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ABSTRACT The Shainin SystemTM (SS) is the name given to a problem

solving system, with its associated strategies and tools, developed by Dorian

Shainin, and widely used and promoted in the manufacturing sector. Dorian

Shainin also called this system Statistical Engineering, reflecting his engin-

eering education and background. The consulting firm, Shainin LLC, offers

the system under the trademarked name Red X1 Strategy. Much of SS is

neither well documented, nor adequately discussed in peer-reviewed

journals. The goal of this article is to provide an overview of SS, a critical

assessment, and a brief comparison with other industrial problem solving

systems. The emphasis is on a discussion of the guiding philosophy and

principles. Some specific SS tools are examined and compared with alterna-

tive methods. In our assessment, the Shainin System is valuable for many

types of problems and many of its elements have been, or should be, incor-

porated into other process improvement methodologies. However, many of

the statistical tools and methods promoted in conjunction with SS are neither

novel nor necessarily the best.

KEYWORDS B vs. CTM, Components SearchTM, group comparison, Isoplot1,

multivari chart, precontrol, progressive search, red X1 strategy, Shainin,

Six Sigma, Variable SearchTM

INTRODUCTION

The goal of this article is to provide a critical overview of the Shainin

SystemTM (SS) for quality improvement, developed over many years under

the leadership of the late Dorian Shainin. SS is also called Statistical

Engineering by the consulting firm Shainin LLC that holds the trademark

and Red X1 strategy in parts of the automotive sector where SS is popular.

The overall methodology has not been subject to critical review although

some of the components have been discussed extensively. Here we provide

such a review and also compare the Shainin System to other process

improvement systems including Six Sigma. We also describe a few of the

more controversial and widely used SS statistical methods.

The Shainin System was developed for and is best suited to problem solv-

ing on operating, medium to high volume processes where data are cheaply

available, statistical methods are widely used and intervention into the
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process is difficult. To our knowledge, it has been

mostly applied in parts and assembly operations.

We have little knowledge or experience on the use

of SS in continuous process industries.

Bhote and Bhote (2000) and Bhote (1991, 1988)

give the most complete (although not comprehen-

sive) treatment of SS. We agree with reviewers

(Nelson, 1991; Moore, 1993; Hockman, 1994; and

Ziegel, 2001) that these books make many unsub-

stantiated, exaggerated claims. What is worse, we

believe that these books are a disservice to SS, since

the hyperbole hides many of the genuinely useful

ideas. A less technical and less controversial refer-

ence that includes many case studies is Traver

(1995). Overviews of SS have been published in con-

ference proceedings; see Shainin (1992, 1992b, 1993,

1993b, 1995), Shainin and Shainin (1990), and

Shainin et al. (1997). Other review articles include

Logothetis (1990) and De Mast et al. (2000). Does

et al. (1999) cover many of the specific tools associa-

ted with the Shainin System but not the overall strat-

egy. Ledolter and Swersey (1997a, 1997b) review two

widely heralded SS tools, precontrol and variables

search. There may be new developments not yet in

the public domain. Steiner and MacKay (2005)

present a variation reduction algorithm that builds

on what we think are the best elements of SS.

In assessing the Shainin System, it is important to

differentiate between the overall approach that we

think is strong, and the specific analysis methods

some of which are weak. The article is divided into

two major parts. First, we discuss the basic principles

underlying SS, and the consequences of applying

these principles within the Shainin System. It is the

use of these principles and the corresponding algor-

ithm in combination that defines and distinguishes

the overall strategy of SS from other approaches.

Next, we discuss a selection of SS statistical tools

used within the algorithm. By ‘‘tool’’, we mean the

data collection plan and the subsequent analysis

method. We discuss alternatives to the analysis

methods where appropriate.

THE GUIDING PRINCIPLES OF THE

SHAININ SYSTEM

We consider the underlying principles of SS in two

groups. The first group follows from the idea that

there are dominant causes of variation. This idea

appears in Juran and Gryna (1980), but it is Shainin

who fully exploits this concept. The second group

of principles is embedded in the algorithm, the

Shainin SystemTM, shown in Figure 1.

DOMINANT CAUSES OF VARIATION

AND PROGRESSIVE SEARCH

A fundamental tenet of SS is that, in any problem,

there is a dominant cause of variation in the process

output that defines the problem. This presumption is

based on an application of the Pareto principle to the

causes of variation. Juran and Gryna (1980, p. 105)

define a dominant cause as ‘‘a major contributor to

the existence of defects, and one which must be rem-

edied before there can be an adequate solution.’’ In

SS, the dominant cause is called the Red X1. The

emphasis on a dominant cause is justified since

‘‘The impact of the Red X is magnified because the

combined effect of multiple inputs is calculated as

the square root of the sum of squares’’ (Shainin,

1995). To clarify, if the effects of causes (i.e., process

inputs that vary from unit to unit or time to time)

are independent and roughly additive, we can

FIGURE 1 The Shainin systemTM for quality improvement (from

Shainin, 1992).
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decompose the standard deviation of the output that

defines the problem as:

stdevðoutputÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðstdev due to causes 1Þ2

þ ðstdev due to cause 2Þ2 þ . . .

vuut ð1Þ

A direct consequence of (1) is that we cannot reduce

the output standard deviation substantially by

identifying and removing or reducing the contri-

bution of a single cause, unless that cause has a large

effect. For example, if (stdev due to cause 1) is 30%

of the stdev (output), we can reduce the stdev (out-

put) by only about 5% with complete elimination of

the contribution of this cause. The assumption that

there is a dominant cause (possibly because of an

interaction between two or more varying process

inputs) is unique to SS and has several consequences

in its application.

Within SS, there is recognition that there may be

a second or third large cause, called the Pink XTM

and Pale Pink XTM respectively (Shainin, 1993b),

that make a substantial contribution to the overall

variation and must be dealt with in order to solve

the problem. Note that if there is not a single

dominant cause, reducing variation is much more

difficult, since, in light of (1), several large causes

would have to be addressed to substantially

reduce the overall output variation. To simplify

the language, we refer to a dominant cause of the

problem, recognizing that there may be more than

one important cause.

There is a risk that multiple failure modes contrib-

ute to a problem, and hence result in different domi-

nant causes for each mode. In one application, a

team used SS to reduce the frequency of leaks in cast

iron engine blocks. They made little progress until

they realized that there were three categories of

leaks, defined by location within the block. When

they considered leaks at each location as separate

problems, they rapidly determined a dominant cause

and a remedy for each problem.

SS uses a process of elimination (Shainin, 1993b),

called progressive search, to identify the dominant

causes. Progressive search works much like a suc-

cessful strategy in the game ‘‘20 questions,’’ where

we attempt to find the correct answer using a series

of (yes=no) questions that divide the search space

into smaller and smaller regions. To implement the

process of elimination, SS uses families of causes of

variation. A family of variation is a group of varying

process inputs that act at the same location or in

the same time span. Common families include

within-part, part-to-part (consecutive), hour-to-hour,

day-to-day, cavity-to-cavity and machine-to-machine.

At any point in the search, the idea is to divide the

inputs remaining as possible dominant causes into

mutually exclusive families, and then to carry out

an investigation that will eliminate all but one family

as the home of the dominant cause.

Progressive search works in conjunction with the

assumption that there are only one or two dominant

causes. If we can attribute most of the observed vari-

ation to one family, we can eliminate all varying

inputs that act in other families from consideration

as a possible home of the dominant cause. For

example, in a multivari study (see the next section),

suppose we find that variation part-to-part is much

larger than variation time-to-time. Then, all varying

inputs that change over the longer time frame, such

as properties of batches of raw material, can be

eliminated as dominant causes.

Another consequence of the assumption of a

dominant cause is that we can gain a lot of infor-

mation about this cause by comparing units with

extreme values of the output. To our knowledge, this

explicit use of ‘‘leveraging’’ is unique to SS. Shainin

et al. (1997) refer to comparing the ‘‘best of the best’’

(BOB) and ‘‘worst of the worst’’ (WOW) units. The

values of the dominant cause must be substantially

different on these two groups of units and hence it

will be identifiable. One advantage of leveraging is

that we can eliminate families of causes using inves-

tigations with small samples of extreme units. The

idea of leveraging is specifically employed in many

SS tools, including Component SearchTM, Variable

SearchTM and group comparison, discussed later in

this article. Note, however, to find a small number

of extreme units, we may need to measure the out-

put on a large number of units. Also, the terminology

can cause confusion. For outputs with two sided

specifications, none of the extreme units is best of

the best.

SS shuns brainstorming and cause-and-effect dia-

grams when screening possible causes. Using

cause-and-effect analysis, once all possibilities are

identified, we are forced to look at a large number

S. H. Steiner et al. 8



of potential dominant causes one-at-a-time or in

some combination. Using progressive search and

carefully designed observational investigations, we

can rule out large families without ever identifying

the individual varying inputs that make up the fam-

ily. In our experience, progressive search is much

more efficient than brainstorming. Shainin (1993)

states, ‘‘there is no place for subjective methods such

as brainstorming or fish bone diagrams in serious

problem solving.’’ We agree with this statement

when the goal is to find a dominant cause; however,

we disagree when we are looking for a solution,

having identified a dominant cause.

The success of progressive search depends on our

ability to combine empirical knowledge provided by

process investigations and engineering=process

knowledge. The need for data from the process is

emphasized throughout the SS methodology. This

emphasis has perhaps led to the misunderstanding

(De Mast et al., 2000) that qualitative process knowl-

edge is not required in SS. A team must have deep

understanding of the process to construct appropri-

ate families, plan investigations and identify a parti-

cular family as the home of a dominant cause.

Process knowledge is also essential when determin-

ing an appropriate change to the product, process,

or control plan that will reduce or eliminate the effect

of an identified dominant cause. The necessity for

process knowledge is acknowledged in all process

improvement systems. However, in SS, there is an

increased awareness that in order to progress, engin-

eering process knowledge must be combined with

empirical knowledge gained by studying the

process.

Within SS, there is no explicit consideration of

whether the dominant or any other causes are com-

mon or special. The search strategy is designed to

look for one or two causes with large effects. For

variation reduction problems, using families of vari-

ation and the method of elimination is a more effec-

tive way to partition the causes than is the classical

Statistical Process Control (SPC) division into com-

mon and special causes. To substantially reduce

the process variation in many cases, we need to

address common cause variation and the control

chart will be no help in identifying such causes.

For example, if the dominant cause acts part to part,

then the common cause variation within any time

based subgroup will be large and the control chart

will not signal the action of the dominant cause. With

families defined specifically based on existing pro-

cess knowledge, there is a broad array of sampling

plans and analysis methods, other than control

charts, that can be used to eliminate families.

The focus on finding and eliminating the effects of

a dominant cause is appropriate in many problems,

but can be restrictive. There are variation reduction

techniques, such as making a process robust to

noise, 100% inspection and feedback control that

do not require knowledge of a dominant cause

(Steiner and MacKay, 1997–1998, 2005).

The use of progressive search is not without diffi-

culties. It can be hard to identify a dominant cause

that is an interaction between varying inputs in dif-

ferent families. Progressive search requires patience

since multiple investigations are usually required to

isolate dominant causes, and it is innately sequential

which can be a hard sell in today’s fast paced indus-

trial environment. With small sample sizes and the

emphasis on extremes, there is a risk of focusing

on outliers that are not due to the dominant cause

driving the overall variation. The definition of

‘‘extreme’’ requires care, especially in the case of

two-sided specifications. It is possible that different

dominant causes are responsible for units with out-

put values on opposite sides of the target. In some

problems, rare in our experience, there may be no

dominant cause, that is, many causes contribute

roughly equally to the problem. For an artificial

example, suppose that there are 20 causes, all of

which contribute independently and additively to

the variation so that (1) applies. Then, if all causes

are equally important, completely removing the

effects of half the causes only reduces the output

standard deviation by about 30%. In these instances,

all problem-solving systems based on Juran’s diag-

nostic and remedial journey will have difficulty

because the effect of any one cause is masked by

the variation due to all others.

THE PROBLEM SOLVING ALGORITHM

The SS steps for problem solving are given in

Figure 1. Note that the algorithm is defined for a sin-

gle project, and is designed to fit into a larger project

selection and management process, not discussed

here. See Shainin et al. (1997). The algorithm is

divided into two parts, the diagnostic and remedial

9 Shainin SystemTM for Quality Improvement



journeys, terminology from Juran and Gryna (1980,

p. 104). In the diagnostic journey, the problem is

defined, the measurement system is assessed, and

the dominant cause of variation is identified and veri-

fied. In the remedial journey, the effect of the domi-

nant cause is eliminated or reduced by changing the

product design, the process, or the control plan.

The purpose of the first stage of the algorithm is to

quantify the magnitude of the selected problem. To

do this, we monitor the output of the process using

an appropriate sampling scheme (often a multivari

plan) for a sufficiently long period of time, so that

we see the effect of all large causes of variation,

especially the dominant cause. The process variation

is then displayed using a histogram or summarized

numerically. This baseline histogram is called the Green

Y1 distribution (Shainin et al., 1997) in SS terminology.

We use the baseline distribution to quantify the

problem, to set a goal that has the potential to

improve the process, and to assess any proposed

remedy. The baseline distribution is also used to plan

and check that a dominant cause exhibits its full

effect in each investigation in the progressive search.

We call this the full range of variation. This is impor-

tant information necessary to keep us from focusing

on the wrong family of causes. The idea of quantify-

ing the nature of the problem is part of all problem-

solving approaches. The unusual feature of SS is the

explicit link between the search for the dominant

cause and the baseline distribution.

The second stage in the SS algorithm (see Figure 1)

involves the quantification and establishment of an

effective measurement system. Without a good

measurement system, it is difficult to learn about

and improve the process, and the measurement sys-

tem itself may be home to the dominant cause of the

problem. Having a separate step in the SS approach

devoted to checking the measurement system helps

to ensure this essential task is not neglected. We look

at the recommended plan and analysis for assessing

the measurement system in the next section.

In most problems, we need to consider several

measurement systems, since we measure not just

the output but also some inputs. By eliminating fam-

ilies of causes, SS reduces the number of specific

inputs that are candidates for study. SS emphasizes

checking the measurement system for the process

output, but says little about establishing reliable

measurement systems for any measured inputs.

The goal of the third stage of the SS algorithm is to

generate clues about the dominant cause. This is the

progressive search. At this stage, another key empha-

sis in SS is to ‘‘talk to the parts’’ (Shainin, 1992). In

statistical jargon, we use observational rather than

experimental plans as much as possible.

SS makes heavy use of observational plans such as

multivari investigations, stratification, group com-

parison, and scatter (correlation) plots within the

progressive search. It is surprising, given the

availability of statistical software, that analysis of

variance and regression techniques are not

included. Recommended experimental plans, such

as swapping components within assemblies are per-

formed off-line and avoid disrupting production. The

use of a sequence of observational plans is made

explicit and is emphasized in SS in the search for

the dominant cause unlike any version of Six Sigma

we have seen.

The purpose of the fourth and the fifth stages of

the algorithm is to confirm the identity of the domi-

nant cause. The end result of the progressive search

may be a single cause or a short list of suspects. With

SS, dominant causes are verified using a formal

experiment because of concerns about possible con-

founding (because of the earlier use of observational

plans) and spurious associations (because of the

small sample sizes). The suspect dominant causes

are the factors that must be held fixed in the experi-

ment. SS uses two level designs with the levels set at

the ends of the normal range of variation of the sus-

pect cause(s). Changing the levels of a dominant

cause in the experiment should produce the full

range of the output variation. Full factorial designs

are recommended so that interactions among the

suspects can be identified. With a single suspect, SS

recommends a six run experiment (sometimes called

B vs. CTM-see the next section) with three replicates

for each level.

A full factorial verification experiment is feasible

because the list of suspects is short. Also, because

the purpose is clear, there is little temptation to

mix up the verification of the dominant cause and

the search for a remedy. That is, at this stage, inputs

that are normally fixed are not changed within the

experiment. Note that these fixed inputs cannot be

a dominant cause of the observed output variation.

We now discuss the steps of the algorithm in the

remedial journey. We assume that a dominant cause

S. H. Steiner et al. 10



has been identified and verified. The first step in the

remedial journey applies to the special case of a sin-

gle dominant cause that is an interaction between

two varying inputs. That is, a major component of

the variation in the output, denoted by y, can be

explained by the joint variation of two varying inputs

denoted by x1, and x2. We have an interaction since

the relationship between the output and the first

input depends on the level of the second input.

The presence of interaction suggests a non-linear

relationship y ¼ f (x1, x2)þ residual, where the

residual variation is relatively small, since x1, and

x2 together are a dominant cause. We may be able

to exploit this relationship to desensitize the process

to variation in x1 and x2 by changing the set points

of x1, x2 or both. We can investigate this possibility

with a series of small experiments with two factors

x1, and x2. This strategy may or may not be effective.

It is a special application of parameter design where

the experimental factors are limited to the set points

of the inputs that make up the dominant cause. We

can find little evidence (e.g., it is not explicit in the

algorithm as shown in Figure 1) that SS considers

the more general strategy to reduce variation due

to an identified cause by exploiting interactions with

a wider selection of inputs fixed in regular pro-

duction. One of the referees pointed us to the Con-

cept diagram, another SS tool. The only reference

that we can find (Moore and Butkovitch, 1998) gives

a Concept diagram that shows the effect of a process

change on the output. We cannot see that this corre-

sponds to applying parameter design and further-

more, there is no indication as to how to identify

the necessary interactions between the normally

fixed inputs and the varying dominant cause. One

advantage of SS is that in the remedial journey, we

deal only with dominant causes. This ensures that,

if parameter design is used, the noise factors (domi-

nant causes) are known to have a large effect.

Resources are not wasted investigating unimportant

noise factors.

The goal of the next stage of the algorithm is to

define realistic specifications (tolerances) for

the input corresponding to the dominant cause. We

can establish these specifications based on the

specified tolerance of the output by quantifying the

relationship between the output and the dominant

cause. In SS, this task is accomplished with a

Tolerance ParallelogramTM (Shainin, 1993b). This tool

is described in more detail in the Shainin Tools

section.

The algorithm splits at the next stage. We take irre-

versible corrective action to mean that the variation

in the cause can be eliminated. More interestingly,

if this is not possible, then the algorithm suggests

Process Control. In SS terminology, this means

precontrol, not Shewhart control charts. Precontrol

is a feedback control system applied to the dominant

cause to keep its value within the specification limits

derived in the previous stage. The relative merits of

precontrol versus Shewhart or other control charts

have been widely discussed—see the next section.

Precontrol is a feedback controller designed as part

of an adjustment scheme, and hence it should be

compared to other feedback controllers, not just con-

trol charting. Feedback control can be effective only

if the dominant cause exhibits structural variation

(Joiner, 1994). That is, the dominant cause must vary

in such a manner that we can predict the future from

the current and past values, and then have time to

make adjustments, as necessary. In SS language, if

the dominant cause resides in the part-to-part family,

no form of feedback control can be effective in

reducing variation. If this is the case, then precontrol

will not be effective and the algorithm provides no

guidance as to how to proceed.

The final two stages of the algorithm need no

further discussion.

In summary, we think that the algorithm is very

strong for the diagnostic journey, but weak and

incomplete for the remedial journey. We can find

no evidence in the literature that strategies such as

feedforward control, robustness and process desen-

sitization are considered (Steiner and MacKay,

2005). If the dominant cause does not exhibit

structural variation, then precontrol will fail as a

process adjustment scheme.

The use of designed experiments on existing pro-

cesses is common in all major industrial problem-

solving approaches. However, in comparison to

other approaches, in SS, the use of experimentation

is subordinated to observational investigations. In

particular, the Shainin system avoids screening

experiments to look for a dominant cause. As

described earlier, experiments are recommended in

the diagnostic journey only after the list of suspect

dominant causes is short. This is a major advantage

of SS since observational investigations are typically

11 Shainin SystemTM for Quality Improvement



much cheaper and more easily implemented than

experimental investigations. Since the dominant

cause is acting in the current process, the view is that

we can generate clues about its identity by watching

the process in action in an informed organize way.

Screening experiments to look for dominant causes

are problematic for many reasons. We may not select

the dominant cause as a factor in the experiment and

it is often difficult to hold suspect dominant causes

(that vary in normal production) fixed in an experi-

ment, especially when there are many suspects. We

need to choose extreme levels (after first determining

what this means) of the suspect causes if we hope to

establish that the cause is dominant. In our view the

use of screening experiments to search for a domi-

nant cause should be considered a tool of last resort.

SS is weak in its use of experimental plans in the

remedial journey. To reduce variation, there must

be a change in process settings, the control plan,

or the product or process design; that is, a change

to one or more process inputs that are fixed in nor-

mal production. These changes can be sought and

investigated only by using experiments. In the

remedial journey, screening experiments and the

sequential approach to experimentation should be

considered.

The stress on the importance of the measurement

system is a strong point of the SS algorithm, shared

by most versions of Six Sigma. This discussion of

the importance of measurement systems is missing

or limited, in many well-respected books on Statisti-

cal Process Control (SPC) and Design of Experiments

(DOE), such as Montgomery (1996, 2001), and Ryan

(1989).

The use of a systematic approach to problem solv-

ing is not unique to SS. There are many competitors

such as DMAIC (define, measure, analysis, improve,

control) in Six Sigma (Harry and Schroeder, 2000)

See also Juran’s (1988) Diagnostic and Remedial

Journeys Approach, Harry’s twelve-step Break-

through Cookbook approach (1997, pp. 21.19), and

the Process Improvement and Problem Solving Stra-

tegies proposed by Hoerl and Snee (2001). DMAIC

maps well to the Shainin System, with D, M and A

corresponding to the diagnostic journey and I and

C corresponding to the remedial journey. Compared

to these other systems, the purpose and the strategies

for the individual stages in SS are more specific. The

methodology is prescriptive, going as far as to

suggest specific tools that are useful for the different

steps. The algorithm is specially designed for a

medium to high volume manufacturing process in

which inputs and outputs can be readily measured.

Six Sigma, for instance, has a much broader range

of application.

Another major difference is that SS does not

distinguish between common and special causes as

discussed earlier. Hoerl and Snee (2002), for

example, suggest different systematic approaches to

deal with common and special causes. SS, properly

in our view, focuses on dominant causes.

A SELECTION OF SHAININ TOOLS

In this section, we describe and critique a selec-

tion of the more interesting and controversial tools

associated with the Shainin System, namely: Iso-

plot1, multivari chart, Component SearchTM, Vari-

able SearchTM, group comparison, B vs. CTM, and

precontrol. By tool, we mean both the plan of the

investigation and the recommended analysis

method. See Bhote and Bhote (2000) for a more

extensive, though not complete, list of SS tools.

SS tools are generally statistically simple plans

with small sample sizes that make extensive use of

graphical displays and non-parametric tests that can

be performed by hand. Given their purpose, we feel

that the simple plans are to be highly recommended

in most cases. We believe, however, that the non-

parametric analysis methods are weak and non-

intuitive. While we are strongly in favor of graphical

approaches, with today’s widespread availability of

statistical software, ease of calculation is not an issue

and we recommend supplementing the graphs with

straightforward standard analyses. For some of the

SS tools, we suggest alternative analysis methods that

are better in most circumstances.

ISOPLOT1

An Isoplot1 study (Traver, 1995; Shainin, 1992) is

used to compare the relative size of the process and

measurement system families of variation. In its sim-

plest form, 30 units are selected, and each unit is

measured twice. An Isoplot analysis starts with a scat-

terplot of the two measurements on each unit. On

this plot, the horizontal variation is the overall pro-

cess variation as measured by the first reading and

S. H. Steiner et al. 12



the vertical variation is the overall process

variation as measured by the second reading. The

variation in a direction perpendicular to the

45-degree line represents the measurement system

variation and, if all points lie near the 45-degree line,

the measurement system variation is small. Figure 2

provides an example where, while not dominant,

the variation due to the measurement system is

relatively large.

With appropriately chosen pairs of measurements,

we can assess repeatability or systematic differences

between two operators, gauges etc. Outliers are

obvious from the plot.

The SS Isoplot analysis includes specific rules for

drawing an oval over the plotted points that can be

used to numerically estimate the ratio of process to

measurement variation, called the discrimination

ratio. While plotting the data is a good idea, an analy-

sis of variance (AIAG, 1995) is the preferred standard

way to estimate the two variance components.

MULTIVARI

In a multivari investigation, we systematically sam-

ple from the process to capture the effect of various

time and location based families of variation. Seder

(1950a, 1950b, 1990) proposed a multivari chart to

display such data. See also Snee (2001). A multivari

is an excellent tool early in the progressive search

for a dominant cause. It can be used at the beginning

of the project to determine the Green Y distribution

and simultaneously look for clues. Figure 3 shows

a multivari chart using the diameter of a shaft as

the output. The shaft diameters are measured at four

locations (left and right sides at different two orienta-

tions) for three shafts produced consecutively each

hour. In Figure 3, we see there is little variation from

shaft to shaft within an hour, some variation within

shafts, and substantial variation from time-to-time,

suggesting that the dominant cause must be an input

that varies slowly, that is, that acts in the time-to-time

family. This conclusion may be incorrect if we have

not see most of the fall range of diameter variation

established in the baseline investigation (i.e., the

Green Y distribution).

A multivari chart provides a visual display of the

components of variation associated with each family.

However, when there is no obvious dominant fam-

ily, it is useful to augment the plot with an appropri-

ate analysis of variance to numerically estimate

the variance components due to each family (see

De Mast et al., 2001).

COMPONENT SEARCHTM AND

VARIABLE SEARCHTM

Component Search (Shainin and Shainin, 1988) is

used when units can be disassembled and

reassembled without damage or change to any of

the components or subassemblies. For ease of dis-

cussion, we do not distinguish between subassemblies

and components. The goal is to compare the families

of variation defined by the assembly operation and

individual components. We start with two units, one

‘‘best of the best’’ (BOB) and one ‘‘worst of the worst’’

(WOW) with output values at the two extremes of

the Green Y distribution. That is, we use leveraging

FIGURE 2 Scatterplot of measurement results.

FIGURE 3 Multivari chart for diameter by position, part

and hour.
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to ensure that we have the fall range of output

variation. We eliminate families of causes by disassem-

bling and reassembling, and possibly swapping

components between the WOW and BOB parts.

Applying component search, we first partition causes

into two groups, the assembly and components

families. If the assembly family can be eliminated

(i.e., if repeated disassembly and reassembly of the

BOB and WOW yield consistent results), the remain-

ing causes are further subdivided into families defined

according to individual components. There is a

detailed four-stage investigation (confirmation, elimin-

ation, capping, and analysis, see Bhote and Bhote,

2000) to sort out which component family (or in the

case of interactions, sets of families of components)

is the home of the dominant cause. Component search

is an experimental plan because we deliberately

manipulate the inputs, i.e., the components. However

it is performed off-line to avoid disruption of the

production process.

We give an illustration of the results of a compo-

nent search with four components in Figure 4. On

the plot, the Xs correspond to the results for

Assembly 1 and the Ys to the results for Assembly 2.

Two units with extreme initial output values, given

by the two left-most plotted points, were chosen to

guarantee the full range of variation in the output.

Then, the team disassembled and reassembled each

unit two times. Since little change was observed in

the output values in either the BOB or WOW, the

results suggest that the dominant cause acts in the

components family and not in the assembly family

of causes. The dashed lines in Figure 4 give the per-

formance averages for the first three output values.

Next, by swapping components between the two

assemblies one at a time and then pairwise, the

dominant cause was identified as an interaction

between varying inputs in components C and D.

The graphical analysis is effective when there is a

dominant cause. However, since the order in which

components are swapped is under the control of

the investigators, the length of the search depends

on their judgment regarding which component fam-

ily is the likely home to the dominant cause. Amster

and Tsui (1993) provide somewhat extreme artificial

examples where component search yields incorrect

conclusions. An alternative to the component swap-

ping stage of component search is a 2k factorial or

2k-p fractional factorial experiment using the compo-

nents as factors with levels defined by the WOW and

BOB assemblies. An even more efficient process for

eliminating component families, when feasible, is to

proceed sequentially; that is, at each stage divide the

remaining suspect components into only two subas-

semblies and swap one of the subassemblies—see

Steiner and MacKay (2005).

In the first stage of Component Search, we must

be careful that the off-line assembly=disassembly

process matches normal production. Otherwise we

may come to incorrect conclusions about the impact

of the assembly family of causes.

Variable Search is similar to the component swap-

ping stages in Component Search. It is used to ident-

ify a dominant cause, when the progressive search

produces a list of four or more suspects, and no other

simple investigation can rule out any of these poss-

ible dominant causes. With three or fewer suspects,

SS recommends a full factorial experiment to identify

the dominant cause. In Variable Search, the first steps

are to list the suspects in order of expected impor-

tance and to determine two levels for each, based

on their range of variation in normal production.

Next, through trial and error, the two levels of each

input are assigned labels ‘‘high’’ and ‘‘low’’ so that

the two runs with all inputs at the same level (all high

or all low) produce output levels that are at the

extreme ends of the Green Y distribution. Finally,

the levels of each suspect are varied one at a time

or pair wise as in component search to find the

dominant cause.

Variable Search is an online experiment, with all

of the difficulties of setting or holding the varying

inputs at their extreme levels. The ordering of the

suspects and the determination of their levels canFIGURE 4 Component swap results.

S. H. Steiner et al. 14



be difficult and take substantial time and effort. The

experiment cannot be successful if these levels are

not correctly determined. It may be difficult to assign

the high and low labels, especially if the dominant

cause is an interaction. The length of the search

depends on how well the suspects are ordered and

the complexity of the dominant cause. See Ledolter

and Swersey (1997b) for a critical view of variable

search. We agree with their conclusion that fractional

factorial designs are generally a better approach than

Variable Search. This situation in which there is a

long list of specific suspects seems ideally suited to

an observational plan that uses multiple regression,

a tool that does not appear to be part of SS, to reduce

the number of possible dominant causes.

GROUP COMPARISON

Group comparison has two uses. If the problem is

defined by a binary output (such as defective or not),

we can use group comparison to try to identify a

continuous output to reformulate the problem. This

is especially useful if the defect is rare where group

comparison is akin to a case control study. We can

also use group comparison to identify specific sus-

pect causes late in the progressive search after other

investigations have eliminated many large families of

causes of variation from consideration.

With group comparison (Bhote and Bhote, 2000),

we select two groups of three or more parts with dif-

ferent values of the binary output or with extreme

values of a continuous output. This is another appli-

cation of leveraging. We measure the parts on as

many input characteristics as possible, consistent

with previously generated clues. If a measured input

is a dominant cause, the values of this input will be

systematically different between the two groups of

parts.

The recommended analysis for each measured

input is a two sample nonparametric test that

requires either complete separation of the BOBs

and WOWs or a minimum ‘‘endcount’’ (Bhote and

Bhote, 2000) to identify a suspect dominant cause.

Endcount is due to Tukey (1959) who dubbed the

test ‘‘compact’’ because the test statistic can be calcu-

lated easily; the critical values are essentially inde-

pendent of sample size and can be carried in the

analyst’s head. We suggest a standard analysis based

on plots and t-tests. If there is a large effect (i.e., one

of the inputs measured is a dominant cause), we can

find the cause using only the plots of the data. Two

way interactions can be seen by looking at all scatter-

plots of the suspect causes with different plotting

symbols for the BOBs and WOWs. Since the compar-

isons are usually based on small sample sizes, there

is a risk of confounding and also a strong possibility

of identifying spurious causes because of the

multiple testing.

Figure 5 illustrates the typical analysis. The data

arose from a group comparison to help find a domi-

nant cause of leaks in the rear intake wall of engine

blocks. The output was binary; there was no mea-

sure of the size of the leak. Whenever the team

found an intake wall leaker, they also set aside a

non-leaking block. They collected 50 leaking and

50 nonleaking blocks. Then, for each of the sampled

blocks, they measured thickness (in inches) at

six locations in the left rear intake wall. To analyze

the data, we construct side-by-side boxplots of

wall thickness at each location for leakers and

FIGURE 5 Boxplots of locations 3 and 4 wall thickness by block type.
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non-leakers. We show the results for two locations in

Figure 5. The right-hand plot shows a clear differ-

ence in median wall thickness between leakers and

non-leakers at location four. There was little differ-

ence for the other locations as in the left-hand plot.

The team concluded that wall thickness at location

four was a dominant cause of rear intake wall leaks.

A version of group comparison called Paired Com-

parisonsTM (Shainin, 1993b, and Bhote and Bhote,

2000) involves pairing or matching of the defective

and non-defective units. In the proposed analysis,

the BOBs and WOWs are paired, usually based on

time of production. Shainin (1993b) writes ‘‘Paired

Comparisons are appropriate when the largest family

of variation is part to part.’’ In this context, since we

are looking for a dominant cause, pairing adds to the

complexity of the plan and little value. In statistical

experiments we use pairing to eliminate the risk of

confounding and to increase the precision of the

conclusions about the experimental factor in the

presence of other varying inputs that have a large

impact on the output. If the dominant cause acts in

the part-to-part family, paired comparisons will pro-

duce pairs that are similar only with respect to other

inputs that have little influence. Thus, unless a Pink X

(a second large cause) acts time to time, pairing will

decrease the precision of the conclusions. This loss

may be important due the recommended small sam-

ple sizes.

A paired comparison conducted on arbitrary con-

structed pairs has been suggested in Bhote and Bhote

(2000). With arbitrary pairs, the conclusions of the

analysis depend on the way pairs are produced

and, on average, the sensitivity of the procedure will

be lower than that of the unpaired analysis. In gen-

eral, pairing seems a bad idea in this context.

TOLERANCE PARALLELOGRAMTM

A tolerance parallelogram is used to establish

appropriate specification limits for a dominant cause.

We select a number of parts with output values that

cover the full range of variation and measure the

value of the output and the dominant cause on each

selected part. Constructing a scatterplot and, using a

specified proprietary procedure, we derive the toler-

ance limits for the dominant cause from the output

specifications taking into account the residual

variation in the output. See Figure 6 where we used

prediction intervals from a simple regression model

for this task. The idea is that if we control the domi-

nant cause within its derived tolerance range, the

output will be controlled with the desired specifica-

tions. At this stage, there is no effort to determine

how to exert the required control of the dominant

cause. If the residual variation is too high (e.g., the

cause is not sufficiently dominant), then there will

be no tolerance left for the cause. We can extend

the methodology to the cases where a dominant

cause is an interaction between two inputs or where

there is more than one dominant cause, using a more

complex model.

B VS. CTM AND FACTORIAL
EXPERIMENTS

B vs. C is a simple experimental plan used to com-

pare two treatments or process conditions repre-

sented by the letters B and C. One use in SS is to

verify that an identified cause is dominant after other

clue generation tools have led to a single suspect. A

second use is to validate a solution when, for

example, the goal is to shift the process center or

reduce a defect rate. In the validation application,

the letters B and C denoted the ‘‘better’’ (we hope)

and ‘‘current’’ conditions. Note that for verification

of a suspect cause, the better and current termin-

ology may not be appropriate.

In the simplest recommended plan, three units are

produced under treatment B and three under

treatment C. Bhote and Bhote (2000) call this the

‘‘six-pack test.’’ The levels for the suspect dominant

cause for the B and C runs are selected at the

FIGURE 6 Using regression to set specification limits

(tolerances) for the dominant cause (x) given a tolerance for the

output (y).
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extremes of the variation of the suspect in normal

production. The order of the six runs is randomized.

The recommended analysis is based on the end

count scheme discussed in the group comparison

section. Only if the output values for the three B runs

and the three C runs separate in the expected direc-

tion have we verified the dominant cause. Tukey cre-

ated this test as a one sided test of hypothesis; no

change versus change is a specified direction. A sam-

ple size of six units has low power but, by taking

larger samples, power can be increased. Since we

must see most of the full range of variation in the

output if we have a dominant cause, the formal

hypothesis test is essentially irrelevant here.

When validating a solution, the use of the compact

end count test is undesirable since the loss of power

versus a wide selection of parametric or other non-

parametric tests could lead to the abandonment of

an improved way of operating the process.

SS makes use of full factorial experiments to iso-

late a dominant cause among a short list of suspects

(Shainin and Shainin, 1990). The plan and imple-

mentation of the experiment with its careful attention

to the selection of levels of the suspects and the use

of randomization is highly recommended, as is the

use of plots of the data. Here the formal analysis

based on a sequence of end-count tests leaves much

to be desired. The first step is to calculate the effects,

and then examine the significance of the largest,

ignoring the selection effect, by rank ordering the

output based on the levels of the selected factor.

Next, the second largest effect is formally tested by

rank ordering and determining the end count of

the residuals from the first analysis. In this way, we

have removed the effect of the Red X. And so on

for the smaller effects. This procedure has the color-

ful name Pink XTM shuffle (see Shainin and Shainin,

1990 for a detailed description). It is opaque and suf-

fers from both selection effects and multiple testing

issues. At each stage, the test is not based on the

residual variation as established by the experiment,

but also includes the variation due to the other fac-

tors being studied. This reduces the sensitivity of

the method at the first step and can be devastating

at the second step. To our knowledge, no one has

extended the Tukey method to factorial experiments.

We suggest a standard analysis using effect plots,

probability plots of the effects and an analysis of

variance to complement the excellent design.

PRECONTROL

Precontrol (also called stoplight control), first

introduced by Satterthwaite (1954), is used to signal

the need for a process adjustment. In SS, precontrol

is applied to the dominant cause using specification

limits developed with a Tolerance ParallelogramTM

as described above. Shainin (1995) writes ‘‘If the

Red X can’t be controlled with an irreversible correc-

tive action, then precontrol needs to be put on the

Red X. SPC [Precontrol] is always more effective

when it is used on the Red X instead of the Green Y.’’

To implement precontrol, parts are sampled and

measured according to a periodic schedule. The

specification range is divided into three zones as illu-

strated in Figure 7:

. Green is go, and for a two sided tolerance occu-

pies the middle half of the specification range,

. Yellow is the warning zone and covers the outside

quarters of the specification range,

. Red is stop and includes anything outside the

specification range.

Precontrol is conducted using the following rules

(there are many variations on this theme):

i. Set-up or after an adjustment: OK to run when five

parts in a row are green.

ii. Running: Sample and measure two consecutive

parts on a fixed frequency.

. If first part is green, continue to run.

. If first is yellow, check the second part – if it is

yellow or red, stop and adjust.

. If first is red, stop and adjust process.

FIGURE 7 An example of precontrol zones.
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Of all the tools prominent within SS, precontrol

has received the most attention in the research litera-

ture. For example, see Shainin (1984), Traver (1985),

Salvia (1987, 1988), Shainin and Shainin (1989),

Mackertich (1990), Gruska and Heaphy (1991),

Ermer and Roepke (1991), Ledolter and Swersey

(1997a), Steiner (1997–1998).

To be successful, precontrol requires good specifi-

cation limits and a process that operates within these

limits in the short term. Otherwise, it will be difficult

to get five parts in a row in the green zone to start. Since

precontrol is a feedback adjustment scheme, it can only

be effective if the process drifts slowly or jumps and

sticks. Precontrol may result in increased variation if

used on a process that has large part-to-part variation.

Although it is often compared to statistical process con-

trol (SPC), the goal of precontrol is to identify the need

for adjustment. It is not useful for process monitoring

nor for the identification of the action of special causes.

More sophisticated control and feedback schemes,

such as proportional-integral-derivative (PID) control-

lers (see del Castillo, 2002), are alternatives that may

yield better results. Note that, while precontrol signals

the need for an adjustment, it does not include an

adjustment rule which is required to implement the sys-

tem in practice.

SUMMARY

The guiding principles of the Shainin System are

powerful, and, at least in combination, unique. They

include the application of Juran’s Pareto principle to

the contribution of the causes, the emphasis on using

observational investigations in the diagnostic jour-

ney, the search for a dominant cause using the pro-

cess of elimination and the use of leveraging. SS

deals carefully with the problem of possible con-

founding of suspect causes by conducting a small

verification experiment. We think that the principles

and tools related to the diagnostic journey are gener-

ally very strong. Those related to the remedial

journey are much weaker. This may be the case

because once a dominant cause is identified, in some

instances, the remedy is obvious and no further

investigations are needed.

The Shainin System, as reflected by the genesis of

the methodology in manufacturing, is best suited for

medium to high volume production. Most of the

tools implicitly assume that many parts are available

for study. When using leverage, where the investiga-

tions involve only a small number of parts, there

must be a substantial amount of measurement to find

the parts with extreme values. Like many other sys-

tems with strong statistical components, SS does

not handle well situations where there are few parts

to ‘‘talk to’’ such as in the design and development of

new products or processes.

Although our assessment of SS is strongly positive,

there are some unfortunate aspects about its pro-

motion. Most notably, many of the specific tools and

the whole approach have not been subject to a peer

reviewed public discussion. This may be because much

of the specific terminology is trademarked and is thus

legally protected. We feel this is unfortunate since it

has reduced the dissemination of what we think is an

excellent approach. Also, some books that promote

the methodology, such as Bhote and Bhote (2000),

are full of unhelpful hyperbole that limits discussion

of feasible alternatives. In our experience, there is also

a rigidity with which the methodology is presented. In

many situations, other statistical tools, such as

regression, time series, and analysis of variance, could

be very useful, but are not employed because they are

not formally part of the SS tool bag.
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