results.

The output obtained by executing the WinBUGS
source code in Table 6 is shown in Table 7. The re-
sults in Table 7 summarize the marginal posterior
distributions of the 10 parameters and the residual
error standard deviation, σ. The means, standard de-
viations, and quantiles in Table 7 were all calculated
based on 10,000 random MCMC draws from the cor-
responding joint posterior distributions.

Note in Table 7 that the mean of the marginal pos-
terior distribution of σ is 0.1483, which is roughly
one half as large as the corresponding OLS-based
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TABLE 3. As-Batched Mass Fraction Compositions, Predicted Viscosities (y)

and Mixture Error Standard Deviations (SD) for CVS-I Glasses at 1,150◦C

Glass SiO2 B2O3 Na2O Li2O CaO MgO Fe2O3 Al2O3 ZrO2 Others y

CVS1-1 0.4801 0.1142 0.1003 0.0376 0.0275 0.0363 0.0568 0.0636 0.0429 0.0407 5.78
CVS1-2 0.5500 0.0500 0.0500 0.0700 0.1000 0.0000 0.0200 0.1500 0.0000 0.0100 13.29
CVS1-3 0.4200 0.2000 0.0500 0.0700 0.0000 0.0800 0.0200 0.1400 0.0100 0.0100 2.39
CVS1-4 0.5700 0.2000 0.0900 0.0100 0.0200 0.0800 0.0200 0.0000 0.0000 0.0100 8.70
CVS1-5 0.5700 0.0500 0.0700 0.0700 0.0000 0.0000 0.1500 0.0800 0.0000 0.0100 13.24
CVS1-6 0.4400 0.2000 0.0500 0.0700 0.0000 0.0000 0.0200 0.0000 0.1200 0.1000 2.01
CVS1-7 0.5700 0.0500 0.0964 0.0100 0.1000 0.0000 0.0336 0.0000 0.1300 0.0100 72.88
CVS1-8 0.5363 0.0500 0.0837 0.0100 0.0000 0.0800 0.1500 0.0000 0.0800 0.0100 29.26
CVS1-9 0.4200 0.1962 0.0538 0.0100 0.0000 0.0800 0.1400 0.0000 0.0000 0.1000 4.06
CVS1-10 0.5700 0.0851 0.0941 0.0100 0.0000 0.0000 0.0200 0.1200 0.0000 0.1000 83.83
CVS1-11 0.4200 0.1549 0.0751 0.0100 0.1000 0.0000 0.0200 0.1400 0.0000 0.0800 14.50
CVS1-12 0.4200 0.1764 0.0736 0.0700 0.1000 0.0000 0.1500 0.0000 0.0000 0.0100 0.42
CVS1-13 0.5700 0.2000 0.1862 0.0100 0.0000 0.0000 0.0200 0.0038 0.0000 0.0100 3.31
CVS1-14 0.4200 0.2000 0.1862 0.0100 0.0000 0.0000 0.0200 0.0238 0.1300 0.0100 3.42
CVS1-15 0.5589 0.0500 0.1211 0.0700 0.0000 0.0800 0.0200 0.0000 0.0000 0.1000 2.55
CVS1-16 0.4327 0.0500 0.1873 0.0100 0.0000 0.0800 0.0858 0.1442 0.0000 0.0100 17.81
CVS1-17 0.4545 0.0500 0.1455 0.0100 0.1000 0.0000 0.1400 0.0000 0.0000 0.1000 2.23
CVS1-18 0.4214 0.0500 0.1186 0.0700 0.0200 0.0800 0.0200 0.0000 0.1300 0.0900 1.87
CVS1-19 0.4801 0.1142 0.1003 0.0376 0.0275 0.0363 0.0568 0.0636 0.0429 0.0407 5.76
CVS1-20 0.4801 0.1142 0.1003 0.0376 0.0275 0.0363 0.0568 0.0636 0.0429 0.0407 5.71
CVS1-21 0.5700 0.2000 0.0900 0.0100 0.0200 0.0800 0.0200 0.0000 0.0000 0.0100 9.36
CVS1-22 0.5363 0.0500 0.0837 0.0100 0.0000 0.0800 0.1500 0.0000 0.0800 0.0100 38.11
CVS1-23 0.5153 0.0956 0.1052 0.0375 0.0289 0.0084 0.1179 0.0456 0.0063 0.0393 5.69
SD 0.0100 0.0030 0.0060 0.0040 0.0010 0.0020 0.0010 0.0020 0.0080 0.0050

estimate of 0.2625 =
√

0.06892. Finally, the standard
deviations of the marginal posterior distributions of
the parameter estimates in Table 7 are almost all
uniformly smaller than the corresponding standard
errors in Table 5.

However, precisely speaking, such a comparison
between OLS and Bayesian estimates cannot rigor-
ously be made because each method has a different
philosophical basis. To ensure a fair comparison be-

tween the inclusion and exclusion of mixture errors,
Table 8 contains the Bayesian WinBUGS results for
the same case as in Table 7 except that the mixing
errors are now ignored.

By directly comparing the SD column in Tables
7 and 8, we see the effect of considering mixture
errors in a Bayesian analysis. The SDs of the esti-
mated parameters are uniformly smaller for all 10
parameters when the mixing errors are considered. In

TABLE 4. ANOVA Results for the OLS Fitted First-Degree Mixture Model

Source DF Sum of squares Mean squares F p value

Model 9 134.2540 3.80600 55.22 <0.0001
Residual error 13 0.8960 0.06892

Lack-of-fit 9 0.8583 0.09537 10.13 0.020
Pure error 4 0.0377 0.00942

Total (corrected) 22 35.1500
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TABLE 5. OLS Estimates and Standard Errors

for Fitted First-Degree Mixture Model

Term LSE SE

SiO2 8.82 0.48
B2O3 −6.67 0.81
Na2O −11.22 1.37
Li2O −33.11 2.20
CaO −4.35 1.60
MgO −0.88 1.68
Fe2O3 −0.54 1.06
Al2O3 10.93 1.10
ZrO2 8.44 1.22
Others −0.52 1.41

addition, the marginal posterior mean of σ is also
observed to be 47% smaller when the mixture errors
are included in the analysis.

Table 9 contains the WinBUGS-produced means
and SDs, as well as the 0.05 and 0.95 quantiles,
of the marginal posterior predictive distributions of
viscosity for all 23 CVS-I glasses for the case in
which mixture errors are both included and ignored.
(Note that samples from the predictive distribution
of loge(viscosity) are obtained by sampling the pos-
terior distribution of the first-degree mixture model
parameters and generating loge(viscosity) values ac-
cording to Equation (1); samples from the predictive
distribution of viscosity are then easily obtained by
exponentiating the samples from the predictive dis-
tribution of loge(viscosity).) By including mixture
errors, the posterior SDs in Table 9 have been re-
duced an average of approximately 30%. Thus, as
previously noted, accounting for mixture errors in
the analysis produces more precise viscosity predic-
tions.

Modeling and Assessing the
Amount of Mixture Error

In this article, we have shown the impact of ig-
noring mixture error in analyzing mixture experi-
ments for absolute mixture errors as described in
Equations (3) and (4). There are a number of ram-
ifications. First, for a specific application, what is
an appropriate model for the mixture errors? Steiner
and Hamada (1997) also considered relative mixture
errors in which the standard deviation of the com-
ponent amount depends on the intended component
amount; ai ∼ N(µi, (µiδ)2), with µi = xiA, provides

TABLE 6. WinBUGS Code for Glass Experiment

# (Note: “0” Variances for All 0 Mixture Components)
Model
{

for(i in 1:N)
{
w[i]<−log(y[i])
w[i]∼dnorm(mu[i],tau)
mu[i]<−beta[1]∗z[i,1]+beta[2]∗z[i,2]+beta[3]∗z[i, 3]

+beta[4]∗z[i,4]+beta[5]∗z[i,5]
+beta[6]∗z[i,6]+beta[7]∗z[i,7]
+beta[8]∗z[i,8]+beta[9]∗z[i,9]
+beta[10]∗z[i,10]

for(j in 1:10)
{
z[i,j]<−a[i,j]/sum(a[i,1:10])
sigmameas[i,j]<−A∗SD[i,j]
taumeas[i,j]<−1/(sigmameas[i,j]∗sigmameas[i,j])
eta[i,j]<−x[i,j]∗A
a[i,j]∼dnorm(eta[i,j],taumeas[i,j])
}

b[i]∼dnorm(mu[i],tau)
c[i]<−exp(b[i])
}

tau∼dgamma(1.0E-6,1.0E-6)
sigma<−1/sqrt(tau)
sigma2<−sigma∗sigma
for(j in 1:10)

{
beta[j]∼dnorm(0.0,1.0E-6)
}

}
Data
list(SD=structure(.Data = c(
.01,.003,.006,.004,.001,.002,.001,.002,.008,.005,
.01,.003,.006,.004,.001,1.0E-20,.001,.002,1.0E-20,.005,
.01,.003,.006,.004,1.0E-20,.002,.001,.002,.008,.005,
.01,.003,.006,.004,.001,.002,.001,1.0E-20,1.0E-20,.005,
.01,.003,.006,.004,1.0E-20,1.0E-20,.001,.002,1.0E-20,.005,
.01,.003,.006,.004,1.0E-20,1.0E-20,.001,1.0E-20,.008,.005,
.01,.003,.006,.004,.001,1.0E-20,.001,1.0E-20,.008,.005,
.01,.003,.006,.004,1.0E-20,.002,.001,1.0E-20,.008,.005,
.01,.003,.006,.004,1.0E-20,.002,.001,1.0E-20,1.0E-20,.005,
.01,.003,.006,.004,1.0E-20,1.0E-20,.001,.002,1.0E-20,.005,
.01,.003,.006,.004,.001,1.0E-20,.001,.002,1.0E-20,.005,
.01,.003,.006,.004,.001,1.0E-20,.001,1.0E-20,1.0E-20,.005,
.01,.003,.006,.004,1.0E-20,1.0E-20,.001,.002,1.0E-20,.005,
.01,.003,.006,.004,1.0E-20,1.0E-20,.001,.002,.008,.005,
.01,.003,.006,.004,1.0E-20,.002,.001,1.0E-20,1.0E-20,.005,
.01,.003,.006,.004,1.0E-20,.002,.001,.002,1.0E-20,.005,
.01,.003,.006,.004,.001,1.0E-20,.001,1.0E-20,1.0E-20,.005,
.01,.003,.006,.004,.001,.002,.001,1.0E-20,.008,.005,
.01,.003,.006,.004,.001,.002,.001,.002,.008,.005,
.01,.003,.006,.004,.001,.002,.001,.002,.008,.005,
.01,.003,.006,.004,.001,.002,.001,1.0E-20,1.0E-20,.005,
.01,.003,.006,.004,1.0E-20,.002,.001,1.0E-20,.008,.005,
.01,.003,.006,.004,.001,.002,.001,.002,.008,.005
),.Dim = c(23,10)),
N=23,A=1000,x=structure(.Data = c(
.4801,.1142,.1003,.0376,.0275,.0363,.0568,.0636,.0429,.0407,
.5500,.0500,.0500,.0700,.1000,.0000,.0200,.1500,.0000,.0100,
.4200,.2000,.0500,.0700,.0000,.0800,.0200,.1400,.0100,.0100,
.5700,.2000,.0900,.0100,.0200,.0800,.0200,.0000,.0000,.0100,
.5700,.0500,.0700,.0700,.0000,.0000,.1500,.0800,.0000,.0100,
.4400,.2000,.0500,.0700,.0000,.0000,.0200,.0000,.1200,.1000,
.5700,.0500,.0964,.0100,.1000,.0000,.0336,.0000,.1300,.0100,
.5363,.0500,.0837,.0100,.0000,.0800,.1500,.0000,.0800,.0100,
.4200,.1962,.0538,.0100,.0000,.0800,.1400,.0000,.0000,.1000,
.5700,.0851,.0941,.0100,.0000,.0000,.0200,.1200,.0000,.1000,
.4200,.1549,.0751,.0100,.1000,.0000,.0200,.1400,.0000,.0800,
.4200,.1764,.0736,.0700,.1000,.0000,.1500,.0000,.0000,.0100,
.5700,.2000,.1862,.0100,.0000,.0000,.0200,.0038,.0000,.0100,
.4200,.2000,.1862,.0100,.0000,.0000,.0200,.0238,.1300,.0100,
.5589,.0500,.1211,.0700,.0000,.0800,.0200,.0000,.0000,.1000,
.4327,.0500,.1873,.0100,.0000,.0800,.0858,.1442,.0000,.0100,
.4545,.0500,.1455,.0100,.1000,.0000,.1400,.0000,.0000,.1000,
.4214,.0500,.1186,.0700,.0200,.0800,.0200,.0000,.1300,.0900,
.4801,.1142,.1003,.0376,.0275,.0363,.0568,.0636,.0429,.0407,
.4801,.1142,.1003,.0376,.0275,.0363,.0568,.0636,.0429,.0407,
.5700,.2000,.0900,.0100,.0200,.0800,.0200,.0000,.0000,.0100,
.5363,.0500,.0837,.0100,.0000,.0800,.1500,.0000,.0800,.0100,
.5153,.0956,.1052,.0375,.0289,.0084,.1179,.0456,.0063,.0393
), .Dim = c(23,10)),
y=c(5.78,13.29,2.39,8.70,13.24,2.01,72.88,29.26,4.06,
83.83,14.50,0.42,3.31,3.42,2.55,17.81,2.23,1.87,5.76,
5.71,9.36,38.11,5.69)
)
Inits
list(tau=4)
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TABLE 7. WinBUGS Results for Fitting the First-Degree Mixture Model to the CVS-I loge(viscosity) Data

Posterior quantile

Term Mean SD 0.025 0.05 0.5 0.95 0.975

SiO2 8.79 0.44 7.92 8.07 8.78 9.471 9.65
B2O3 −6.57 0.76 −8.13 −7.83 −6.54 −5.41 −5.21
Na2O −11.20 1.24 −13.59 −13.12 −11.24 −9.16 −8.65
Li2O −33.21 2.00 −37.08 −36.43 −33.32 −29.79 −29.12
CaO −4.49 1.65 −7.62 −7.19 −4.57 −1.80 −1.23
MgO −0.93 1.64 −4.10 −3.39 −1.07 1.91 2.59
Fe2O3 −0.48 1.04 −2.49 −2.15 −0.43 1.19 1.60
Al2O3 11.02 1.02 8.92 9.33 11.08 12.62 13.07
ZrO2 8.43 1.17 6.03 6.46 8.46 10.37 10.73
Others −0.36 1.37 −3.14 −2.66 −0.34 1.73 2.26
σ 0.1483 0.0938 0.0028 0.0049 0.1473 0.3055 0.3447

one such model in which there is a constant coeffi-
cient of variation, δ.

One referee pointed out a number of other sit-
uations in which mixture errors arise that suggest
the need for further model development. Besides er-
rors in measuring masses or volumes of components,
there can be blending or processing errors (such as
errors in calculating or weighing amounts of precur-
sor chemicals in addition to impurities) if a chem-
ical reaction is involved. There may also be errors
in analyzing the composition of what was obtained.
While modeling these more complicated situations is

beyond the scope of this article, a Dirichlet distri-
bution (Kotz and Johnson (1982)) for the mixture
proportions might be considered.

Once an appropriate mixture error model is de-
veloped, its parameters need to estimated. For the
absolute mixture error model considered in this
article, in which the component amount errors are
independent, inference on the variance σ2

mix can be
obtained by repeatedly weighing out amounts and
comparing them with the intended amounts. The re-
sulting uncertainty of the variance σ2

mix from such
studies can also be accounted for in the Bayesian

TABLE 8. WinBUGS Results for Fitting the First-Degree Mixture Model

to the CVS-I loge(viscosity) Data That Ignores Mixture Errors

Posterior quantile

Term Mean SD 0.025 0.05 0.5 0.95 0.975

SiO2 8.81 0.56 7.71 7.88 8.81 9.75 9.95
B2O3 −6.68 0.93 −8.57 −8.21 −6.68 −5.18 −4.83
Na2O −11.21 1.54 −14.36 −13.76 −11.20 −8.72 −8.08
Li2O −33.10 2.46 −37.88 −37.07 −33.12 −29.05 −28.14
CaO −4.28 1.75 −7.73 −7.12 −4.30 −1.39 −0.80
MgO −0.82 1.83 −4.49 −3.88 −0.81 2.21 2.78
Fe2O3 −0.53 1.16 −2.80 −2.42 −0.55 1.37 1.87
Al2O3 10.94 1.22 8.57 8.97 10.93 12.97 13.41
ZrO2 8.45 1.33 5.85 6.32 8.45 10.65 11.13
Others −0.49 1.56 −3.56 −3.04 −0.49 2.08 2.60
σ 0.2798 0.0602 0.1893 0.1998 0.2707 0.392 0.4233
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TABLE 9. CVS-I Predicted Viscosities When Mixture Errors Are Either Considered or Ignored

Mixture errors included Mixture errors ignored

Glass Mean SD 0.05 0.95 Mean SD 0.05 0.95

CVS1-1 6.37 1.51 4.56 9.13 7.39 2.26 4.43 11.33
CVS1-2 14.90 3.92 10.39 22.12 17.82 6.43 9.75 29.43
CVS1-3 2.60 0.66 1.80 3.81 2.95 1.09 1.57 4.86
CVS1-4 8.99 2.16 6.08 12.71 9.34 3.33 5.11 15.19
CVS1-5 12.60 2.98 8.08 17.29 11.42 4.25 5.97 19.15
CVS1-6 2.00 0.50 1.31 2.82 1.98 0.76 1.04 3.32
CVS1-7 65.33 15.54 39.76 88.23 53.52 20.46 27.92 90.14
CVS1-8 33.22 9.16 23.40 49.24 40.30 13.98 22.07 66.01
CVS1-9 3.98 0.93 2.59 5.52 3.77 1.39 2.00 6.24
CVS1-10 82.60 19.61 53.94 115.10 80.24 30.19 42.27 132.90
CVS1-11 14.17 3.39 9.20 19.67 13.54 5.14 7.15 22.37
CVS1-12 0.39 0.09 0.25 0.53 0.35 0.13 0.18 0.59
CVS1-13 3.55 1.00 2.42 5.19 3.92 1.58 2.05 6.54
CVS1-14 3.61 0.91 2.43 5.19 3.91 1.48 2.03 6.56
CVS1-15 2.49 0.61 1.59 3.51 2.35 0.91 1.20 3.95
CVS1-16 16.02 3.76 9.78 21.62 13.03 4.93 6.79 22.07
CVS1-17 2.64 0.77 1.80 4.06 3.37 1.28 1.78 5.68
CVS1-18 1.92 0.48 1.27 2.75 1.99 0.76 1.03 3.35
CVS1-19 6.35 1.56 4.54 9.08 7.40 2.32 4.42 11.40
CVS1-20 6.32 1.52 4.53 9.12 7.39 2.30 4.41 11.44
CVS1-21 9.36 2.30 6.25 12.99 9.33 3.39 5.06 15.29
CVS1-22 38.94 9.29 25.93 55.20 40.18 14.01 22.06 65.23
CVS1-23 6.02 1.42 4.16 8.48 6.49 2.04 3.79 10.11

analysis of mixture experiments. Instead of σ2
mix be-

ing a constant, its uncertainty may be reflected by an
appropriate distribution such as an inverse gamma
distribution. For other mixture error models sug-
gested above, appropriate studies and inference may
require additional research.

Conclusions

We have shown how a Bayesian approach can ac-
count for mixture errors in analyzing mixture exper-
iments. The benefits of using such an approach are
better estimates of the response model error vari-
ance, which leads to better inference, including bet-
ter predictions and shorter prediction intervals. This
work suggests a number of research problems, which
include modeling mixture errors and assessing them
through appropriately designed studies. With differ-
ent mixture error models, it will be interesting to
see how they impact the analysis of mixture experi-
ments.
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