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ABSTRACT In industry, processes with multiple streams or gauges in paral-

lel are common. We discuss monitoring such processes to detect changes in

both the overall process mean and changes in the individual stream or

gauge means. We propose two new control chart statistics based on an F test

and a likelihood ratio test. One appealing aspect of these approaches is that

they can be implemented either with or without process parameter esti-

mates obtained from previous data (i.e., from phase 1 implementation of

the control chart). These proposals are shown to compare favorably to avail-

able methods. The article is motivated by a truck assembly process in which

wheel alignment characteristics are measured on every truck by one of four

alignment machines, arranged in parallel within the overall process.

KEYWORDS control charts, measurement system monitoring, parallel gauges,

parallel streams, statistical process control

INTRODUCTION

In the assembly of light trucks, front wheel alignment is a key character-

istic that affects the handling of the vehicle and the life of its tires. The align-

ment characteristics include toe, caster, and camber angles on both the left

and right front wheels. In the assembly process, there is a single production

line. Due to high volumes, four gauges are used to measure alignment char-

acteristics. Each truck is measured by one gauge (100% inspection) and

adjustments are made as necessary. Trucks are assigned to a gauge based

on gauge availability; accordingly, we assume that the distributions of the

true values of the alignment characteristics are the same for each gauge.

Checking a truck’s alignment takes three to four minutes and all adjust-

ment=rework is done offline. A process map is given in Figure 1.

The need for formal process monitoring became apparent during a pro-

ject to reduce caster angle variation. At one point, the project team noticed

that there were substantial differences in the average right caster angles

among the four gauges.

The truck alignment process is an example of a multiple stream process,

where the multiple streams correspond to the four gauges. In general, we

may have multiple streams at any process step, a common feature of

high-volume manufacturing.

To monitor a multiple stream process, it is helpful if we distinguish

between assignable causes that result in changes to the overall process

output (i.e., across all streams=gauges) and changes that only affect one
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(or some) of the streams. Figure 2 illustrates some

possible process changes using a hypothetical pro-

cess with three parallel streams. The top left plot

shows the process output stratified by stream when

the process is in-control. We see that there is little dif-

ference in the distribution of the output values across

the streams. The top right plot shows the process

after a process mean shift upwards that affects all

streams, while the plot in the bottom left shows the

process after an increase in the variation of stream

three. Finally, the bottom right plot shows the pro-

cess after the mean of the third stream has decreased.

Our goal is to distinguish among these types of pro-

cess changes. Making this distinction is helpful in

diagnosing the problem and eliminating the assign-

able cause. For example, a signal suggesting a shift

in the mean of a single stream would require differ-

ent corrective action than one suggesting a shift in

the overall process mean.

If we ignore the streams, we can monitor the pro-

cess using a single �XX and s chart (Montgomery,

2004). This is effective for detecting step changes in

the overall process mean or variation. However, note

that changes in the stream means (bottom right in

Figure 2) will increase the overall process variation,

and detecting changes in the output variation in an

individual stream (bottom left) will be difficult. One

immediate solution to this problem is to maintain

separate �XX and s charts for each stream of the pro-

cess. This, however, results in a large number of

charts and is only feasible if the number of streams

is small. In addition, using multiple �XX and s charts

is less effective at detecting changes to the process

that affect all streams at the same time. As well, with

FIGURE 2 Illustrative example plots of output by stream.

FIGURE 1 Truck assembly and alignment measurement

process with four parallel gauges.
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multiple charts, we should widen the control limits of

the stream-specific charts to maintain a reasonable

overall false alarm rate.

We propose a number of new control charts, to be

used in conjunction with the overall �XX and s charts,

that are specifically designed to look for changes in

the stream means. While we focus on detecting

changes in the stream means, the ideas can be

extended to look for changes in the within-stream

variation. However, generally for multiple stream

processes (Mortell and Runger, 1995), and especially

when the streams represent multiple gauges, the pro-

cess variation (e.g., assembly variation) is large rela-

tive to the within-stream variation (i.e., assembly plus

measurement variation). In this case, changes in the

variation of a single stream are difficult to detect and

have little impact on the overall variation.

The next section provides some background and

discusses existing approaches. The subsequent sec-

tion gives a detailed description of the proposed

new control charts and the derivation of appropriate

control limits. Next, we compare the performance of

the proposed control charts to some existing charts

using a simulation study. Finally, we illustrate the

use of the new control charts in the truck alignment

example.

BACKGROUND

To monitor a multiple stream process, Boyd (1950;

see also Nelson, 1986; Montgomery, 2004, section

9.3) proposed a group control chart. In this

approach, observations are collected at regular time

intervals from the process in subgroups consisting

of n observations from each of the m streams. All

the control charts considered here use the same

sampling plan. We define the observed data for

each subgroup as

yij ; i ¼ 1; . . . ;mðstreamsÞ; j ¼ 1; . . . ;nðobservationsÞ

For a group control chart the two statistics

charted for each subgroup are the maximum and

minimum of the stream averages; that is, max
i

�yyi: ¼
maximumð�yy1:; �yy2:; . . . ; �yym:Þ and min

i
�yyi:; where �yyi: ¼Pn

j¼1 yij=n. The control limits are derived using the

standard procedure for an �XX control chart using the

data from each stream as a subgroup (Montgomery,

2004). With a group control chart, there are two

decision rules. First, the control chart signals a shift

in the overall process mean whenever the maximum

or minimum stream average falls outside the control

limits. Second, to detect a shift in the mean of an

individual stream, the stream numbers associated

with the maximum and minimum average are used

as plotting symbols on the chart. A signal occurs

whenever the average of a particular stream is an

extreme in c consecutive samples. That is, we see

the same plotting symbol for c consecutive sub-

groups.

Mortell and Runger (1995) discuss the group con-

trol chart, concluding that the methodology is not

effective at detecting changes in the overall process

mean when the overall process variation is large rela-

tive to the stream variation. This would be the case in

most multiple gauge applications where the

measurement variability and relative bias of the

measurement systems tend to be small compared

to the variation in the ‘‘true’’ values of the character-

istic. They also conclude that the discreteness in the

runs rule (since c has to be integer) is a major draw-

back of the group control chart, severely limiting the

choice of in-control average run length. Also, they

note that the runs rule works poorly if more than

one stream mean shifts by a similar amount at the

same time.

Using the same sampling scheme, Mortell and

Runger (1995) propose new control charts to detect

changes in the overall or stream means. They

recommend a standard �XX control chart based

on the overall subgroup average, that is, �yy:: ¼P
i

P
j yij=nm, to look for changes in the overall pro-

cess average. This provides an improvement over the

group control chart that uses the min and max of the

stream averages because we increase the sample size

in the averaging. Note, while not considered by Mor-

tell and Runger, we could similarly monitor for

changes in the overall process variation using an s

chart based on the overall subgroup sample standard

deviation; i.e.,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i; jðyij � �yy::Þ
2=nm� 1Þ

q
. To detect

a shift in the mean of an individual stream, they sug-

gest plotting the range of the stream averages, that is,

r ¼ max
i

�yyi: �min
i

�yyi:, the difference of the two stat-

istics plotted on the group control chart. To construct

the control limits for a Shewhart chart based on r,

they use standard methods for range charts applied

to the ranges of the stream averages. The upper con-

trol limit (UCL) for the chart is set at D:999ðR=d2Þ,
where R represents the average of the ranges across

X. Liu et al. 298
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all subgroups in phase I. The constant D:999 can be

obtained from the table given by Harter (1960) and

d2 from the control chart constant tables in

Montgomery (2004). We refer to the method

proposed by Mortell and Runger as the R chart or

the range method.

Chang and Gan (2006) considered the special case

of monitoring the linearity of two parallel measure-

ment systems. Their approach requires a different

sampling plan, involving the repeated measurement

of parts with known dimensions. It is not clear

how to extend their approach when there are more

than two parallel gauges or when there are multiple

streams other than measurement systems. As a result,

we do not consider their approach further here.

PROPOSED METHODOLOGY

We compare the Mortell and Runger (1995) range

method to four new test statistics, two based on the

well known F test and two based on a likelihood

ratio test. For ease of presentation, we use termin-

ology from the multiple gauge context though the

methodology is applicable to any situation with mul-

tiple parallel process streams. We focus on the goal

of detecting changes in the stream means; that is,

in the measurement bias of one or more of the

gauges.

To explain the new approaches, for each sub-

group we assume the following model:

Yij ¼ Tij þ Rij ; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ;n ð1Þ

In model (1), Yij represents the possible values for

the jth measured value from the ith gauge, Tij the

true values of the characteristic, and Rij the measure-

ment errors. We assume the Tij are independent and

distributed N ðl; r2
pÞ and the Rij are independent of

the true values and each other and distributed

N ðbi;r
2
mÞ. In this model, l and rp are properties of

the process upstream of the gauges, while bi denotes

the bias of the ith gauge and rm represents the

measurement variation. From the model, we have

Yij � N ðlþ bi;r
2Þ, where r2 ¼ r2

p þ r2
m. We call r2

the overall variation as it represents the combined

effect of the process and measurement variation.

The assembly process is in control if l and rp do

not change over time. The two objectives of the pro-

cess monitoring are to detect changes in the (pro-

duction) process parameters l and rp from their

stable values and to detect differences among the

gauge biases; i.e., the bi s. For the first goal we pro-

pose using X and s charts based on the overall sam-

ple mean and standard deviation. We focus on the

second goal. When the measurement system is in

control, bi ¼ b for all i ¼ 1; 2; . . . ;m, i.e., for all

gauges, thus b is the stable (in-control) value of the

measurement bias, not necessarily equal to zero.

Note that using the proposed sampling scheme, a

simultaneous consistent change in the bias of all

measurement gauges is indistinguishable from

changes in the assembly process mean. Next, we

describe the four proposed chart statistics for detect-

ing changes in the within-gauge biases.

F Statistic

Monitoring the consistency of the gauge bias is

equivalent to repeatedly testing the hypothesis

H0 : b1 ¼ b2 ¼ . . . ¼ bm ¼ b versus

Ha : bi not all equal; i ¼ 1; . . . ;m:

This general alternative hypothesis suggests the well-

known F-test for comparing means in a one-way

analysis of variance (ANOVA) context. Specifically,

for each subgroup we calculate the F ratio

f ¼
n
Pm
i¼1
ð�yyi: � �yy::Þ

2

m� 1

,P
i;j
ðyij � �yyi:Þ

2

nm�m
ð2Þ

Assuming model (1), f � Fðm� 1;nm�mÞ under

the null hypothesis; i.e., when the measurement sys-

tem is stable. If we observe a large value of f at time

t, we conclude that the measurement system is out of

control. That is, one or more of the gauge biases has

shifted. We assign an upper control limit, using the

probability method, at UCL ¼ F:999ðm� 1;mn�mÞ.
Note that this control limit does not depend on

any unknowns. Thus, for the F-ratio control chart,

phase 1, where we collect data from the in-control

process to set an appropriate control limit, is not

necessary. We can immediately begin phase 2, where

we monitor the process on an ongoing basis.

Note that with the assumed model (1), the

denominator of the F ratio (2) is an internal estimate

of r2 under both the null and alternate hypotheses.

In the usual measurement system studies, where

parts are repeatedly measured, the denominator
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gives an estimate for r2
m under both the null and

alternative hypotheses. Also, the F test is well known

to be robust to the distributional assumptions.

Gauge Average S Chart

With the F ratio, we compare the numerator, a

measure of variability in the gauge averages, to the

denominator, a measure of the variability within

gauges. The denominator provides a benchmark that

allows us to determine whether the observed differ-

ences in gauge averages, as measured by the numer-

ator, should be considered large or not.

However, in situations where we have observed

the in-control process for some time, i.e., we have

a substantial amount of phase 1 data, we can deter-

mine a prior estimate of r2. In that case, we could

increase the sensitivity of the chart by no longer

reestimating the overall variation from the data in each

subgroup. This suggests charting the numerator of the

F-ratio, namely
Pm

i¼1ð�yyi: � �yy::Þ
2. Under rescaling, this

statistic is equivalent to the sample standard deviation

of the gauge averages. For this reason we propose a

chart based on s, the standard deviation of the gauge

averages in each subgroup; i.e.,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m� 1

Xm
i¼1

ð�yyi: � �yy::Þ
2

s
ð3Þ

We can also motivate the S chart more directly by

noticing that when monitoring a process for changes

in variation, an S chart using the subgroup standard

deviation is an alternative to an R chart based on the

subgroup range. In our context, Mortell and Runger’s

(1995) R chart looks for changes in the gauge means,

which will look like increased variation in the output.

We expect the R chart to work well when a single

gauge bias shifts. However, a chart based on s may

be better when multiple gauges shift. Also, we may

expect the S chart to be somewhat more sensitive than

the R chart when the number of parallel gauges is

large.

To set an upper control limit for the gauge average

S chart, use the standard probability limit given by

UCL ¼ �ss=c4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
:999=n� 1

q
, where �ss represents the

average of the standard deviations across all sub-

groups in phase I, the constant v2
:999 comes from

the chi-square distribution, and c4 from control chart

constant tables in Montgomery (2004).

Likelihood Ratio Statistic

The F test that leads to the chart statistic f is

designed to look for any differences among the

gauge biases. In some situations, where we are able

to give a more specific alternative hypothesis, a test

based on a likelihood ratio will be more powerful.

We can make the alternative hypothesis more spe-

cific since, in many production processes, it is

reasonable to assume that the bias of only one gauge

at a time changes. As a result, we propose a chart

statistic that will signal quickly when there is a shift

in the bias of only one gauge. This idea can extend

to cases where we can make the alternative hypoth-

esis even more specific; for instance, we may be will-

ing to assume the direction of the expected change

in bias. This is not done here because it did not make

sense in the truck alignment example.

The chart statistic l arises from the likelihood ratio

test of the null hypothesis against the specific alterna-

tive hypothesis corresponding to a bias shift in one

unspecified gauge denoted k; i.e.,

H �a : bi ¼ b for i ¼ 1; 2; . . . ;m; i 6¼ k and bk 6¼ b:

For convenience, we derive the expression for the

log-likelihood ratio in two steps. First, recall that

the log-likelihood ratio statistic l is of the form

�2 log½Lðb̂b0; r̂r0Þ=Lðb̂ba; r̂raÞ�, where L is the likelihood

function, b̂b0 and r̂r0 are the maximum likelihood esti-

mates under the null hypothesis, and b̂ba, r̂ra are the

maximum likelihood estimates under the specified

alternative H �a . For a specific gauge k the log-

likelihood ratio is

lk ¼ nm log
Xm;n

i;j

ðyij � �yy::Þ
2

�(

Xn

j¼1

ðykj � �yyk:Þ
2 þ

Xm;n
i 6¼k; j¼1

ðyij � �yy�k:Þ
2

" #)

where �yy�k: denotes the average of the observations

from all gauges except the kth gauge. The numerator

gives an estimate of the overall variation while the

first term in the denominator estimates the variation

within gauge k and the second term the variation

within all the other gauges.

Since we do not know which gauge has shifted,

we propose the following likelihood ratio test stat-

istic for the hypothesis that the bias of exactly one

X. Liu et al. 300
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gauge has shifted

l ¼ max
k

lk ¼ max
k

nm log
Xm;n

i;j

ðyij � �yy::Þ
2

�(

Xn

j¼1

ðykj � �yyk:Þ
2 þ

Xm;n
i 6¼k; j¼1

ðyij � �yy�k:Þ
2

" #)
ð4Þ

Large values of the statistic suggest that the

process is out of control since there is evidence

one gauge bias is different from the others. Since

we use a specific alternative hypothesis, we expect

this chart statistic to perform better than

other methods for detecting a shift in the bias of

a single gauge.

Likelihood Ratio Statistic with Known
Variation

The likelihood ratio statistic with known variation

is similar to the standard likelihood ratio statistic. The

difference is that when computing the test statistic,

we assume a prior estimate of r2 is available from

phase 1. The resulting test statistic for testing against

H �a for a specified k, is qk ¼ nm
m�1 ð�yyk: � �yy::Þ

2=r2.

Then, the chart statistic q is defined by

q ¼ max
k

nm

m� 1
ð�yyk: � �yy::Þ

2=r2
h i

: ð5Þ

When the process is in control, each of the qks follow

a v2
1 distribution but they are not independent.

Setting the Control Limits for the

Likelihood Ratio–Based Control
Charts

Since it is difficult to determine the distributions of

l and q, we use simulation to determine appropriate

control limits for these likelihood ratio–based charts.

In the simulation, we assume that the in-control

measurement errors follow model (1) and, without

loss of generality, have mean zero ðb ¼ 0Þ and stan-

dard deviation rm ¼ 1. We have to choose the num-

ber of simulated subgroups to achieve sufficient

precision for the control limits. As is well known,

VarðX̂XpÞ � pð1� pÞ=nf 2ðxpÞ, where X̂Xp is the pth

sample quantile, n is the sample size, and f ðxÞ is

the density function of distribution. We select 107

subgroups, which gives a standard error of the

estimated quantile less than 0.03.

We give the critical values for the likelihood ratio

statistics l and q derived by simulation for a false

alarm rate of 0.001 in Tables 1 and 2. The critical

values from Table 1 can be used directly for setting

the control limit for the likelihood ratio statistic l

since the distribution does not depend on the

(unknown) overall variation r2. The critical values

for use with the likelihood ratio statistic q in Table 2

need to be multiplied by r2, the phase 1 estimate of

the overall variation.

COMPARISONS

Table 3 summarizes the chart statistics for the

various control charts we will compare. Note that

changes from subgroup to subgroup in the overall

process mean l, either jumps or drifting, have no

effect on any of the proposed control charts.

One major difference among the proposed charts

is that the Mortell and Runger range chart R, the like-

lihood method based on q, and the gauge average S

chart all require estimates of the in-control value of r
to construct control limits. To get an estimate of r we

need phase 1 as in the usual implementation of statis-

tical process control charts. On the other hand, the

charts using f and l re estimate the overall variability

TABLE 1 Upper Control Limit for Likelihood Ratio Statistic (l)

with Unknown Variance

Number of

gauges (m)

Number of observations per gauge (n)

6 12 20

2 13.55 12.08 11.55

4 14.95 14.10 13.83

12 16.05 15.75 15.63

24 17.09 16.91 16.87

False alarm rate ¼ 0.001.

TABLE 2 Critical Values for Likelihood Ratio Statistic (q) with

Known Variance

Number of

gauges (m)

Number of observations per gauge (n)

6 12 20

2 0.90 0.45 0.27

4 1.67 0.84 0.50

12 2.36 1.18 0.71

24 2.68 1.34 0.80

Control limit ¼ table entry�estimate for r2 from phase 1.
False alarm rate ¼ 0.001.
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for each subgroup. A major advantage of the f and l

charts is that they can be implemented immediately

without first collecting phase 1 data. Assuming the

phase 1 estimates are precise, we expect the r , q,

and s charts to have a performance advantage over

the f and l control charts. However, this advantage

could easily become a disadvantage if the overall

variation changes over time or is poorly estimated

in phase 1. In cases where each subgroup is reason-

ably large, the R, S, and q charts based only on the

gauge averages from each subgroup ignore poten-

tially valuable information given by the within gauge

differences. In the f and l charts we use this within-

gauge variability to assess the magnitude of the dif-

ferences in the gauge averages.

A second qualitative difference among the pro-

posed charts is the nature of the underlying alternate

hypothesis. For the f, S and R charts, we specify a

very general alternate hypothesis, while the two like-

lihood ratio–based methods, l and q are based on a

more specific alternate hypothesis. The control

charts based on the more specific hypothesis are

expected to yield improved performance when the

process change matches that hypothesis but not

work as well for other kinds of process changes.

We compare the charting procedures quantitat-

ively using the power to detect various changes in

the biases in the multiple gauge process. We choose

control limits for each chart statistic to give a false

alarm rate of roughly 0.001. The power of a chart

statistic is the probability that a point on that control

chart falls outside the control limit when the biases of

the measurement system have changed. In this com-

parison, we estimate the power of each chart using

a simulation with 100,000 trials. Figures 3 through 5

provide graphical comparisons of the power for the

different chart statistics for 2, 4, and 24 (m) gauges

and 6 and 20 (n) observations for each gauge. For

each chart statistic, one gauge is shifted from a relative

bias (bk � b) of zero to a bias of 0.2, 0.4, 0.6,. . ., 3.0.

We compare the unknown variance chart statistics

(likelihood ratio statistic l, F statistic f ) and the known

variance chart statistics (likelihood ratio statistic q, r

statistic, and s statistic) separately. Note that when

there are only two gauges the Mortell and Runger R

and Gauge Average S charts are equivalent.

Among the cases considered, and we believe more

generally, if the process change matches the alterna-

tive hypothesis H �a for the unknown variance group,

the likelihood ratio statistic performs consistently

better than F statistic. In the known variance group,

the chart based on the likelihood ratio statistic per-

forms consistently better than R and S charts. These

results are expected.

When the measurement system consists of only

two parallel gauges, we see from Figure 3 that there

is virtually no difference among the power of the

chart statistics within each group. The known vari-

ance group performs noticeably better than the

unknown variance group with six observations from

each gauge. However, as the number of observations

from each gauge increases, the difference between

two groups becomes smaller. With 20 observations

from each of the two gauges, the known variance

methods are only marginally better than the

unknown variance group.

As shown in Figures 4 and 5, the number of obser-

vations from each gauge plays a similar role when

there are 4 and 24 gauges in the measurement sys-

tem. Generally, as the number of observations

increases, the difference between the known and

unknown variance methods becomes smaller. This

suggests that if we could obtain a large number of

observations from the process in each subgroup,

regardless of the number of gauges in the measure-

ment system, the likelihood ratio statistic with

unknown variance performs as well as all the meth-

ods in the known variance group.

Next, we consider the effect of the number of

gauges. From Figures 3 through 5, we see that as

TABLE 3 Proposed Test Statistics to Detect Change in Bias

Approach Chart statistic

Mortell and Runger,

R chart

r ¼ max
i

�yyi: �min
i

�yyi:

F-test f chart f ¼
Pm
i¼1

ð�yyi: � �yy::Þ2
P
i;j

ðyij � �yyi:Þ2
,

Gauge average S chart

(with known r2)

s ¼
Pm
i¼1

ð�yyi: � �yy::Þ2

Likelihood (l)

ratio chart
l¼max

k

Xm;n

i;j

ðyij� �yy ::Þ
2

,(

Xn

j¼1

ðykj� �yyk:Þ
2þ

Xm;n

i 6¼k;j¼1

ðyij� �yy�k:Þ
2

2
4

3
5
9=
;

Likelihood (q) ratio

chart (known r2)

q ¼ maxkð�yyk: � �yy ::Þ
2
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the number of gauges increases, the difference

among chart statistics within each group increases.

For example, clearly the difference between the like-

lihood ratio statistic with unknown variance and the

F statistic becomes larger as the number of gauges

increases. The pattern in the known variance group

is similar. Also, increasing the number of gauges

reduces the difference between the best chart within

each group. Regardless of the sample size, with a

large number of gauges in the measurement system,

the likelihood ratio statistic with unknown variance

performs (almost) as well as the likelihood ratio stat-

istic with known variance.

The results in Figures 3 through 5 are summarized

numerically in Table 4, which shows the in-control

false alarm rates and the out-of-control power of

the different methods under various conditions. We

only give the power when the mean of one gauge

is shifted from a relative bias of zero to a bias of 1,

2, and 3. Table 4 allows a direct comparison of the

various methods in the two groups.

In the comparison, we have assumed the process

variation is constant, and we assumed the constant

process variation was known when we constructed

control charts for three chart statistics in the known

variance group. In application, as the variance is

not known but estimated, the R, S, and q charts

will not necessarily match the results given here.

We may have a higher or lower false alarm rate

and higher or lower power to detect bias changes

than expected.

Another concern is the possibility that multiple

gauge biases shift simultaneously. This is especially

a concern for the likelihood-based approaches

where the specific alternative hypothesis is that the

bias of only one gauge shifts. It is not feasible to con-

sider all possible combinations of bias shifts in the

multiple gauges. To get an idea, we consider the case

where two gauge biases shift simultaneously in the

same direction and by the same magnitude.

Figure 6 shows the comparisons of the power for 4

and 24 gauges and six observations from each gauge.

FIGURE 3 Comparison of the power with two gauges.
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For two gauges a simultaneous shift in the same

direction will look like a shift in the process mean

so we skip this case in Figure 6. For a small number

of gauges, the likelihood ratio chart with unknown

variance shows extremely low power compared with

other methods. Since the likelihood ratio chart

statistic is designed to be sensitive to a single gauge

shift, this is not surprising. However, this difference

disappears as the number of gauges increases from

4 to 24.

EXAMPLE

Consider the truck assembly process discussed in

the Introduction. As shown in Figure 1, there are four

parallel alignment gauges. The goal is to detect

changes in the gauge biases or changes in the overall

process mean or standard deviation.

In this application, 100% inspection was used. We

have data from a total of 2950 trucks over 10 days

production. For monitoring purposes, we define a

subgroup as 50 consecutive trucks. The choice of

50, as apposed to say 10 or 100, is arbitrary. Gener-

ally, we may only sample a well-defined subgroup

from the production process at some predetermined

frequency.

With subgroups of 50 trucks, since there are four

gauges, on average we will have 12.5 trucks per

gauge. In practice the number of trucks varies due

to measurement times and production timing. The

number of observations per gauge ranges from 5 to

22 across the 58 subgroups. This variability is not

taken into account; i.e., we do not change the control

limits based on the composition of the subgroup.

To look for changes in the overall process mean

and variability we use an �XX chart of the overall sub-

group averages and an s chart of the overall sub-

group standard deviations. Note that these charts

do not use the classification based on gauges. The

resulting charts are given in Figure 7.

Figure 7 shows the result of applying the control

charts retrospectively to the phase 1 data. We see

evidence that the process is out of control in terms

of its mean. This is perhaps not overly surprising

FIGURE 4 Comparison of the power with four gauges.
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with the given definition of a subgroup. The varia-

bility within subgroups (50 consecutive vehicles) is

smaller than the long-term variability in the right

caster. This is due to some autocorrelation in the

right caster. This will not affect the proposed ‘‘control

charts’’ to detect changes in the gauges biases.

To look for changes in the gauge biases, we illus-

trate using the R, S, l, and f charts. The first two can

only be applied retrospectively since to determine

the control limits we need some phase 1 data. Rede-

fining the available data as the subgroup gauge

averages, i.e., for each subgroup, the data are �yyi:,

i ¼ 1, 2,. . .,m (m is the number of gauges), we can

use standard software implementation of �XX and s

charts to generate the R and S charts given in Figure 8.

The results suggest that the process is in control.

The control charts based on both l and f can be

applied without any phase 1 data. In other words,

we can set appropriate control limits without any

process data. The control limit for the f chart is set

at F:999ð4� 1; 50� 4Þ ¼ 6:42. From Table 1, with 4

gauges and 12 observations per gauge we get a con-

trol limit of 14.1 for the l chart. Figure 9 gives the two

resulting control charts. In the l chart, we see an out-

of-control signal at subgroup 57. However, the signal

is not sustained.

For any of the charts, if there is evidence of a dif-

ference between the gauges we can compare the

gauge means �yyi: and=or the individual data stratified

by gauge to determine which guage is likely the

main cause of concern. With the likelihood-based

methods we can also examine the lk and qk values

for each gauge to see which is the largest. In the

example, further investigation of the data in sub-

group 57 gives Figure 10. We see that gauge 4 has

a substantially lower average than the other three

gauges. Looking further at subgroups 58 and 59,

gauge 4 consistently gives the smallest right caster

average. This suggests that gauge 4 may be experi-

encing problems.

CONCLUSIONS AND DISCUSSION

We have proposed a variety of different control

charts for monitoring processes with multiple paral-

lel gauges or streams. The most suitable method

FIGURE 5 Comparison of the power with 24 gauges.
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TABLE 4 Comparison of Power

Number of

gauges (m)

Number of

observations (n)

Power for a Mean Shift in One Gauge of b r units

Chart type b ¼ 0 b ¼ 1 b ¼ 2 b ¼ 3

Likelihood (l) 2 6 0.00105 0.024 0.241 0.699

F 2 6 0.00112 0.005 0.073 0.362

R (Mortell et al.) 2 6 0.00116 0.062 0.580 0.972

Likelihood (l) 2 20 0.00118 0.395 0.901 0.998

F 2 20 0.00101 0.388 0.898 0.998

R (Mortell et al.) 2 20 0.00113 0.487 0.955 1

Likelihood (l) 4 6 0.00095 0.035 0.484 0.958

F 4 6 0.00118 0.028 0.375 0.906

R (Mortell et al.) 4 6 0.00121 0.055 0.630 0.990

S 4 6 0.00130 0.059 0.672 0.994

Likelihood (Known) 4 6 0.00133 0.067 0.721 0.997

Likelihood (l) 4 20 0.00091 0.254 0.999 1

F 4 20 0.00095 0.210 0.997 1

R (Mortell et al.) 4 20 0.00150 0.214 0.999 1

S 4 20 0.00205 0.258 1 1

Likelihood (Known) 4 20 0.00092 0.289 1 1

Likelihood (l) 24 6 0.00102 0.014 0.536 0.992

F 24 6 0.0011 0.005 0.139 0.761

R (Mortell et al.) 24 6 0.00101 0.012 0.432 0.979

S 24 6 0.00108 0.007 0.222 0.897

Likelihood (Known) 24 6 0.00109 0.016 0.590 0.995

Likelihood (l) 24 20 0.00124 0.273 1 1

F 24 20 0.00114 0.070 0.983 1

R (Mortell et al.) 24 20 0.00112 0.186 0.999 1

S 24 20 0.00108 0.080 0.990 1

Likelihood (Known) 24 20 0.00121 0.282 1 1

FIGURE 6 Comparison of the power with two gauge bias shifts, m ¼ #gauges, n ¼ #of observations per gauge.
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FIGURE 7 X and s charts based on subgroup mean and standard deviation (ignores gauges).

FIGURE 8 Runger R chart on left, gauge average S charts for the gauge averages in each subgroup. Mortell and Runger r chart on left, s

chart on right.

FIGURE 9 l and f charts based on the subgroup data stratified by gauge. Likelihood ratio statistic: (l) chart on left, F-test (f) chart

on right.
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depends on the number of gauges and the sub-

group size for each gauge. The likelihood ratio

chart statistic with unknown variance and F test

chart statistic described here have an advantage

over other methods since they do not require any

historical data. Not requiring phase 1 will save time

and money. Therefore, we recommend these two

methods when there are either a large number of

gauges or streams or a large number of observa-

tions in each subgroup.

In the range method, Mortell and Runger assumed

that the process variance is large relative to the

within-gauge=stream variance. The discussion in this

article is also based on this assumption. However, in

practice, this condition may not hold. Then, we

believe that the likelihood chart statistic is also appli-

cable if we change some assumptions in our model.

We can use the likelihood chart statistic for monitor-

ing measurement system bias and variance consist-

ency at the same time.

Extensions of this work could include adapting

any of the proposed test statistics to a sequential con-

trol chart such as a cumulative sum (CUSUM) or

exponentially weighted moving average (EWMA).

For example, to check for small persistent changes

in a single gauge we could calculate a CUSUM for

each lk separately, and then plot the max of the m

CUSUM statistics. Sequential charts should provide

quicker detection of small sustained shifts in the

gauge biases than the Shewhart type charts

presented in this article.
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FIGURE 10 Right caster by gauge for subgroup 57.
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