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We consider the assessment of an automated continuous measurement system used for 100% inspec-

tion in a high- volume manufacturing process. Because of the automation, we assume that there are no

operator effects. If the system stores the measured values, we effectively know the current process mean

and standard deviation. Because of the high volume, we have parts available with values spread across the

whole distribution.

The standard plan for measurement-system assessment is to select k parts at random from the process

and measure each of the selected parts n times. We then estimate the repeatability of the system using

ANOVA. We propose two improvements. First, we demonstrate the substantial value of using the known

process characteristics in the analysis. Second, we describe an alternative sampling plan where we deliber-

ately select parts with extreme values from the population of measured parts to remeasure. We call this

selection leveraging. We discuss the analysis of the leveraged plan and show that it is more efficient than

the standard plan. We also discuss the planning and implementation of a leveraged assessment study and

some associated issues and extensions.

Key Words: Components of Variation; Gauge R&R; Leveraging; Measurement System Assessment; Sample

Size Determination.

V
ERIFYING the quality of a measurement system
is important to any manufacturing process be-

cause all measurements are subject to error. As dis-
cussed in Shrout and Fleiss (1979), measurement er-
rors can seriously affect process control and decisions
about product quality. It is important to quantify
such errors by assessing the measurement system.

Consider a measurement system used in a high-
volume process for 100% inspection of a key product
characteristic. Suppose that the measurement system
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is automated so that there are no operator effects
and that the measured values are stored and can be
traced back to the individual parts. Throughout the
article, we refer to the stored measurements as the
initial values.

One such measurement system is used to inspect
journal diameters and several other characteristics of
finished crankshafts in an engine-assembly plant. An-
other involves the measurement of many functions of
a circuit board assembled for use in a hand-held elec-
tronic device. In both of these examples and many
others, quality systems (such as ISO/TC 16949 or
QS 9000) adopted by the manufacturer require peri-
odic assessments of the measurement system to en-
sure that the current measurement variability is rel-
atively small compared with the underlying process
variation.

In a standard measurement system assessment
plan (SP), we measure a sample of k parts n times
each. The parts may be selected at random or, more
commonly, haphazardly from the process. A common
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statistical model for this plan is

Yij = Pi + Eij , i = 1, 2, . . . , k and j = 1, 2, . . . , n
(1)

where Pi is a random variable representing the possi-
ble values for the true dimension of part i and Eij is a
random variable representing the measurement error.
We assume that the part effects {Pi} are independent
and identically distributed normal random variables
with mean μ and standard deviation σp, the measure-
ment errors {Eij} are independent and identically
distributed normal random variables with mean zero
and standard deviation σm, and {Pi} and {Eij} are
mutually independent. Under the independence as-
sumption, the standard deviation of Yij , called the

total variation, is σt =
√

σ2
p + σ2

m.

In a gauge R&R study (Automotive Industry
Action Group (2002)), operators are an additional
source of variation and one purpose of the study is
to separate the contributions of the operators (repro-
ducibility) from the other sources of variation (re-
peatability) in the measurement system. In the con-
text described here, there are no operator effects and
σm represents only the repeatability.

Bias, stability, and linearity are other important
characteristics of a measurement system. To assess
bias, we must measure parts or standards with known
true values. To assess stability, we must look at the
behavior of the measurement system over time. To
assess linearity (i.e., measures of changes in the bias
and variability over true part size), we must measure
parts with a wide range of true values. In the plans
that we propose, we can see if measurement variabil-
ity changes with part size (one aspect of linearity)
but assess neither bias nor stability. This is also the
case with the standard plan that includes one or sev-
eral operators.

To quantify the contribution of the measurement
system to the total variation, the most commonly
used performance measure in a manufacturing con-
text is the gauge repeatability, θ = σm/σt. An
equivalent measure, more frequently used in a med-
ical context, is the intraclass correlation coefficient,
ρ = σ2

p/σ2
t , the ratio of process variation to the total

variation. We note that ρ is the correlation between
two measurements on the same part under the as-
sumptions of model (1). Smaller values of θ or, equiv-
alently, larger values of ρ correspond to a (relatively)
less variable measurement system. In this paper, we
discuss assessment in terms of θ.

To assess the measurement system, we can test

the hypothesis

H0 : θ ≥ θ0 versus HA : θ < θ0 (2)

to determine whether the measurement system is
acceptable. Two commonly used values for θ0 are
0.10 and 0.30. That is, the measurement system con-
tributes 10% or 30% of the total variability seen in
the process. To compare assessment plans, we can
compare the power of the corresponding hypothesis
tests over all values of θ when each test has equivalent
size and the same total number of measurements.

In the context described here, we can calculate
the current process mean μ and standard deviation
σt with negligible error from recently stored values.
If there is bias in the measurement system (i.e., the
mean of the measurement errors {Eij} is not 0), then
this bias is subsumed in the known value of μ and has
no effect on the estimation of σm or θ.

Practitioners often do not recognize that there is
substantial value in making use of the known pro-
cess characteristics μ and σt. In the next section, we
demonstrate the considerable value of this informa-
tion and show that it should not be ignored. We then
introduce a new plan that we call a leveraged mea-
surement system assessment plan (LP). In an LP, k
parts are deliberately selected based on their initial
measurement from the population of measured parts
and each selected part is then remeasured n times.
We use the term leveraged because we recommend
choosing parts with extreme initial values relative to
the process mean μ. We can consider such a purpose-
ful selection because there is no need to estimate the
overall variation σt. Next, we compare the standard
and leveraged plans. We then discuss how to design
an LP to meet prespecified size and power require-
ments. Finally, we summarize the conclusions and
discuss some other issues and extensions to leveraged
plans.

Standard Plans

Suppose we measure k randomly selected parts
n times each to get the data {yij , i = 1, 2, . . . , k;
j = 1, 2, . . . , n}. To analyze these data, AIAG Au-
tomotive Industry Action Group (2002) recommends
an analysis of variance (ANOVA) (see also Burdick et
al. (2003)) that ignores the known values of μ and σt.
This analysis is briefly outlined in the next section.
Then we make use of the known parameter values
in the analysis with one method based on ANOVA
and a second using maximum-likelihood estimation
(MLE). Finally, we show that the ANOVA method

Vol. 41, No. 4, October 2009 www.asq.org



378 RYAN P. BROWNE, R. JOCK MACKAY, AND STEFAN H. STEINER

is efficient and we demonstrate the value of using the
information about the known process characteristics.

Analysis of the Standard-Plan Data

If we follow common practice and ignore the
known process characteristics and the initial values
{yi0, i = 1, 2, . . . , k} for the selected parts, we esti-
mate θ using the appropriate mean squares from an
ANOVA. We get

θ̂s =

√
MSW

MSA + (1 − 1/n)MSW
, (3)

where MSW =
∑k

i=1

∑n
j=1(yij−yi.)2/k(n − 1) is the

mean square among the repeated measured values
within parts and MSA =

∑k
i=1 n(yi. − y..)2/(k − 1)

is the mean square among the part averages.

In this context, to test the hypothesis (2), we use
a standard F -test with size α and with power at θ1

given by
P (F ≥ c Fα; v1, v2), (4)

where

c =
(

1 + n
1 − θ2

0

θ2
0

)/(
1 + n

1 − θ2
1

θ2
1

)
,

with v1 = k − 1 and v2 = k(n − 1).

Details of the derivation, expressed in terms of
the intraclass correlation coefficient ρ, can be found
in Donner and Eliasziw (1987), who use Equa-
tion (4) to determine appropriate sample sizes for
a measurement-system assessment. They first rear-
range the equation, expressing ρ1 as a function of
n and k when testing Equation (2) with α = 0.05
and power 0.80. Then they plot contours of ρ1 as a
function of n and k. In the section on Selecting a
Leveraged Plan, we use the same type of display to
calculate sample sizes for a leveraged plan.

The standard analysis is appropriate only if the
parts are selected at random because we are using
the data to estimate σt. In this instance, we can in-
corporate the initial values into the analysis, which
increases n by 1.

We expect the estimate (3) and the corresponding
hypothesis test to perform relatively poorly because
we are using only the data from the repeatedly mea-
sured parts to estimate σt.

Analysis Using the Known Process
Characteristics

We look at two ways of incorporating the known
values σt and μ into the estimation of θ. First, using

ANOVA, we estimate θ by

θ̂a =

√
MSW

σ2
t

. (5)

The corresponding estimator θ̃a of the estimate θ̂a

is distributed as the square root of a Chi-squared
random variable. Note that we use a circumflex (̂ )
to overscore a parameter to denote the estimate (a
number) and a overscore tilde (̃ ) to denote the cor-
responding estimator (a random variable). We have

E(θ̃a) = θ

√
2
v2

Γ((v2 + 1)/2)
Γ(v2/2)

and

Var(θ̃a) = θ2

[
1 −

(√
2
v2

Γ((v2 + 1)/2)
Γ(v2/2)

)2
]

. (6)

We use a standard χ2-test with size α for testing
Equation (2) with power at θ1 given by

P

(
χ2

k(n−1) ≤
[
θ0

θ1

]2

χ2
α,k(n−1)

)
. (7)

One benefit of this plan is that the properties of
the estimate and test do not depend on how the
parts are selected from the process because we are us-
ing the repeated measurements to estimate only σm.
This means the parts do not have to be randomly
selected. If we have selected the parts at random, we
can include the initial values of the selected parts in
the estimate, increasing the degrees of freedom from
k(n − 1) to kn.

Maximum Likelihood

The n measurements (n+1 if we include the initial
measurement) on the same part have joint distribu-
tion⎛⎜⎜⎝

Yi1

Yi2
...

Yin

⎞⎟⎟⎠�N

⎛⎜⎜⎝μ

⎡⎢⎢⎣
1
1
...
1

⎤⎥⎥⎦ ,

σt
2

⎡⎢⎢⎣
1 1 − θ2 . . . 1 − θ2

1 − θ2 1
...

. . .
...

1 − θ2 . . . 1

⎤⎥⎥⎦
⎞⎟⎟⎠

(8)

because the covariance between two measurements
on the same part is σ2

p.
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FIGURE 1. Power Curves for Testing the Hypothesis (2) When ρ0 = 0.80 and ρ0 = 0.91.

To perform the test, we calculate the MLE (see
Appendix A) and then reject the hypothesis θ ≥ θ0

if the calculated value of W (θ0; θ̂) is less than Zα, the
αth quantile of the standard normal distribution. The
approximate power of the Wald test, when θ = θ1, is

P
{

Z ≤
(
Zα [J1(θ0)]

−1/2 + θ0 − θ1

)
[J1(θ1)]

1/2
}

.

(9)
We compare the three power functions (4), (7), and
(9) in the next section.

Value of Using the Known Process
Characteristics

We use power to compare the three hypothesis
tests. All have the same size, α = 0.05. To make the
tests comparable, we do not include the initial values
of the selected parts in the analysis. Figure 1 shows
power curves, calculated from formulas (4), (7), and
(9) when the sampling plan has ten parts with six re-
peated measurements on each part, a common choice
in the SP (see Automotive Industry Action Group
(2002)). We selected the values for θ0 to match the
standard cut-off values used in R&R studies. Simi-
lar pictures emerge for other plausible values of n, k,
and θ0.

Figure 1 indicates, not surprisingly, that maxi-
mum likelihood and ANOVA using the known char-
acteristics are significantly more powerful than the
standard ANOVA analysis. This strongly suggests
that, when μ and σt are known, we should use this
information.

Maximum likelihood should be the most efficient
method of estimation. However, Figure 1 shows that
ANOVA using the known process characteristics has

a slightly higher power curve than the MLE. This
likely happened because the power of the Wald test
used in Figure 1 is based on an approximation using
the asymptotic distribution of the MLE. We verified
using simulation for a range of sample sizes and θ0

that the Wald and ANOVA tests are virtually equiv-
alent in terms of power. Given the simplicity of the
calculation, the ANOVA test is a clear winner.

In summary, when the process parameters are
known (or well estimated using the available data),
we recommend the analysis using ANOVA with
known parameters. This approach has a closed-form
estimate for θ and performs as well as the Wald test
when θ0 is less than 0.30, the typical values of in-
terest. In addition, because with the ANOVA and
known process characteristics we only estimate σm

(and not σp), we do not require that the selected
parts be representative of the process. As well, there
is no need to select as many as 10 parts. In line with
this observation, Steiner and Mackay (2005, chapter
7), suggests using only three parts having initial val-
ues spread across the known distribution of measured
values.

Leveraged Plans

For the LP, we sample parts based on their ini-
tial measurements as observed and stored in regu-
lar production. In particular, we sample parts that
are extreme relative to the known process mean μ.
Because we are dealing with a high-volume process,
we can quickly find parts with initial values in the
tails of the distribution. Again, we present three ap-
proaches for testing the hypothesis of interest. The
first method uses maximum likelihood, the second is
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FIGURE 2. Power Curves for Testing the Hypothesis (2) When θ0 = 0.3 and 0.1 at α = 0.05, with Six Repeated

Measurements and Ten Parts Having SSS = 10, 40, and 90.

based on a regression estimate, and the third is a
weighted average of the regression estimate and the
ANOVA estimate with known parameter values.

Maximum Likelihood and Fisher Information

For a single part, the joint distribution of the ini-
tial value Y0 and the n repeated measurements is
given by Equation (8). The conditional distribution
of the repeated measurements {Y1, . . . , Yn}, given
that the selected part has initial measured value
Y0 = y0, is then

⎛⎝ Y1
...

Yn

∣∣∣∣∣∣Y0 = y0

⎞⎠
�N

⎛⎝μ +
(
1 − θ2

)
(y0 − μ)

⎡⎣ 1
...
1

⎤⎦ ,

σ2
t θ2

⎡⎢⎣ (2 − θ2) (1 − θ2)
. . .

(1 − θ2) (2 − θ2)

⎤⎥⎦
⎞⎟⎠ . (10)

We use the Wald test to test the hypothesis in
Equation (2). The power is given by

P
{

Z ≤
(
Zα [J2(θ0)]

−1/2 + θ0 − θ1

)
[J2(θ1)]

1/2
}

,

(11)
where J2(θ1) is given in Appendix B. The Fisher in-
formation (26) depends on the initial values of the
chosen parts through the sum of the squared stan-

dardized values (SSS ) of the initial measurements,

SSS =
k∑

i=1

z2
i0 =

k∑
i=1

[
yi0 − μ

σt

]2

. (12)

Selecting the parts to increase the z2
i0’s, i.e., the

deviation of the intial measurements from the mean
μ, will increase the Fisher information. Figure 2
shows the effect of changing SSS on the power of
the Wald test when 10 parts are selected and mea-
sured 6 times each. Note that SSS = 10 corresponds
to the average value of SSS if 10 parts are selected
at random.

To get SSS = 40, we can select 10 parts with
initial values equal to μ ± 2σt or any other set of
{y10, . . . , yk0} where

k∑
i=1

[
yi0 − μ

σt

]2

=
k∑

i=1

z2
i0 = 40.

In the analysis, the properties of the test will depend
on the actual value of SSS achieved.

Regression Estimate

Maximum likelihood is an efficient method of esti-
mation but, when an explicit expression of the MLE
cannot be found, it can be useful to look for sim-
ple, efficient estimators to avoid complex calcula-
tions. The distribution of the average of the repeated
measurements on single part i, given the initial mea-
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surement yi0, is

Y i. =
1
n

n∑
j=1

Yij

�N

(
μ + (1 − θ2)(yi0 − μ), σ2

t θ2

[
n + 1

n
− θ2

])
.

(13)

Notice that the Y i.’s are independent and have
constant variance. The conditional mean is a linear
function of yi0−μ and so we can estimate β = 1−θ2

and hence θ using regression. See Appendix A for
details. The estimate of β is

β̂ =
∑k

i=1 rizi0∑k
i=1 z2

i0

, (14)

where ri = (yi. − μ)/σt. Then the estimate of θ is

θ̂r =
√

1 − β̂. If β̂ is negative, we set θ̂r to zero.

The regression estimator θ̃r is approximately un-
biased with

Var
(
θ̃r

)
≈ θ

[
n+1

n − θ2
]

4
∑k

i=1 z2
i0

. (15)

We see from the denominator of Equation (15) that
this estimator has smaller variance when we choose
parts that increase SSS, the sum of squares of the
standardized initial measurements (12).

Using the regression estimate, we reject the hy-
pothesis θ ≥ θ0 if

θ̂r − θ0

Var(θ̃r; θ = θ0)1/2
≤ Zα. (16)

The approximate power of the test when θ = θ1 is
given by

P

{
Z ≤

(
Zα

[
Var(θ̃r; θ = θ0)

]1/2

+ θ0 − θ1

)
×
[
Var(θ̃r; θ = θ1)

]−1/2
}

. (17)

Note that this test uses the initial values but not
the information from the variability of the repeated
measurements.

Combining the ANOVA and Regression
Estimates

As shown in the next subsection, the test based on
the regression estimator does not perform well when

compared with the MLE. To improve the power, we
propose estimating θ using a weighted average of the
regression and ANOVA estimates. The ANOVA es-
timator, as described above, uses only the repeated
measurements for each selected part and not the ini-
tial values. It is easy to see that the two estimators
are statistically independent, so we would expect a
linear combination to be better.

The variances of the estimators (6) and (15) de-
pend on the unknown θ, which makes finding optimal
weights impossible. We can, however, find optimal
weights at θ = θ0, the hypothesized value in Equa-
tion (2). See Appendix D for details. To simplify the
algebra, we find the optimal weighted average for es-
timating θ2. The combined estimate is

θ̂c =

√√√√w1

(
1 −

∑k
i=1 rizi0∑k
i=1 z2

i0

)
+ w2

(
MSW

σ2
t

)
, (18)

with MSW defined as in Equation (3) and

w1 =
2nθ2

0

∑k
i=1 z2

i0

2nθ2
0

∑k
i=1 z2

i0 + k(n − 1) ([1 − θ2
0] n + 1)

w2 =
k(n − 1)

([
1 − θ2

0

]
n + 1

)
2nθ2

0

∑k
i=1 z2

i0 + k(n − 1) ([1 − θ2
0] n + 1)

.

From Appendix B, the variance of θ̃c with the true
value θ is

Var
(
θ̃c; θ

)
≈ 1

2
θ2

([
1 − θ2

]
n + 1

)
2nθ2

∑k
i=1 z2

i0 + k(n − 1) ([1 − θ2] n + 1)
.

(19)

We construct the test of the hypothesis (2) us-
ing the normal approximation for the estimator. The
approximate power of the test is

P

{
Z ≤

(
Zα

[
Var(θ̃c; θ = θ0)

]1/2

+ θ0 − θ1

)
×
[
Var(θ̃c; θ = θ1)

]−1/2
}

. (20)

To derive the expression for the power, we use a
normal approximation to the distribution of MSW.
Because the numerator of MSW has a chi-square dis-
tribution with k(n− 1) degrees of freedom, a normal
approximation is reasonable if k(n−1) is larger than
30. The common choice for an SP is k = 10 and
n = 6, which means k(n − 1) = 50.
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TABLE 1. Example LP Data

Repeats
Standard

Part y0 1 2 3 4 5 Average deviation

1 1.42 1.36 1.30 1.42 1.35 1.33 1.352 0.0444
2 1.96 1.89 1.97 1.82 1.84 1.94 1.892 0.0638
3 2.26 2.11 2.19 2.26 2.16 2.21 2.186 0.0559
4 7.76 7.81 7.83 7.72 7.66 7.80 7.764 0.0716
5 7.98 7.97 8.06 7.82 7.83 7.88 7.912 0.1018
6 8.78 8.67 8.59 8.62 8.52 8.62 8.604 0.0550

LP Analysis Example

We present an artifical example to illustrate the
numerical calculations. Using our process knowledge,
we have μ = 5 and σ2

t = 2, and we wish to test
Equation (2) when θ0 = 0.1. We selected six parts
and remeasured them five times each. The six parts
selected had three small and three large initial values,
with SSS =30.175. The results are shown in Table 1.

The estimates and standard errors for the MLE,
ANOVA with known process characteristics, and
ANOVA and regression combined are shown in Ta-
ble 2. The weights for the combined estimate are
w1 = 0.022 and w2 = 0.978. The standard error for
each estimation method was evaluated at each esti-
mate and under the null hypothesis that θ0 = 0.1.
We also give the result of the hypothesis tests when
the size of the test is α = 0.05.

We can check some of the model assumptions us-
ing the residuals from the repeated measurements. A
QQ plot of these residuals will check the normality
assumption and a plot of the residuals against the in-
tial values can indicate if the measurement variation
depends on the true value.

Comparison of the LP Analysis Methods

We use power to compare the three methods of
testing the hypothesis (2). For the MLE, we use the
Wald test with power given by Equation (11). For
the regression and combined estimators, the power is
given by Equations (17) and (20), respectively. In all
the comparisons, we use a sample of 10 parts with
SSS =

∑k
i=1 z2

i0 = 40 and six repeated measure-
ments on each part.

Figure 3 shows that the test based on the re-
gression estimator performs poorly and that the test
based on the combined estimator performs almost as
well as the Wald test based on the MLEs, with the
advantage of a closed-form solution. We see similar
results for other values of n, k, and SSS.

The Value of Leveraging

We can use leveraging whenever there is a sup-
ply of parts with measured initial values so that we
can select extremes. We have such a supply if the
measurement system is used routinely in production
as described in the Introduction. There is a small
cost to find the extreme parts but this cost is likely
comparable with that incurred if random selection is

TABLE 2. Example LP Analysis When Testing θ0 = 0.1

Standard error at
Estimate Test

Method θ̂ θ = θ̂ θ = θ0 result

Maximum likelihood 0.0500 0.00644 0.0128 Reject
Regression 0.0571 0.02377 0.0314 Accept
ANOVA with known process characteristics 0.0478 0.00687 0.0144 Reject
ANOVA and regression combined 0.0481 0.00692 0.0071 Reject
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FIGURE 3. Power Curves for Testing the Hypothesis (2) When θ0 = 0.3, θ0 = 0.1,
∑

z 2
i,0 = 40, and k = 10, n = 6.

properly implemented. What is the gain? To address
this question, we compare power curves for leveraged
and standard plans with the same number of parts
and repeated measurements.

A common sample size used in a SP is 10 parts
and 6 repeated measurements. For this plan, we se-
lect the parts at random and use the known μ and
σt. We consider both the case when the initial values
are included in the calculations and the more com-
mon case when they are not. For the LP, we select
the 10 parts so that

∑k
i=1 z2

i0 = 40. Note that about
one part in 20 will have z0 greater than 2. We gener-
ated the power curves for testing the hypothesis (2)
using the Wald test for each plan. The power of the
Wald test for the SP is found in Equation (9). We

increase n by 1 for the case that includes the initial
values. The power of the Wald test for the LP uses
Equation (11). We used maximum likelihood for the
power curves because this way, the three plans can
be compared fairly.

Figure 4 shows that the LP is more powerful than
the SP when the 10 parts are used with SSS = 40 and
there are six repeated measurements on each part.
The gain is greater when the initial values are not
used in the analysis of the SP. We see similar results
for other scenarios.

We can also quantify the effects of leveraging by
comparing sample sizes. For example, suppose we se-
lect five parts with initial measured values about two
standard deviations from the mean and measure each

FIGURE 4. Power Curve for Leveraged and Standard Plans from Testing the Hyppothesis (2) When θ0 = 0.3 and 0.1, Ten

Parts Having SSS =
∑

z 2
i,0 = 40 and 6 Repeated Measurements.
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FIGURE 5. Contours of θ for Testing the Hypothesis (2) When θ0 = 0.3 and 0.1 with Size 0.05, Power 0.80, and
∑k

i=1z
2
i,0

= 4k.

five times. Using the test based on the combined esti-
mate, the power of the test for θ0 = 0.3 at θ1 = 0.209
is about 0.80. To get the same power with the SP and
the test based on the ANOVA estimate, we would
need to measure five randomly selected parts 6.4 (ac-
tually 7) times each.

The conclusion is that leveraging increases power
with little or no increase in cost. Although not pre-
sented here, we see corresponding improvements in
the precision of the estimate of θ when we use lever-
aging.

Selecting a Leveraging Plan

To plan a measurement system assessment to
carry out the test of hypothesis (2), we need to spec-
ify the size and θ0 as well as the desired power and
θ1. For size 0.05, θ0 = .1, and θ0 = .3, Figure 5 shows
the values of θ1 that have 0.80 power when testing
with various values of k and n. These contours show
the (n, k) combinations that satisfy the required size
and power for the assumed values of θ1. Again we as-
sume that each selected part contributes, on average,
4 to the sum SSS given in Equation (12).

To obtain the contours in Figure 5, we determined,
for all discrete points (n, k), the values of θ that have
power 0.80 using the asymptotic Wald test when test-
ing θ0 in Equation (2). To determine the power of the
Wald test for an LP, we use Equation (11).

Figure 5 can be used to determine the necessary
sample sizes for testing Equation (2) when θ0 = 0.30
and θ0 = 0.10 with size 0.05 and power 0.80. For

example, suppose we wish to determine if the gauge
repeatability is 30% or less of the total variation (i.e.,
θ0 ≤ 0.30) and it is currently thought that θ is around
0.20. The point on Figure 5, with θ0 = 0.30, that
corresponds to five parts with

∑5
i=1 z2

i0 = 20 and
five repeated measurements on each part satisfies the
needs of this investigation because it is above the
θ = 0.20 contour. Similar figures for other values of
SSS are available from the authors on request.

The properties of the test associated with an LP
depend on the part selection only through SSS. We
could, for example, choose only large parts so that
all zi0 are positive. We recommend instead that a
balanced sample is selected with roughly equal num-
bers of large and small parts. With this plan, we can
check if the measurement variability σm is constant
across the range of true part dimensions.

We may occasionally find a part with a very large
or small initial value, with |zi0| ≥ 3, say. We do not
recommend using such a part in an LP because the
reason for the large value may be due to some spe-
cial cause acting in the measurement system. This
unusual outcome should be investigated separately.

The contour plots in Figure 5 are useful in the
planning of an LP. In executing the plan, we do not
expect to find k parts with initial measurements so
that SSS exactly meets the specified value. The anal-
ysis depends only on the realized value of SSS. We
can use Equation (19) to estimate θ and, substituting
the estimate, Equation (19) to get an approximate
standard error leading to a Z-test or an approximate
confidence interval.
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Conclusions and Discussion

We compared two classes of plans for assessing
a measurement system: the standard plan, in which
parts are selected at random from the process, and
a leveraged plan, where the parts are selected based
on relatively large or small initial values. The lever-
aged plan is feasible in the context we have described,
where an automated gauge (without an operator
source of variation) is used for 100% inspection and
the measured values are recorded. In this instance, we
have shown that the LP can produce modest gains
in efficiency at little or no extra cost or complexity.
In cases where leveraging is not used, we have shown
the somewhat obvious result that, if the overall pro-
cess mean and variance are known, this information
should be included in the analysis of any measure-
ment assessment plan. What may be surprising is
the increase in efficiency due to this information. We
have also noted that we can avoid random selection
of the parts to be remeasured when we have known
process mean and variance.

All of our results are given in terms of power com-
parisons. We see similar gains in efficiency in using
the known parameter values and leveraging if we
make the comparisons in terms of standard errors
of the estimates of θ. For an LP, we can use Equa-
tion (19) to estimate θ and, substituting the estimate
of Equation (19), get an approximate standard error.
This can then be used to get an approximate confi-
dence interval for θ.

One issue that we have skirted is the choice of
time period over which we use the data records to
determine μ and σt. These parameters must describe
the process behavior at the time we plan to assess the
measurement system. This problem arises with both
the LP and SP, and, in fact, whether initial values are
available or not. We can only select a random sample
of parts by first specifying a particular production
period so that μ and σt have meaning. One possibility
is to apply a run chart to the stored data and look
for a substantial recent period of stability.

When implementing an LP, we can avoid searching
for previously measured parts by first estimating μ
and σt using some period of production. Then we
can flag and save a set of extreme parts from current
production for the remeasurement.

Leveraging can be applied to other variance com-
ponent problems where one source of variation can
be held fixed (e.g., the process) and the other can be
varied (e.g., the measurement system). One example
is an assembly–disassembly experiment (see Steiner
and Mackay (2005), 10.4) where we have an assem-
bled product with several components. The goal is to
determine which is the greater source of output varia-
tion, the components or the assembly operation. We
select k = 2 products for the study. Each product
is disassembled, reassembled, and then remeasured.
These three steps are repeated several times. Per-
forming the experiment in this way ensures the vari-
ation from the components is held fixed while the
assembly contribution varies in each run. Again, we
assume that the distribution of the output of inter-
est is known or estimated from production records
with little error. We use leveraging by selecting the
two products for the experiment to have extreme and
opposite performance when initially measured.

We can also exploit known process characteris-
tics and purposeful sampling when assessing binary
measurement systems used for 100% inspection. See
Danila et al. (2008) for details.

In this work, we have assumed that the process
mean, μ, and variance, σ2

t , are known. For the con-
text we have described, this is a reasonable assump-
tion. In many other situations, we can use leverag-
ing by first randomly selecting a baseline sample of
b parts to estimate μ and σ2

t . Second, we select k
extreme parts from the baseline sample and remea-
sure each n times. We expect leveraging to provide
substantial benefit. A key issue is how to allocate
resources between the two stages of the study. See
Browne et al. (2009) for details.
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Appendix A
Analysis Using the Known Process Characteristics

The covariance matrix in Equation (8) has a special form with the following well-known properties (Dillon
and Goldstein (1984)). If W = aIn + bJn, where In is an n by n identity matrix and Jn is an n by n matrix
of ones, then

det(W) = an−1 [a + bn] and W−1 =
1
a
In − b

a(a + bn)
Jn. (21)

We use these results to write the log -likelihood for each part and, because observations from the k different
parts are independent, we add the individual components to get the overall log likelihood,

l1(θ) = −k

2
{
n log σ2

t + (n − 1) log θ2 + log
[
n − θ2(n − 1)

]}
− 1

2σ2
t θ2 [n − θ2(n − 1)]

{[
n − θ2(n − 1)

]
SSW∗ − (1 − θ2)nSSA∗} , (22)

where SSW∗ =
∑k

i=1

∑n
j=1 (yij − μ)2 and SSA∗ =

∑k
i=1 n (yi. − μ)2.

We must numerically calculate the maximum likelihood estimate θ̂. We can, however, examine the asymptotic
properties of the estimator using the Fisher information,

J1(θ) = E

[
− ∂2

∂θ2
l1 (θ)

]
= 2

nk(n − 1)
[
(1 − θ2)2(n − 1) + 1

]
θ2 [n − θ2(n − 1)]2

. (23)

The Fisher information is the inverse of the asymptotic variance of the maximum likelihood estimator. The
larger the information, the better the precision of the estimate.

To test the hypothesis (2), we use a Wald test based on the asymptotic distribution of the MLE. Suppose
that θ̃ is the maximum likelihood estimator of θ. Then, approximately, we have

W (θ0; θ̃) = (θ̃ − θ0) [J1(θ0)]
1/2 ∼ N(0, 1). (24)

Appendix B
Leveraged Plan Maximum Likelihood and Fisher Information

As in Equation (8), the covariance matrix in Equation (10) has a special form that allows us to easily write
down an expression for its inverse and determinant.

Using these results, we can find the conditional likelihood (conditional on y0) for the n repeated measure-
ments on a single part. Because the repeated measurements for one part are independent of the repeated
measurements from another part, the conditional log likelihood for k parts, each with n measurements, is the
sum of their log likelihoods. Given the initial values, the log likelihood for n repeated measurements on k parts
is then

l2 (θ |y10, . . . , yk0) = −nk

2
log σ2

t θ2 − k

2
log

[
1 + n(1 − θ2)

]− 1
2

1
σ2

t θ2 [1 + n(1 − θ2)]

×
{[

1 + n(1 − θ2)
]
SSW + n

k∑
i=1

[
yi. − μ − (1 − θ2)(yi0 − μ)

]2}
, (25)

Note that this likelihood does not depend on the method we use to select the parts, only the initial values of
these parts.

To estimate θ, we maximize Equation (25) numerically. We calculate the Fisher information directly from
the log-likelihood function where the expectation is conditioned on the initial values.

J2(θ) = E

[
− ∂2

∂θ2
l2 (θ)

]
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=
1
2

4θ2kn2

[1 + n(1 − θ2)]2
+

4kn(1 − θ2)(n + 1)
[1 + n(1 − θ2)] θ2

− 2kn

θ2
+

4n

[1 + n(1 − θ2)]

∑
(yi0 − μ)2

σ2
t

. (26)

Appendix C
Regression Estimate

The distribution of the average of the repeated measurements on single part i, given the initial measurement
yi0, is

Y i. =
1
n

n∑
j=1

Yij �N

(
μ + (1 − θ2)(yi0 − μ), σ2

t θ2

[
n + 1

n
− θ2

])
. (27)

Notice that the Y i.’s are independent and have constant variance. The conditional mean is a linear function
of yi0 − μ and so we can estimate 1 − θ2 and hence θ using regression. Letting β = 1 − θ2, Ri = (Y i. − μ)/σt,
and zi0 = (yi0 − μ)/σt and rearranging Equation (27), we have

Ri = βzi0 + εi where εi ∼ N
(
0, σ2

r

)
(28)

and σ2
r = θ2[(n + 1)/n − θ2].

The estimate of β (Montgomery et al. (2001)) is

β̂ =

(
k∑

i=1

rizi0

)/(
k∑

i=1

z2
i0

)
, (29)

where ri = (yi. − μ)/σt. Then the estimate of θ is θ̂r =
√

1 − β̂. If β̂ is negative, we set θ̂r to zero.

Appendix D
Combining the ANOVA and Regression Estimates

If we have two unbiased independent estimators of θ, θ̃1 and θ̃2 with known variances σ2
1 and σ2

2 , the optimal
linear combination is

θ̃2 = w1θ̃1
2

+ w2θ̃2
2

=
1/σ2

1

1/σ2
1 + 1/σ2

2

θ̃1
2

+
1/σ2

2

1/σ2
1 + 1/σ2

2

θ̃2
2
. (30)

The variance of the combined estimator is

Var
(
θ̃2
)

=
σ2

1σ2
2

σ2
1 + σ2

2

. (31)

Now, if we obtain θ̃1
2

using Equation (14) and θ̃2
2

from Equation (5), we can easily show that the two
estimators are independent. Applying Equation (30), we obtain the combined estimate

θ̂c =

√√√√w1

(∑k
i=1 rizi0∑k
i=1 z2

i0

)
+ w2

(
1 − MSW

σ2
t

)
(32)

with MSW defined as in Equation (3) and

w1 =
2nθ2

0

∑k
i=1 z2

i0

2nθ2
0

∑k
i=1 z2

i0 + k(n − 1) ([1 − θ2
0] n + 1)

w2 =
k(n − 1)

([
1 − θ2

0

]
n + 1

)
2nθ2

0

∑k
i=1 z2

i0 + k(n − 1) ([1 − θ2
0] n + 1)

.
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