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Abstract
This article gives an example of how student-conducted experiments can enhance a course in the design
of experiments. We focus on a project whose aim is to find a good mixture of water, soap and glycerin for
making soap bubbles. This project is relatively straightforward to implement and understand. At its most
basic level the project introduces students to mixture experiments and general issues in experimental
design such as choosing and measuring an appropriate response, selecting a design, the effect of using
repeats versus replicates, model building, making predictions, etc. To accommodate more advanced
students, the project can be easily enhanced to draw on various areas of statistics, such as generalized
linear models, robust design, and optimal design. Therefore it is ideal for a graduate level course as it 
encourages students to look beyond the basics presented in class.

1. Introduction
Effective instructors, in addition to presenting course material, challenge students to think critically about
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what they are studying and to consider possible applications of the material. One way to accomplish this is
to assign projects specifically targeted to address material covered and to encourage students to think
beyond what they have learned in class. This is especially important in graduate level courses as compared
to those at the undergraduate level, as the focus shifts toward more independent thinking. This can be a
difficult task, especially when some graduate students have taken the equivalent undergraduate course, or
when the course is cross-listed as graduate and undergraduate. In the latter case, an instructor has to
accommodate both sets of students in the classroom, challenging them simultaneously. One way of
handling this is to assign graduate students a project of broader scope. Another option is to assign the 
same project to both undergraduate and graduate students. The undergraduates would be required to do a
simpler experiment that only requires a basic analysis, whereas graduate students would be expected to
expand upon the ideas. In this article we describe one such project that was implemented in a cross-listed
undergraduate and graduate course in Design of Experiments. It involves the application of many basic
concepts in Experimental Design, but also extends beyond what is typically taught in such a course.

The experiment involved the simple task of blowing soap bubbles. The objective was to determine an 
optimal bubble solution consisting of a mixture of water, dishwashing soap and glycerin. Minimal prior
knowledge of the science behind bubbles is necessary to complete this project. However, in addition to the
educational value associated with planning, conducting and analyzing an experiment, students also have
the opportunity to learn some science; bubbles are soap films which people have devoted their entire
careers to studying (Boys 1959; Isenberg 1992).

In our teaching experience three separate groups of students have conducted versions of this project. The 
experimental design and data come from one of these groups. For the illustrative purposes of this article,
we present a possible analysis of these data. The instructor has the flexibility to vary what is required and
the amount of guidance offered depending on the level of the students' knowledge. Throughout the
article, we discuss how the bubble project can be adapted in a variety of ways for use in teaching.

We present the issues and choices that the students need to confront in completing this project by 
following the structured empirical problem-solving framework PPDAC (Oldford and MacKay 2001). 
PPDAC is an acronym for a five-stage process:

Problem: Develop a clear statement of what we are trying to learn
Plan: Determine how we will carry out the investigation
Data: Collect the data according to the plan
Analysis: Analyze the data to answer the questions posed
Conclusion: Draw conclusions about what has been learned

We find PPDAC useful to structure the design and analysis of any experiment and have used it in our 
teaching and consulting. We present the bubble mixture experiment project by discussing each of the five
stages of PPDAC. At each stage, we describe the choices made in our example project along with their
rationale. As well, we discuss options for making the project either less or more complicated.

However, we start by giving some background on mixture experiments. To complete this project the 
students must recognize that the bubble experiment is a mixture experiment and apply the appropriate
methods. This may mean independent research for the students.

1.1 Mixture Experiments

In the proposed experiment we model the effect of the proportions of the three components (denoted S
for soap, W for water and G for glycerin). Such experiments are known as mixture experiments (Cornell 
2002). In a mixture experiment, each proportion may vary between zero and one, and the components
must sum to one. As a result, with three components, as in our example, the experimental region is a
triangle, defined by the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). Traditionally, this experimental region has
been viewed in two dimensions as displayed in Figure 1 that employs a triangular simplex coordinate 
system. Each point lying on or in the interior of the triangle represents a possible mixture. The plot can be
interpreted in the following way. Each vertex of the triangle represents a pure mixture (100% of one
component and none of the rest). As one moves away from this vertex toward the opposite side, the
proportion of the component gradually decreases to zero. Points interior to the triangle have some
proportion of each of the three components. For example, the point shown by the black dot in Figure 1
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corresponds to a mixture of 15% soap, 80% water and 5% glycerin, i.e. (S, W, G) = (0.15, 0.8, 0.05). The
project could be extended to include more components but that would increase complexity, especially in
terms of the graphical displays.

Figure 1

Figure 1: A Two Dimensional View of the Three Component Mixture Experimental Region. All mixtures
must lie on or inside the triangle whose equation is S+W+G=1.

In the bubble project, the experimental region is further constrained because we know, before running the
experiment, that some combinations will not produce any bubbles (e.g. 100% water) or be very poor. We
discuss this issue further in the Plan section.

For a mixture experiment, the standard linear first-order response model for a normally distributed 
response Y is

(1)
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Note that there is no intercept in this model. If the intercept were included, the design matrix would be 
singular because the proportions of water, glycerin and soap must add to one (i.e. S+W+G=1). Additional
models commonly used for mixture experiments include the quadratic model, special cubic model, and
the rarely used full-cubic model (Cornell 2002):

Quadratic: (2)

Special-Cubic: (3)

Full-Cubic: (4)

2. Problem
In the Problem stage, the students must clarify their objective by defining what they mean by an optimal
bubble solution. To do this they need to choose a target population, that is the conditions (e.g. bubble
making devices, environment, etc.) over which they would like their conclusions to be valid, and select an
appropriate response variate and population attribute (i.e. a summary of the response over the target
population).

The choices of response and population attribute are tied to the definition of best or optimal bubble 
mixture, and have a big impact on an appropriate analysis of the subsequent experimental data. In the
bubble project, the students decided an optimal solution produced, on average, the most bubbles.
Therefore, the response of interest was the number of bubbles and the attribute was the average number 
of bubbles across all conditions in the population. Other possible choices for response include: the size of
the biggest bubble, the time the bubbles survive, whether or not any bubbles where made, etc. In each
case, it is critical that the student think about both whether the response reflects their definition of optimal,
and whether the proposed response can be precisely and accurately measured. Students can be quite 
inventive; for instance, to measure time, they thought of blowing bubbles onto a dish so that the bubble
can be observed until it pops. A possible extension to the basic project is to use more than one response.
This will lead to multiple analyses and possibly the need to compromise in some way when making
recommendations.

In the choice of a response, the instructor needs to be careful the project does not become too complex for 
the students to handle. To assess this, they need to think ahead to the analysis stage. For instance, with a
response defined as the number of bubbles, a standard regression model with normally distributed errors
may need to be replaced by a Poisson regression model. Poisson regression is an advanced topic that
students would learn about in a course on generalized linear models. Alternatively, a standard analysis
with the usual normal error assumption that ignores the discrete nature of the count response may be
acceptable. An appropriate choice depends on the data. Another possibility is an analysis on a transformed
scale. For instance, in another application of this experiment, time to a bubble popping was used as the
response and the log time was well modeled using a standard normal regression model. The instructor 
should be prepared to discuss the pros and cons of each modeling choice. The choice of response can be a
great lead-in to a class discussion of model assumptions and more advanced types of models.

Next, the students needed to define their target population by answering the question “average over
what?” For example, they may decide they want to find the best bubble solution for all different
conditions, including different bubble making devices, environmental conditions, etc. Alternatively, they
may decide to look for the best bubble solution only for typical summer conditions (e.g. hot and humid)
in their part of the world. In a class project, the students have control over how ambitious they want to be.
In other applications, the goals of an experiment are usually driven by outside considerations, and we
need to try to achieve them through a good plan that makes appropriate use of the experimental principles
of blocking, replication and random assignment. The students typically come back to the definition of the
population after they have given more thought in the Plan stage to what is realistic, given the time and



Journal of Statistics Education, v15n1: Stefan H. Steiner, Michael ... file:///Users/williamnotz/Documents/JSE%20material/JSE%20Mar...

5 of 20 3/29/07 11:54 AM

cost constraints inherent in a class project.

3. Plan
In the Plan stage we must determine the details of the experiment we will run to try to find the optimal
bubble solution as defined in the Problem stage. More specifically, we need to select the experimental
factors and levels, choose a design and run order, worry about measurement of the response and think
about the logistics of the data collection.

3.1 Preliminaries

In our experience, a cause-and-effect diagram (Ishikawa 1982) is a useful tool in the Planning stage. To
produce a cause-and-effect diagram, also called a fishbone or Ishikawa diagram, we attempt to list all
possible important explanatory variates that may influence the response. This is typically done using a
team of subject matter experts, but for the bubble mixture experiment most people’s childhood experience
and common sense are sufficient. In the diagram, to help organize our thoughts, we use major branches to
collect related explanatory variates. An example of a possible cause-and-effect diagram for the bubble
mixture experiment is shown in Figure 2.

Figure 2

Figure 2: Bubble Experiment Cause-and-Effect Diagram.

While the students should not spend a large amount of effort developing a cause and effect diagram, they
should try to think broadly about all the possible inputs that could influence their chosen response. There
are many explanatory variates that could (with our limited knowledge) influence the number of bubbles
produced, of which many are not mixture components. Consideration of all the possibly important
explanatory variates can have a large impact on the experimental plan.
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In the example, the students decided to deliberately vary the water type and soap brand in the experiment 
as well as the three mixture components: soap, water and glycerin. By choosing two different water types
(spring and tap) and two different dishwashing soap brands (Joy® and Ivory®), they planned to also
consider whether the optimal bubble formulation depended on the levels of these two factors. As well,
they decided to look for a robust bubble solution that works well no matter what sort of water or soap was
used. See Taguchi (1987) for more on robust design experiments. Using the robust design terminology
we refer to soap brand and water type as noise factors.

What should be done with all the other possibly important explanatory variates? One option is to (try to) 
hold them fixed during the experiment. This makes the experiment easier to run (assuming it is not
difficult to hold the explanatory variates fixed), but restricts the generalizability of the conclusions.
Remember the choice of target population in the Problem stage. Another option is to create blocks within
which some explanatory variates are held fixed, and then replicate the design over a number of blocks.
For instance, if we thought there might be a large day effect, we could block by day and repeat the design
over two (or more) different days. This helps achieve the goal of assessing the effect of changing the
mixture components while at the same time allowing us to check that the results obtained under one set of 
conditions (one day) are also valid for other conditions (i.e. the second day).

In the example, the students decided to hold all other explanatory variates fixed. This choice was made 
mostly because it was easy. Blocking was rejected because the planned experiment was already complex
with three mixture factors and two noise factors. Also, while they felt that temperature and humidity were
probably important explanatory variates, running an experiment where they changed the temperature and
humidity was not practical given the available resources.

To accurately compare the bubble formulations, they used a battery-operated device to blow the bubbles. 
This avoided possible problems associated with a person blowing bubbles such as speed of a person's
breath and temperature. An assortment of bubble-blowing toys were considered and tested with a standard
store-bought bubble solution. One of the most consistent battery-operated devices was chosen to run the
experiment. To ensure reliable results, the batteries were replaced prior to running the experiment. Also
for consistency, each student had one task in the running the experiment. One student made all the bubble
solutions; a second operated the bubble making device, while the third student did all the bubble counting
and recording. This was a good idea as it reduced the chance that student-to-student differences could
influence the results.

3.2 Experimental Design

Standard experimental designs for estimating all the parameters in the mixture experiment models given in
an earlier section are outlined in Cornell (2002). However, for the proposed experiment, a constraint on
the experimental region makes sense. The students reviewed some bubble solution recipes found in
children's books, the Internet, teaching materials and toy manufacturers' suggestions. The
recommendations were similar; all restricted the proportion of glycerin to less than 0.15 and the
proportion of the dishwashing soap to less than 0.35. At the same time, the proportion of water should not
exceed about 0.98 since 100% water will not produce bubbles.

These considerations led the students to the following constraints on the experimental region: G  0.15, S 
 0.35, and W  0.98; the first two constraints imply that 0.50  W. Then, based on some trial and 

error, the students decided they also needed a lower limit on the amount of soap. As a result, they further
restricted the design region with S  0.04. Finally, because glycerin is much more expensive than dish 
soap which is in turn more expensive than water, they decided to restrict water to greater than 60% (i.e. W

 0.6). Thus the final experimental region was defined by the constraints: 0.04  S  0.35, 0.60  W 
0.98 and G  0.15,. This selected constrained experimental region is displayed in the right panel of
Figure 3. These decisions are somewhat arbitrary and should be reviewed for future projects using the
results presented later in this article. Alternatively, the cost constraints could be imposed more formally
through a cost function.
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Figure 3a

Figure 3: Constrained Experimental Region G  0.15, S  0.35, 0.5  W  0.98
Left panel shows constrained region relative to complete simplex. Right panel shows the constrained 

region in close-up.

The students created the plots in Figure 3 (and Figure 4 and Figure 8) by writing their own code in R (R 
Core Development Team 2004). This was a valuable learning experience in itself. Alternatively, some
commercial statistical software packages, such as MINITAB (version 14), can create plots on a restricted
simplex region – though they are not as customized as the ones the students produced. As we see in the
Analysis section, the students’ code was also useful for generating contour plots of the predicted response.

From the restricted experimental region the students must select a design. In the example, the students 
selected 12 component mixtures spread out over the constrained experimental region based on their
judgment. The 12 chosen mixtures are shown in Figure 4. They used 12 formulations because they felt 
that was a manageable number and would allow them to fit the special cubic model (3) while still retaining
some degrees of freedom for assessing model fit.
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Figure 4

Figure 4: Proposed Mixture Design Showing the 12 Mixture Proportions.

Clearly other choices of design points and the number of mixture combinations are possible and are
probably better. Students can extend the project by looking for an improved design. However, finding an
optimal design within a constrained mixture region is nontrivial. The best design, defined in terms of
prediction error, depends on the proposed model. One possibility for finding near optimal designs is to
use a genetic algorithm as in Goldfarb, Borror, Montgomery and Anderson-Cook (2005). Finding an 
optimal design in the context of a generalized linear model makes the task harder still. Another alternative
is to consider distance-based (space filling) designs where the selection criterion attempts to spread the
design points uniformly over the feasible region (see Johnson et al. 1990). Distance-based designs have
the advantage that they are not model dependent.

To explore how varying the type of water and soap brand would affect the number of bubbles produced, 
the students used a crossed control-by-noise array. In other words, they ran 48 trials using all possible
combinations of the twelve bubble formulations, two types of water and two brands of soap. As
mentioned earlier all other explanatory variates in the cause-and-effect diagram were to be held fixed
during the experiment. Another option is to add more noise factors and conduct a screening experiment to
determine the set of factors that contribute to the effectiveness of the bubble solution. With many noise
factors, a fractional design in the noise factors could have been used.



Journal of Statistics Education, v15n1: Stefan H. Steiner, Michael ... file:///Users/williamnotz/Documents/JSE%20material/JSE%20Mar...

9 of 20 3/29/07 11:54 AM

To reduce the effect of potentially unknown confounding variables, the order in which the students 
created and ran the treatments was randomized. The design and run order (as well as the results) are given
in Appendix A.

To partially counteract any variability that could be attributed to the bubble device, the students also 
planned to pass each solution through the bubble blowing process five times (i.e. they conducted five
repeats for each run). The difference between replicates, where each of the 48 bubble formulations would
be made again from scratch, and repeats, where the same bubble formulation is used to generate
additional responses, is very important for the students to understand. Clearly replication captures
additional sources of error, such as mixing variation. We discuss the issue of repeats versus replicates
further in the Analysis section.

In some applications of this project censoring of the response could become an issue. If there were a large 
number of bubbles, it would not be possible to accurately count the actual number of bubbles. Instead, we
could then record a right-censored value (e.g. there were at least 25 bubbles). Similarly, with time to a
bubble popping as the response, right censoring may arise if the times are too long and the bubbles have
not popped after, say, half an hour.

4. Data
In the Data stage the students ran the planned experiment and collected the data and noted any deviations
from the plan. They mixed the 48 solutions of water, soap and glycerin with the appropriate water type
and soap brand, each to a combined volume of 100 ml. They ran the experiment in the same order in
which they created the solutions. All runs were done in the office of one of the students over a single
afternoon. Thus, environmental inputs such as temperature and humidity were held (approximately)
constant over the course of the experiment. For each repeat, the response, that is the number of bubble
produced, was determined. Appendix A gives the resulting data.

There were a number of practical issues that arose while conducting the experiment. One of the primary 
difficulties was measuring the exact proportions of glycerin and soap. Glycerin, in particular, is very
viscous and is difficult to pour into solutions. To aid in the process, the students measured the required
amount of water first and then tried to remove any remaining glycerin and soap by dipping the measuring
spoons into the water. This was a very effective technique, as they seemed to get most of the glycerin and
soap off the measuring spoons.

The experiment was time consuming to run, with mixing the 48 solutions taking the bulk of the time. This 
is clearly an important consideration that should be considered in the Plan stage. Also, it can be very
helpful to make a few trial runs before conducting the whole experiment. This allows everyone to get a
better idea of the process and time involved as well as learn a lot about the logistics of running the
experiment. If necessary, the experimental plan could be altered and/or scaled back if time constraints are
a concern.

5. Analysis
Before doing any formal modeling, it is always a good idea to examine the data graphically. The students
started by plotting the five repeat counts by the average count for each of the 48 runs – see Figure 5.
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Figure 5

Figure 5: Plot of Number of Bubbles in Each Repeat by Run
Solid Line Showing the Average Count at Each Run.

Figure 5 shows there are no wild outliers. Also, while it is difficult to assess within run (i.e. repeat to
repeat) variation from only five repeats, there is no evidence that a Poisson assumption (i.e. that the
standard deviation should increase as the square root of the mean) is unreasonable.

In our example there are five repeats per run. There is no replication because each of the 48 bubble 
solutions was made only once (this was enough work!). In modeling, using the repeats as replicates does
not result in an appropriate analysis as the experimental error would likely be underestimated and there
would be too many significant effects. The standard approach to handle repeats is to calculate a
performance measure, such as an average or sum, across the repeats for each run and to do the analysis
using the performance measure. In the example, the students decided to use the total number of bubbles
produced across the five repeats as the performance measure. This is appropriate in this case as they 
planned to fit a Poisson regression and the sum of independent Poisson counts is still Poisson with mean
equal to the sum of individual means.

Next, the students plotted the data to informally examine the effect of the noise factors. Figure 6 shows the 
total number of bubbles across the five repeats by mixture formulation with different plotting symbols for
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the two levels of each of the two noise factors. Clearly the number of bubbles produced does not seem to
depend much on the water type, but depends strongly on the type of soap, with Joy producing many
more bubbles, on average, than Ivory.

Water Noise Factor Soap Noise Factor

Figure 6a Figure 6b

Figure 6: Total Bubble Count (across the five repeats) Versus Mixture Combination
Left plot: Solid circle = Spring, Open circle = Tap for Water noise factor. Right plot: Solid circle = Joy,

Open circle = Ivory for Soap noise factor.

Now they were ready to consider formal models. Because the chosen performance measure was the total
number of bubbles produced across the five repeats for each run, the students fit a generalized linear
model (McCullagh and Nelder 1989) with a Poisson response and a log link to the data.

In general, the Poisson regression for a response Y is written:

where  is the mean number of bubbles, X is a vector of covariates and  is a vector with the 
corresponding coefficients. Due to the inclusion of additional covariates (noise factors) that are not a part
of the mixture the students needed to consider extensions to models (1) – (4) to model . For 
example, coding the two levels of the noise factors: water type (NW) and soap brand (NW), as –1 and +1,
the necessary extension to the quadratic model (2) is given by (5). Note that as we add noise factors, the 
number of model parameters multiply by the number of noise combinations.

(5)
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The students fit both the extended quadratic (5) and special-cubic forms of the mixture model. The
special-cubic model crossed with separate terms for each of the four combinations of the noise factors had
28 parameters while the corresponding quadratic model had 24 parameters. Fitting the quadratic and 
special cubic models gave residual deviances of 100.85 and 93.825 respectively. To compare the models
they tested the hypothesis . Comparing the likelihood 
ratio test statistic (7.025) to a chisquare distribution with 4 degrees of freedom resulted in a p-value of
0.135. They also determined the Akaike Information Criterion (AIC) for the special-cubic model and the
AIC for the quadratic model and got 390.91 and 389.94 respectively. Because they could not reject the
null hypothesis and the quadratic model had a smaller AIC, the students concluded that it was preferred;
i.e. the additional special-cubic terms did not help the model fit.

In the quadratic model fit, the students then noticed that none of the terms involving the water type noise 
factor were significant. As a result, all such terms were removed from the model leading to what they
referred to as the reduced quadratic model. See Appendix B for the details of the reduced quadratic model
fit. The significant terms included: WS, GNS, WGNS and SGNS. The model fit is summarized as

(6)

As there are still non significant parameters in (6) a further reduction of the model is possible. However, 
for simplicity in the presentation we proceed with model (6).

The deviance residuals from the reduced quadratic model (6) are plotted in Figure 7. There are no 
obvious problems with the model fit, and there is no pattern over time.
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Figure 7

Figure 7: Deviance Residuals From Reduced Quadratic Model Versus Run Order and Fitted Values.

To explore the results from the reduced quadratic model fit, contour plots of the response for each of the
soap brands are given in Figure 8. Note that the response surface gives predictions on a single repeat basis,
i.e. we exponentiate (6) and divide by five.

The students produced Figure 8 by randomly generating many points in the constrained region,
calculating their predicted response using (6), identifying those points whose response is near some
selected values and finally plotting the points.
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Water Noise Factor Soap Noise Factor

Figure 8a Figure 8b

Figure 8: Contour Plots Showing the Predicted Number of Bubbles Per Repeat

Left panel: Ivory soap, Right panel: Joy soap
Asterisk in plot gives the maximum prediction.

Based on Figure 8, the students noted that for Ivory soap, the maximum predicted number of bubbles per
repeat was 4.3 at the component proportions (S, W, G) = (0.31, 0.69, 0). While for Joy, the maximum was
much higher at 16.8, and occurred at the component proportions (S, W, G) = (0.31, 0.60, 0.09). These 
optimal bubble solutions are shown in Figure 8 using an asterisk. Given the fitted model (6), it is also 
possible to optimize the response more formally using a constrained optimization routine.

In the example, the students also looked for a bubble solution that was robust across the two different soap 
brands. The best way to do this is not clear. Looking at the two contour plots in Figure 8 they can use
their judgment to compromise. For instance, component proportions near (S, W, G) = (0.3, 0.65, 0.05) 
are predicted to give, on average, close to 15 bubbles for Joy and 4 for Ivory. There are many other
possible ways to compromise. For instance, they could have instead tried to maximize the minimum
average response. Another alternative is to use formal optimization, perhaps to minimize the
larger-the-better loss,  (Steiner and Hamada 1997, equation (5)), where

 and  are the mean and variance of the response over the noise factor soap brand.
However, this criterion was developed with the normal regression model in mind. For this experiment,
minimizing this loss leads to a solution that drives the variance down at the expense of the mean, and
results in a undesirable bubble solution with small variability but also a small mean for both types of soap.
An interesting study for the students would be to develop a more meaningful criterion for the Poisson
regression model.

Note that in cases where a continuous normal response is chosen, the standard modeling could be used in 
place of the generalized linear model. Also, without the noise factors there would be a quarter as many
runs and no need to consider robustness.

As another alternative to using generalized linear models, the students could do a Bayesian analysis with 
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the Poisson regression model (Gelman et al. 2004). This is relatively easy to do with WINBUGS
(Spiegelhalter, Thomas, Best, and Lunn 2004). An advantage of a Bayesian approach is that the
correlations between the parameter estimates (i.e. regression coefficients) are captured in the draws from
the joint posterior distribution of the parameters. Moreover, the uncertainty on predicted means or
predictons that are functions of the parameters are easily obtained.

6. Conclusions
Depending on the original goal the conclusions can be presented in a variety of ways. Much depends on
how we view the process (non mixture) variables: water type and soap brand. One option is to make
recommendations for the best levels of the process variables and the associated mixture components. For
instance, based on the fitted models the students concluded that the best bubble mixture would result from
using Joy soap with mixture proportions (S, W, G) = (0.31, 0.60, 0.09). This mixture is predicted to
produce on average 16.8 bubbles, and using the Poisson distribution, 95% of the time there should be
between 9 and 25 bubbles. They also noticed that this best bubble solution occurred on the boundary
W=0.6. Thus their decision to further restrict the design region to W  0.6 in the Plan stage was probably 
a poor choice.

Another option is to give conclusion based on a robust bubble solution that works reasonable well no 
matter what soap brand is used. Clearly something in between is also possible. Perhaps we are willing to
make a recommendation for the soap brand since they can be easily bought, but want a bubble mixture
that will work well over a variety of water hardness. In our example this does not change our conclusions
since water type was found to have little influence.

In any case, the students should comment on possible limitations to their conclusions. In the example, all
environmental variates were held fixed during the experiment. This may cause concern about generalizing
the results. Perhaps, for other environmental conditions, a different bubble mixture would be optimal.
This seems likely given our belief that temperature and humidity have a strong influence. How much our
results are affected by measurement or mixing errors is also a worry. Note also that, in any case, with only
two types of dish soap in the experiment any proposed “robust” solution is only robust across Joy and
Ivory, not (necessarily) across all brands of dish soap available.

As part of the conclusion, the students could also comment on the choices made in the problem or plan 
stage. For instance, setting the goal to maximize the average number of bubbles may not have been the
best choice if the proposed best bubble solution only produced many very small bubbles. This would
probably not meet with the approval of any children testing our proposed solution. In the example, the
students concluded that spring and tap water were not the best choices for their two water types. They had
intended on comparing two water types with very different mineral content. However, it is likely that both
the tap and spring water were quite hard, i.e. had substantial mineral content. This could have been the 
reason the quadratic model suggested water type was not important. A better choice may have been to use
distilled water as one of the two water types.

To strengthen their conclusions, very eager students can conduct an additional simple experiment to 
confirm that the proposed optimal solution produces close to the predicted number of bubbles on average.
If the results can be validated in this way, we would have more confidence in the fitted model and their
conclusions in general. Another possibility is to suggest this as further work (for the next students!).

To make the project even larger in scope, the presented experiment could be seen as the first in a series of 
experiments to look for a better bubble solution. In other words, the students or class could be asked to
run a series of experiments and use response surface methods. Though it is not clear how best to do this in
the context of a crossed mixture by noise array. Each new experiment results in another application of
PPDAC and would be expected to build on the knowledge gained in previous experiments. For example,
each new experiment could further restrict (or move) the constrained experimental region.
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7. Summary
As stated in the Introduction, the goal of this article is to provide instructors of an advanced design of
experiments course with a versatile teaching tool. Inherent in any applied project of this kind is the fact
that it solidifies the concepts and ideas presented in class for the students. One of the advantages of this
particular project is that its level of complexity can be adjusted based on the students background. The
physical experiment is easy to conduct and there is minimal time and cost involved. At the same time,
students have the opportunity to gain valuable insight into various topics in statistics, such as:

Experimental Design
Optimal Design
Constrained Experimental Regions
Mixture Experiment Models
Generalized Linear Models
Robust Optimization
Graphical Techniques

In addition to these areas, students are also exposed to group collaboration and obtain valuable experience 
in report writing and/or presenting. In the project outlined in this article, a number of
statistical/mathematical software packages were used. Although it is not required that students use these
particular programs, the experience gained through use of the computer will greatly contribute to their
learning. Throughout this article we made a number of suggestions regarding specific issues that may
benefit students in planning future experiments. More ideas for projects involving mixture models can be
found in Sahrmann, Piepel and Cornell (1987), Anderson (1997) and Piepel and Piepel (2000). Further 
examples in experimental design in general are given in Hunter (1977).

Appendix A: The Bubble Mixture Experiment Data
Proportions Number of Bubbles in Repeat

Mixture Run Soap Water
Number Order Water Soap Glycerin Type Type 1 2 3 4 5 Total

1 2 0.6 0.35 0.05 -1 -1 19 25 25 25 25 119
2 3 0.6 0.25 0.15 -1 -1 13 10 14 12 14 63
3 20 0.65 0.35 0 -1 -1 9 9 7 6 8 39
4 32 0.65 0.25 0.1 -1 -1 16 7 12 13 12 60
5 1 0.75 0.25 0.05 -1 -1 11 13 15 9 16 64
6 15 0.7 0.15 0.15 -1 -1 7 11 11 13 12 54
7 41 0.775 0.145 0.08 -1 -1 16 12 10 4 2 44
8 24 0.8 0.2 0 -1 -1 11 8 13 9 10 51
9 31 0.81 0.04 0.15 -1 -1 1 2 2 5 2 12

10 29 0.85 0.12 0.03 -1 -1 17 13 9 14 11 64
11 23 0.88 0.04 0.08 -1 -1 5 1 2 1 1 10
12 27 0.95 0.05 0 -1 -1 3 5 6 2 4 20
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1 34 0.6 0.35 0.05 -1 1 13 15 13 13 17 71
2 40 0.6 0.25 0.15 -1 1 15 15 15 13 10 68
3 7 0.65 0.35 0 -1 1 9 14 11 14 5 53
4 17 0.65 0.25 0.1 -1 1 16 15 10 14 5 60
5 6 0.75 0.25 0.05 -1 1 16 15 18 17 11 77
6 35 0.7 0.15 0.15 -1 1 14 7 6 10 9 46
7 36 0.775 0.145 0.08 -1 1 7 11 11 13 14 56
8 48 0.8 0.2 0 -1 1 14 12 16 12 14 68
9 8 0.81 0.04 0.15 -1 1 4 4 4 4 4 20

10 18 0.85 0.12 0.03 -1 1 4 6 10 11 9 40
11 4 0.88 0.04 0.08 -1 1 1 9 2 6 5 23
12 37 0.95 0.05 0 -1 1 2 3 2 4 3 14

1 43 0.6 0.35 0.05 1 -1 8 2 4 3 4 21
2 44 0.6 0.25 0.15 1 -1 6 2 1 3 1 13
3 10 0.65 0.35 0 1 -1 3 2 2 3 2 12
4 26 0.65 0.25 0.1 1 -1 3 6 8 6 6 29
5 5 0.75 0.25 0.05 1 -1 1 4 4 10 1 20
6 42 0.7 0.15 0.15 1 -1 3 2 4 6 1 16
7 47 0.775 0.145 0.08 1 -1 2 7 8 3 2 22
8 38 0.8 0.2 0 1 -1 1 6 5 3 4 19
9 33 0.81 0.04 0.15 1 -1 4 5 1 1 4 15

10 13 0.85 0.12 0.03 1 -1 3 3 0 1 1 8
11 19 0.88 0.04 0.08 1 -1 0 1 0 1 1 3
12 25 0.95 0.05 0 1 -1 1 2 3 6 3 15

1 11 0.6 0.35 0.05 1 1 5 3 5 2 3 18
2 46 0.6 0.25 0.15 1 1 5 4 3 0 5 17
3 39 0.65 0.35 0 1 1 0 1 1 2 1 5
4 45 0.65 0.25 0.1 1 1 2 5 2 1 3 13
5 12 0.75 0.25 0.05 1 1 3 7 2 5 5 22
6 22 0.7 0.15 0.15 1 1 1 2 2 6 6 17
7 14 0.775 0.145 0.08 1 1 8 4 1 1 1 15
8 30 0.8 0.2 0 1 1 3 4 1 3 0 11
9 21 0.81 0.04 0.15 1 1 2 5 6 5 3 21

10 16 0.85 0.12 0.03 1 1 2 4 4 3 4 17
11 9 0.88 0.04 0.08 1 1 0 1 0 0 3 3
12 28 0.95 0.05 0 1 1 4 2 5 3 1 15

For soap brand: –1 = Joy and +1 = Ivory
For water type: –1 = spring and +1 = tap
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Appendix B: The R Output for the Reduced Quadratic Model
glm(formula = y1 ~ -1 + W + S + G + WS + WG + SG + Wn + Sn + Gn + WSn + WGn + SGn, family = poisson)   
%n corresponds to NS

Model: poisson, link: log

        Df      Deviance        Resid. Df       Resid. Dev
NULL    48      8701.7
W       1       7033.0          47              1668.7
S       1       909.1           46              759.5
G       1       79.2            45              680.4
WS      1       24.9            44              655.5
WG      1       7.8             43              647.6
SG      1       7.5             42              640.1
Wn      1       433.3           41              206.8
Sn      1       52.5            40              154.3
Gn      1       0.3             39              154.0
WSn     1       1.3             38              152.7
WGn     1       1.6             37              151.0
SGn     1       31.0            36              120.0

Deviance Residuals: 
   Min         1Q        Median       3Q        Max     
-2.7643     -1.0658     -0.1526     0.8362    4.6545    

Coefficients:
        Estimate   Std. Error     z-value   Pr(>|z|)    
W         2.3938     0.1703          —        —  
S        -3.3553     2.1339          —        — 
G        17.7969    10.3578          —        — 
WS       13.9705     3.5458        3.940    8.15e-05   ***
WG      -17.5638    12.3313       -1.424    0.1544
SG       -5.2577    12.5849       -0.418    0.6761
Wn       -0.1587     0.1703       -0.932    0.3515
Sn        2.2537     2.1339        1.056    0.2909
Gn       47.2846    10.3578        4.565    4.99e-06   ***
WSn      -5.2169     3.5458       -1.471    0.1412
WGn     -53.1718    12.3313       -4.312    1.62e-05   ***
SGn     -69.7290    12.5849       -5.541    3.01e-08   ***

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 8701.69  on 48  degrees of freedom
Residual deviance:  120.03  on 36  degrees of freedom
AIC: 385.12

Number of Fisher Scoring iterations: 4
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