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Reducing the variation in process outputs is a key part of process improvement. For mass produced 
components and assemblies, reducing variation can simultaneously reduce overall cost, improve 
function and increase customer satisfaction with the product. Excess variation can have dire 
consequences, leading to scrap and rework, the need for added inspection, customer returns, 
impairment of function and a reduction in reliability and durability. Variation reduction efforts occur in 
a wide variety of engineering, scientific or management processes. Some examples are: 

• reducing rework in due to brake rotor imbalance 
• improving the reliability of a personal digital assistance 
• increasing the average yield of a chemical process 
• reducing variation in camshaft lobe geometry  
• reducing the average number of errors made in the translation of technical documents 

 
Variation reduction is best addressed using a step-by-step method. In Figure 1, we propose an 
algorithm (Steiner and MacKay, 2005) for reducing variation in high- to medium-volume 
manufacturing processes. It is designed to identify low cost changes such as improvements to the 
control plan or new process settings that reduce variation in process outputs.  
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Figure 1: A Variation Reduction Algorithm 

 
In most applications of the algorithm, we search for a dominant cause (Juran and Gryna, 1980). A 
dominant cause is a varying process input that is responsible for much of the variation in the output. If 
we apply the Pareto principle (80/20 rule) to causes of variation  we expect that there will be a vital 
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few that are dominant. Dominant causes may be special or common in the language of Statistical 
Process Control. 
 
We illustrate the algorithm with a case study. An iron foundry produced veined brake rotors that were 
machined at a separate location. The machining plant 100% inspected the rotors for balance and 
welded a weight into the veins if the imbalance was too severe. We call a rotor needing added weight 
“a balance reject.” The historic rate of balance rejects was approximately 25%. The foundry initiated 
the project because the reject rate jumped to 50%. This increase in rework coincided with a change 
from a four-cavity to a six-cavity core mold to increase productivity in the foundry. The cores were 
used to create the veins when the rotor was cast.  
 
The foundry was convinced that the change to the six-cavity mold was not the cause of the increase in 
balance rejects. A dimensional analysis of the six-cavity mold and core-making process had shown all 
characteristics well within specification. The increased reject rate could not be explained by any other 
changes made at either the foundry or the machining operation. As it stood, each party blamed the 
other. To address the increased rework, the machining operation planned to add another rework station. 
The foundry formed a problem solving team with the goal of reducing the reject rate back to its 
historical level. 
 
In the first stage of the algorithm, we select the particular output characteristics needed to specify the 
problem and carry out an investigation to quantify baseline performance.  
 
In the brake rotor example, to determine imbalance, the machining plant measured the center of gravity 
(a distance and direction from the rotor center) that was then translated into a weight (gm) and 
orientation needed to balance the rotor. If needed, the weight was welded to the veins on the rim of the 
rotor. A balance reject was any rotor needing weight greater than 15g. To focus the problem, the team 
selected balance weight as the output. They knew that if they could reduce the weight, they could 
eliminate the rework, regardless of the orientation. 
 
To establish the baseline,  the team selected 300 rotors spread out over the previous week’s production 
at the machining plant. Figure 2 shows the extent of the problem. The team set the goal to reduce 
variation in the balance weight so that at least 75% of the rotors had weight less than 15g.  
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Figure 2: Balance Weights in the Baseline Investigation 

 
In the second stage of the algorithm, we ensure that the measurement system for the output is not a 
dominant cause of variation and is adequate for use in later stages of the algorithm. We plan and 
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execute an investigation to determine how much of the baseline variation can be attributed to the 
measurement system. If the we find the measurement system is inadequate, we reformulate the original 
problem to address the variation in the measurement system. With this new problem, we start the 
algorithm again. The process of interest becomes the measurement process. We have seen many 
failures because a team tried to reduce variation  without an adequate measurement system.  
 
In the case study, the team selected three rotors with initial measured weights of 3, 15 and 32g. They 
measured the three rotors six times each on three separate days. There was little operator effect since 
the gauges were automated. The results (not given) showed that the measurement system was highly 
repeatable relative to the variation seen in the baseline study.  

 
At the next stage of the algorithm, we consider how we might reduce the output variation. This is a 
feature unique to this algorithm. We divide the variation reduction approaches into two groups. 
Approaches requiring the identification of a dominant cause are: 
 

• Fix the Obvious: Use knowledge of a dominant cause to implement an obvious solution. 
• Desensitize the process: Change the process settings to reduce the sensitivity of the output to 

changes in a dominant cause. 
• Implement feedforward control: Predict the output based on measured values of a dominant 

cause and adjust the process appropriately to reduce variation. 
 
Approaches not requiring the identification of a dominant cause are: 
 

• Implement feedback control: Predict the output using current and past output values and adjust 
the process to reduce the output variation. 

• Make the process robust: Change the process settings to reduce the output variation. 
• Use 100% inspection: Use an inspection scheme to select units with less variation in the output. 
• Move the process center closer to the target 

 
To choose a working approach, we consider the nature of the problem and process, our current state of 
knowledge, and for each of the seven approaches the: 
 

• knowledge required to implement the approach 
• likelihood and cost of obtaining this process knowledge 
• likelihood of successful implementation 
• probable cost of implementation 

 
In the brake rotor case, the team first considered the non-cause based approaches. They ruled out 100% 
inspection since that was the current costly approach. They eliminated feedback control since there is 
no strong pattern in the variation over time in the baseline data and they did not know how to adjust the 
process. Robustness or move the process center (lower in this case) were possibilities but, without 
more process knowledge, were not likely to succeed. The team decided to proceed with a search for the 
dominant cause of variation in the balance weight.  
 
To search for a dominant cause, we recommend the method of elimination (Shainin, 1993). We 
partition the causes of variation into families and use new or available data to rule out all but one 
family as the home of the dominant cause. We use elimination recursively to narrow down the 
potential dominant causes to one or a few suspects.  
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The brake rotor team first looked at available data to see what causes could be eliminated. They 
recorded the location of the welded rework weight for the 140 balance rejects from the baseline 
investigation on a concentration diagram shown in Figure 3. They saw that there was a non-symmetric 
pattern of balance weight locations. Since the machining process is rotationally symmetric and the 
casting process is oriented, the team eliminated all causes in the machining operation. With this simple 
investigation, the team made tremendous progress with little cost or time. 
 

Nomenclature

 
Figure 3: Concentration Diagram of Weight Locations 

 
The team next compared 30 balance rejects and 30 balanced brake rotors. They measured 26 foundry-
determined characteristics on each machined rotor. From this investigation the team identified two 
input characteristics, thickness variation and core position (offset) that were substantially different for 
balanced and unbalanced rotors. Both inputs were plausible dominant causes of imbalance.  
 
The team decided to verify these suspects hoping they could then reformulate the problem into one 
with an output measured in foundry. This would save time and effort in future investigations since they 
would no longer needed to trace rotors between the foundry and the machining operation. They 
planned and conducted a verification experiment to confirm that core thickness variation and core 
position were substantive causes of the balance weight variation and that the six-cavity mold was not. 
They used two levels for each input and a  23  factorial design. For core position and thickness 
variation the two levels were the nominal value and a second level selected at the high end of their 
normal range of variation.  
 
From the interaction plot given in Figure 4, the team concluded that low thickness variation using the 
four-cavity mold produced the optimal results (the weights required were so small that balance 
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specification was met without rework). Thus, the dominant cause of the imbalance problem was in the 
core molding process. 
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Figure 4: Interaction Plot from Verification Experiment 

 
In general, after we verify a particular input as the dominant cause, we consider the feasibility of the 
cause-based approaches. If we rule out the cause-based approaches, we have three options: 
 

• reformulate the problem in terms of the dominant cause 
• reconsider the non-caused based approaches 
• search for a more specific dominant cause 

 
If the we decide to reformulate the problem, we restart the algorithm with the goal of reducing 
variation in the dominant cause. We sometimes reformulate a problem several times. Eventually, we 
must select one of the variation reduction approaches. 
 
Having chosen a variation reduction approach, in the next stage of the algorithm, we look in detail at 
the feasibility of the selected working approach. We: 
 

• examine the process to see if it meets the conditions for the approach to be effective  
• determine what further knowledge is required  
• plan and conduct investigations to acquire the knowledge 
• determine the solution, i.e. how the process will be changed  
• estimate the benefits and costs of the proposed change 
• look for possible negative side effects 

 
If the working approach is feasible, we validate and implement the solution. Otherwise, we must 
reconsider the other variation reduction approaches.  
 
In the brake rotor case, the team made the “obvious fix” and recommended that the foundry go back to 
the original four-cavity core mold. When this change was implemented, the rate of balance rejects 
dropped to its historic levels. The team had met the project goal. Alternatively the team could have 
considered trying to compensate for the variation in core thickness. In theory this could be 
accomplished either by making a one time change to the process (desensitization) or measuring core 
thickness variation for each rotor and adjusting the process as needed for each rotor to compensate for 
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the measured thickness variation (feedforward control). Both these suggestions were rejected in favour 
of the more direct obvious solution. 
 
The major lesson learned was the effect of the thickness variation on the balance weight. The 
verification experiment showed that thickness variation in the cores was a dominant cause of balance 
weight variation in the original process using the four-cavity mold. Knowledge of the dominant cause 
provided the opportunity to improve the process further. A new core making process was already 
available in the plant but not in use. The team knew that this cold box process was stable 
dimensionally and they expected much less thickness variation with this process.  
 
In the final stages of the algorithm, we reassess the baseline performance after the process change to 
ensure that the project goal has been met. We also examine other process outputs to check for negative 
side effects. Finally we implement and lock the change into the process or its control plan. We 
recommend monitoring the process output and auditing the process change until we are certain that the 
solution is effective and permanent.  
 
With the implementation of the cold box method, the process was greatly improved. The rate of 
balance rejects dropped to 0.2%, a large reduction from the 50% at the start of the project. The 
machining plant eliminated the expensive rework stations and scrapped the few remaining balance 
rejects in the new process. 
 
In summary, we believe the proposed algorithm is well suited to reducing variation in manufacturing 
processes. The unique features are the search for a dominant cause using the method of elimination and 
the demarcation of the variation reduction approaches. To be successful, the algorithm should be 
embedded in a global improvement system such as Six Sigma.  
 
References 
Juran J.M. and Gryna F.M. (1980), Quality Planning and Analysis, 2nd edition, McGraw-Hill, New 

York. 
Shainin, R.D. (1993), Strategies for Technical Problem Solving, Quality Engineering 5, 433-448 
Steiner, S.H. and MacKay R.J. (2005), Statistical Engineering: An Algorithm for Reducing Variation 

in Manufacturing Processes, Quality Press, American Society for Quality, Milwaukee, WI, ISBN 
0-87389-646-7 

 
 


