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ABSTRACT Reducing variation in key product features is an important goal

in process improvement. Finding and controlling the cause(s) of variation is

one way to reduce variability but may not be cost effective or even possible

in some situations. Alternatively, we can reduce variation in a critical output

by reducing the sensitivity of the process to the main sources of variation

rather than controlling these sources directly. This approach is called robust

parameter design and exploits interaction between the causes of output

variation and control factors in the process. In the literature, a variety of

experimental plans have been proposed to help implement robust para-

meter design. We compare two classes of plans that we call desensitization

and robustness experiments. With a desensitization experiment, we need

knowledge of a dominant cause and the ability to set its level in the experi-

ment. With a robustness experiment, we use time or location (Shoemaker

et al. 1991) to indirectly generate the effect of the dominant causes of

output variation. In this article, we explore qualitatively and quantitatively

the differences between robustness and desensitization experiments. We

argue that for an existing process, desensitization is the preferred choice.

KEYWORDS desensitization, robustness, statistical engineering, Taguchi

methods, variation reduction

INTRODUCTION

Excessive variation in critical process output characteristics can have

many undesirable effects such as scrap=rework costs, customer dissatisfac-

tion, impairment of function, etc. As such, variation reduction is an impor-

tant goal of quality improvement.

The causes of output variation must be process inputs that vary as the

process operates. One way to reduce output variation is to find and then

remove or reduce the variation of a cause. When this is not feasible or cost

effective, we consider the alternate strategy of robust parameter design. The

goal is to reduce variation in the output by reducing the sensitivity of the

process to the sources of variation rather than controlling these sources

directly. There is an extensive literature on robust parameter design (Kacker

1985; Kackar and Phadke 1981; Ross 1988; Taguchi 1987a, 1987b; Taguchi

and Wu 1980). See also the related discussion in Nair (1992) and Robinson
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et al. (2003) for an overview of the ideas and contro-

versies. General background on experimental design

is given in Box et al. (1978) or Montgomery (2005).

In the robust parameter design literature, a varying

input (cause) is called a noise factor. Noise factors

can be environmental, such as ambient temperature,

or aging related, such as the number of usage cycles.

These are called external noise factors by Taguchi

(1987) and cannot be controlled. So-called internal

noise factors are inputs that vary from unit to unit

in the manufacturing process. Two examples are

the pouring temperature of iron in a foundry that

varies about a target and the dimension of a compo-

nent characteristic in an assembly. Many of these

internal noise factors can be controlled but at a cost.

To implement robust parameter design, we change

inputs to the process that are normally fixed; for

example, temperature set point, aspects of the

control plan, etc. Taguchi refers to these normally

fixed inputs as control factors. The goal of robust

parameter design is to find new values for the control

factors that result in less output variation without

changing the behavior of the noise factors.

To represent this idea mathematically, consider

the following simple (unrealistic) model

Y ¼ b0 þ b1Z þ R ½1�

where the random variable Y represents the output,

the random variable Z describes a particular noise

factor, and R represents the variation due to all other

varying (noise) inputs. We also suppose for the sake

of simplicity that Z and R vary independently, and so,

denoting standard deviation as sd we have

sdðY Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21sdðZÞ

2 þ sdðRÞ2
q

½2�

The first term under the square root is the contribu-

tion of the noise factor to the overall variation in

the output. We can reduce this contribution by redu-

cing or eliminating the variation in Z (i.e., reduce

sd(Z)) or by reducing the magnitude of jb1j. If we

suppose that b1 depends on the values of one or

more control factors, we can carry out experiments

to find these control factors and change their current

levels to reduce jb1j.
To illustrate how this might work, consider the

simplest situation where we have just one control

and one noise factor. Then, the basic idea behind

robust parameter design can be demonstrated by

considering the following simple extension to model

[1] for the output Y:

Y ¼ b0 þ b1Z þ b2x þ b3xZ þ R

¼ b0 þ b2x þ ðb1 þ b3xÞZ þ R ½3�

where x represents the level of the control factor. If

we denote the current value of x as x0, then

b1þ b3x0 is the slope of the linear relationship

between the noise (Z) and the output (Y) with the

current process settings. To implement robust para-

meter design, we need to find a new setting for x that

flattens the relationship between output and noise.

This means that we are looking for a new level of

x, say x1, where jb1þ b3x1j is closer to zero than

jb1þ b3x0j. If b3 is large with respect to b1, then we

can reduce jb1þ b3x0j with relatively small changes

in x. With the process change, we continue to live

with the variation in the dominant cause Z.

We show in Figure 1 how the process might behave

before and after we have implemented this strategy.

In statistical terminology, we have exploited the

FIGURE 1 Illustration of process improvement using parameter

design.
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interaction between the noise factor and the control

factor. Note that the variation in the output (as indi-

cated by the dashed horizontal lines) is less in the right

panel even though the variation in the noise factor

(as indicated by the dashed vertical lines) is the same.

We can also use the model [2] to make the critical

point that there is little value in reducing the contri-

bution of Z to the variation in Y unless that contribu-

tion is large. Suppose sd(due to Z)¼ jb1jsd(Z) is

equal to the contribution of all other causes sd(all

other causes)¼ sd(R). We can reduce the variation

in the output by (only) about 30% if we completely

eliminate the variation due to Z. If, on the other

hand, sd(due to Z)¼ sd(due to all other causes)=2,

the possible reduction in output variation is only

about 10%.

In this article we assume only one or a few domi-

nant causes exist; that is, there are a few noise factors

that are responsible for a substantial proportion of

the variation in the output. This assumption corre-

sponds to assuming the Pareto principle applies to

the contribution of causes (Juran and Gyrna 1980;

Steiner et al. 2008). We believe that it is difficult to

substantially reduce output variation using robust

parameter design or any other approach unless there

are dominant causes.

We may also be able to apply robust parameter

design if we can control the target value of an input

but not the variation of the input about this target.

Suppose the relationship between the output and

input is nonlinear as shown in Figure 2. With the cur-

rent target value, suppose we obtain the range of

values for the input shown by the dashed vertical

lines in the top panel of Figure 2. There is a corre-

sponding large amount of variation in the output. If

we reduce the target value of Z without controlling

the variation, as shown in the bottom panel of

Figure 2, we can reduce the output variation substan-

tially. To take advantage of this solution, we likely

also need to find a way to increase the average value

of the output using some other control factor.

To apply robust parameter design, we need to

plan and execute an experiment where we deliber-

ately manipulate at least one control factor. The goal

of the experiment is to find (directly or indirectly) an

interaction between the important noise(s) and the

selected control factors and then determine settings

of these control factors that result in less output

variation. We call an experiment with this goal a

Taguchi experiment. We may find that we have

shifted the mean of the output with such a change. If

we do not have a known way to adjust the average

level of the output, wemight also include other control

factors in the experiment looking for a way to adjust

the process mean without affecting the variation.

Taguchi proposed robust parameter design to

address problems in process or product design. He

suggested sensibly that the strategy is best applied

as early as possible when design changes are easier

and cheaper. However, this approach has also been

widely applied in manufacturing to improve existing

processes (see Miller et al. 1993; Quinlan 1985; Wu

and Hamada 2000). In this article we consider only

the setting where the goal is to improve an existing

process. We discuss the implications of this context

in the following section.

Consider the case study discussed by Miller et al.

(1993). We will also use this example later to com-

pare the different experimental plans. The process

was the heat treatment of the pinion and ring gear

set that provides for the transmission of power from

FIGURE 2 Hypothetical nonlinear input–output relationship

showing range of input and corresponding range of output values.
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the drive shaft to the axle in a rear-wheel-drive vehi-

cle. The sets are heat-treated to improve strength and

wear characteristics. There was excessive variation in

distortion during heat treatment as measured by the

dishing of the gear. The production team conducted

an experiment with five control factors (A–E) and

three noise factors (F–H) hoping to be able to reduce

the variation in dishing. The experimental factors

and their corresponding low and high levels are

given in Table 1. The factors and levels were selected

through a brainstorming session.

The noise factors F and H could not be normally

controlled because of the process design. To main-

tain production volume, the process used each of

the parallel furnace tracks and the cone-shaped gears

were placed in two orientations in the baskets that

passed through the furnace. While noise factors F

and H could be easily controlled in the experiment,

controlling initial tooth size (factor G) required mea-

suring and sorting parts before heat treatment that

substantially increased the cost of the experiment.

As we shall see, this effort was wasted because factor

G is not an important noise factor.

The experiment consisted of a crossed control by

noise array (Ross 1988) with a 25�1 fractional-

factorial design for the control factor array and a 23

full-factorial design for the noise array; see Table 2.

Taguchi calls these the inner and outer arrays,

respectively. For each combination of the control

and noise factors, one part was measured after heat

treatment. There were 16� 8¼ 128 parts in total.

To conduct the experiment, the control factors were

set and the process was allowed to stabilize. Baskets

were prepared using gears with both levels of factors

G and H. The remaining parts in the basket were

scrap from an earlier part of the process because

none of the parts produced during the experiment

TABLE 1 The Control and Noise Factors for the Gear

Experiment

Label

Control

factor

Low level

(�1)

High level

(þ1)

A Carbon potential

in furnace

1.15% 1.40%

B Operating mode Normal Continuous

C Last zone temperature 1,500�F 1,650�F

D Quench oil

temperature

300�F 360�F

E Quench oil agitation 125 rpm-0del 300 rpm-5del

Noise factor

F Furnace track Left Right

G Initial tooth size

deviation

Undersize Oversize

H Part orientation

in basket

Up Down

TABLE 2 Design Matrix and Output Data (Gear Dishing) for the Gear Experiment

Treatment

Inner array Outer array

F 1 1 1 1 �1 �1 �1 �1

G 1 1 �1 �1 1 1 �1 �1

A B C D E H 1 �1 1 �1 1 �1 1 �1 Average SD

1 1 1 1 1 1 7 12 6.5 14 3 14 4 16.5 9.63 5.12

2 1 1 1 �1 �1 13.5 14.5 5.5 17 �7.5 15 �4.5 12 8.19 9.42

3 1 1 �1 1 �1 3 11 5.5 18 3 19 1 21 10.19 8.16

4 1 1 �1 �1 1 10.5 14.5 6.5 17.5 3 14.5 9 24 12.44 6.63

5 1 �1 1 1 �1 10 23 3.5 23 4.5 25.5 10 21 15.06 9

6 1 �1 1 �1 1 6.5 22 14.5 23 5.5 18.5 8 21.5 14.94 7.36

7 1 �1 �1 1 1 5.5 28 7.5 28 4 27.5 10.5 30 17.63 11.66

8 1 �1 �1 �1 �1 4 14 6.5 23 9 25.5 9 24.5 14.44 8.69

9 �1 1 1 1 �1 �4 18.5 11.5 26 �0.5 13 0 16.5 10.13 10.61

10 �1 1 1 �1 1 9 19 17.5 21 0.5 20 6.5 18 13.94 7.58

11 �1 1 �1 1 1 17.5 20 10 23 6.5 21.5 0 26 15.56 9.09

12 �1 1 �1 �1 �1 7 23.5 1 20 7 22.5 4 22.5 13.44 9.53

13 �1 �1 1 1 1 2.5 22 12 19.5 7 27.5 8.5 23.5 15.31 9.01

14 �1 �1 1 �1 �1 24 26 14.5 27.5 7 22.5 13 22 19.56 7.22

15 �1 �1 �1 1 �1 5.5 27 2.5 31 12.5 27 11.5 32.5 18.69 11.99

16 �1 �1 �1 �1 1 11 21.5 12 27 16.5 29.5 16 28.5 20.25 7.43
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could be shipped. Two baskets, one for each furnace

track, were processed for each combination of the

control factors in the control array. The treatment

combinations defined by the inner array (control

factors) were run in random order, whereas for each

treatment all combinations of the outer array were

conducted simultaneously. The experimental design

and resulting data are shown in Table 2.

The rest of this article is organized as follows. The

following section defines and qualitatively compares

two types of Taguchi experiments we call desensitiza-

tion and robustness experiments. Both types are used

in practice to improve existing processes but little has

been done to compare them. The next section quan-

titatively compares the two designs. Though a robust-

ness experiment is easier to conduct, we show the

performance superiority of desensitization. Finally,

we discuss additional issues and draw conclusions.

EXPERIMENTAL PLANS FOR FINDING
A ROBUST SOLUTION

TO MANUFACTURING VARIATION

Here we outline some of the key steps in planning

a Taguchi experiment. We assume that the goal is

to reduce variation in a critical process output that

relates to process=product quality. The output

must closely match a high-priority management or

customer concern. We focus on a single output,

but often there are many.

Planning Issues

In our view, there are four critical steps in

planning a Taguchi experiment in the context of

reducing output variation in an existing manufactur-

ing process. First, we need to identify the dominant

noise factors in the process or at least understand

how they act over time or location. In the

second step, we need to decide the general class of

experiment that we plan to carry out. Third, we must

determine the control factors we will change in the

experiment and their levels. Finally, we need to

select a specific experimental design.

Identify Dominant Noise Factors

As discussed in the Introduction, we cannot

reduce output variation substantially without

reducing the effect of one or more dominant causes

of the variation. This is especially true because we

should not expect to be able to eliminate completely

the effect of a noise factor. Adding noise factors with

small effects to the experiment makes it larger and

more complex without any possible benefit.

In the context of developing a new product

or process design, the typical approach is to use

brainstorming to identify the important noise factors.

This is sensible in the design stage, because we have

few alternatives. However, to improve an existing

process, rarely should a Taguchi experiment be

considered the first empirical investigation (Steiner

and MacKay 2005). Rather, to improve an existing

process, we should first look for dominant causes

using observational studies that are cheaper and

simpler than experimental investigations. Looking

for large (root) causes of variation before attempting

to find a solution is part of most process improve-

ment systems such as the diagnostic and remedial

journey discussed by Juran and Gyrna (1980),

DMAIC in Six Sigma (define, measure, analyze,

improve, and control; Breyfogle 1999), and statistical

engineering (Steiner and MacKay 2005).

Recall that dominant causes are process inputs that

naturally change as the process operates. If we are

able to measure both the value of the dominant

cause and the output on a number of parts, a scatter-

plot will reveal any strong relationship. Strategies for

finding dominant causes using observational investi-

gations are discussed in Steiner and MacKay (2005).

Once we have identified a small number of sus-

pected dominant causes, concerns about possible

confounding can be put to rest through a simple

targeted experiment. If a dominant cause is found,

we may be able to pursue a different remedy, even

if reducing variation in the dominant cause is not

an option. For instance, we may employ feedforward

control or use error-proofing with 100% inspection

on the dominant cause.

Searching for a dominant cause can be difficult

and time consuming and there is no guarantee of

success. However, even if we do not find such a

cause, we may discover other important process

information that can help us plan a useful Taguchi

experiment. For instance, as we shall discuss, know-

ing how the output varies over time can be critical. If

we see that there is little variation in the output

between consecutive parts but a great deal of

variation across shifts, we will need to observe the

H. Asilahijani et al. 34
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process across many shifts to see the action of the

dominant causes.

Select a Desensitization or Robustness

Experiment

Once we have identified the dominant causes of

variation or at least looked for them, we need to

determine how to induce their effect in the experi-

ment. This distinguishes the two types of Taguchi

experiments we call desensitization and robustness

experiments, following the terminology suggested

by Steiner and MacKay (2005). For both types of

experiments, the goal is to find new process (control

factor) settings that make the process output less

sensitive to variation in the dominant causes.

In a desensitization experiment, we control the

dominant noise factors in the experiment. There are

many examples of such experiments in the literature.

See, for instance, the layer growth and leaf spring

examples in Wu and Hamada (2000) and the engine

block porosity, oil pan scrap, refrigerator frost

buildup, and eddy current examples in Steiner and

MacKay (2005). The gear example discussed in the

Introduction is a desensitization experiment because

the levels of the noise factors were deliberately set in

the experiment.

We must choose the levels of the noise factors for

a desensitization experiment. In the experiment,

we want to change the levels of the noise factors

to induce the variation seen in the regular process.

Thus, the high and low levels of the noise factor

should be set at the high and low ends of the range

of values seen in regular production. This way, the

high and low levels are expected to give extreme

performance for the output from current process. If

the levels are chosen too close together, we will

not see the complete effect of the noise factor as it

normally acts. If the levels are selected to be too

extreme, the experimental results will not map well

to the regular process. Selecting the appropriate

levels requires that we know the range of values

for the noise factors in regular production.

In a robustness experiment, we measure the out-

put over time or location to generate the effect of

the important noise factors. We do not need to first

identify these factors. If we have failed in Step 1 to

find the dominant causes of the process variation,

we only have the option of a robustness experiment.

Even in cases where we know the dominant causes,

we may prefer a robustness experiment because con-

trolling the levels of the noise factors in an experi-

ment can be hard or impossible. If it were easy to

control these noise factors, we would simply fix

them to reduce the variation in the output. There is

then no need to look for a way to make the process

less sensitive to variation in these causes.

There are many examples of robustness experi-

ments in the literature. See, for instance, the speed-

ometer cable example in Quinlan (1986), the

examples in Jiju et al. (2001, 2004), and the crossbar

dimension, iron silicon concentration, and electro-

plating pinskip defect examples in Steiner and

MacKay (2005). In the gear example discussed in

the Introduction, a robustness experiment might

have been planned as follows. For each treatment

(defined by the combination of levels of the control

factors), heat treat several baskets of parts. Then

sample eight gears at random from each run of

baskets. This is a robustness experiment with

eight repeats for each treatment combination. Carry-

ing out the robustness experiment would have

been easier than the desensitization experiment

because we would avoid sorting parts with respect

to factor G, the initial gear size.

For the robustness experiment to have any hope

of identifying process settings that will be more

robust to variation in the dominant causes, the domi-

nant causes must act among the repeats within each

treatment. That is, we want the values from the

repeats for each treatment to exhibit the same varia-

tion in the output we would see if we permanently

change the process to the settings defined by the

treatment. One major challenge with robustness

experiments is that it is difficult to estimate output

variation with a small number of observations per

treatment. However, it is usually too expensive to

do many repeats. In a desensitization experiment this

problem is avoided because we set the noise fac-

tor(s) at extreme levels to generate the range of out-

put values we expect to see if the process were

permanently changed.

Choose Control Factors and Levels

In the third step, we need to select the control

factors and their levels. The control factors are

normally fixed inputs and thus we likely have little

prior empirical knowledge to help us choose these

factors. Instead, we rely on engineering or process
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knowledge. Knowing the dominant noise factors

may help because the goal is to find control factors

that interact with the noise factors. Brainstorming

(Montgomery 2005) or similar exercises that try to

capture process knowledge from a wide range of

people can be useful. If we choose the control fac-

tors poorly, the experiment will fail to meet its goal.

In most applications, a preliminary investigation

will give us a good estimate of the variation in the

output of interest with the current process settings.

We then have the freedom to select levels of the

control factors different from the current settings.

We can then compare this estimate against the

predicted variation for various combinations of the

control factors using the results of the experiment.

Select Final Design

One possible design for a desensitization experi-

ment is a so-called crossed-array design. This con-

sists of a full- or fractional-factorial design of the

control factors, called the inner array, that is crossed

with a full- or fractional-factorial design in the noise

factors, called the outer array (Montgomery 2005;

Ross 1988). Shoemaker et al. (1991) call this setup

a product array because the outer array is run for

every row in the inner array. See the gear example

design in Table 2. The total number of runs in the

crossed-array design can easily become large. In

the gear example, with five control factors and three

noise factors, even though we use a half fraction

design for the inner array, there are a total of 128

runs. Some critics of Taguchi (e.g., Miller et al.

1993; Shoemaker et al. 1991) recommend using a

combined array for a desensitization experiment

instead of a crossed array to reduce the number of

runs. See also Wu and Hamada (2000). The key is

that this design must allow estimation of all noise

by control interactions without aliasing with any

other terms likely to be significant. Note that if we

have spent the time and effort before planning the

desensitization experiment to look for and find the

dominant cause(s) we are much better off because

then the outer array only has one or a small number

of noise factors.

It is often convenient and beneficial to restrict

the randomization of the order of the runs in a

desensitization experiment. Restricted run order

randomization leads to a split-plot experiment

(Kowalski et al. 2007).

With split-plot experiments we obtain less

information about the effect of the so-called whole-

plot factors while obtaining more information about

the effect of the subplots and subplot by whole plot

interactions. Because the main goal is to identify

large noise by control interactions, arranging the

experiment as a split-plot design can be an advan-

tage. This point was discussed for several scenarios

by Box and Jones (1992) in the context of desensiti-

zation experiments. First, because noise factors are

often hard to set and change, many desensitization

experiments are split plots where noise factors are

the whole plot factors. An example is the engine

block porosity experiment in Steiner and MacKay

(2005). On the other hand, we sometimes use the

control factors to define the whole plot factors. Con-

sider the refrigerator example in Steiner and MacKay

(2005) where the noises were environmental condi-

tions that were relatively easy to change through

the use of a testing chamber. However, changes to

the control factors were difficult because each treat-

ment required a new prototype to be built. The gear

experiment described in the Introduction is another

example of a split-plot experiment where the control

factors are the whole-plot factors.

The plan for a robustness experiment, on the

other hand, is defined by the inner array design

with a number of repeats for each treatment combi-

nation. To plan a good robustness experiment and

decide on the number of repeats and how to select

them, we need to know how the output variation

(and thus dominant cause) acts over time. As dis-

cussed in stage 2, we want the repeats within each

run to exhibit the long-term output variation for that

combination of levels of the control factors. If we

use consecutive parts to define the repeats, the

dominant causes must act quickly; for example, part

to part. Otherwise, the experimental run would

need to be very long. For more guidance and exam-

ples of how to select the time span and the number

of repeats for robustness experiments, see Steiner

and MacKay (2005).

In a robustness experiment, we would like to

completely randomize the order of the runs. How-

ever, often one or more of the selected factors is

hard to change. For instance, changing a furnace

temperature may be difficult because after a change

we would need to wait for the temperature to stabi-

lize. This suggests restricting the randomization so
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that runs with the same value of the hard-to-change

factor(s) are conducted consecutively. With a

robustness experiment the split-plot structure does

not provide the benefit seen in the desensitization

experiment because we are not estimating the

control by noise factor interactions directly.

Analysis Issues

Many papers have addressed questions and

choices in the analysis of Taguchi experiments; here

we present only a short summary.

We discuss three analysis options. For two of

these options, we start by calculating the average

�yy and the standard deviation s (of the experimental

results) for each of the combination of the control

factors. The standard deviation captures the pro-

cess variation generated by the changes in the

noise factors. Taguchi (1987) suggested combining

the average and the standard deviation for each

inner array treatment into a single performance

measure logð�yy=sÞ known as the signal-to-noise

ratio (S=N; Kackar 1985; Montgomery 2005; Wu

and Hamada 2000). The form of the S=N ratio depends

on the goal of the experiment. S=N ratios have been

criticized as somewhat arbitrary (Nair 1992). Also,

Wu and Hamada (2000, p. 468) stated ‘‘Although

the S=N ratio . . . has a natural measure in some

disciplines . . . it has little or nomeaning for many other

problems . . . . It lacks a strong physical justification in

most practical problems (p. 468).’’

An alternative analysis, called location and

dispersion modeling, involves separately modeling

the average �yy and dispersion s as functions of the

control factors; see Nelder and Lee (1991) and

Engel and Huele (1996). This adds flexibility and

allows the user to compromise in optimizing the

mean and variance as he or she sees fit. Note that

when conducting the analysis based on either an

S=N ratio or the dispersion s we are looking for a

favorable interaction between the noise and control

factors indirectly.

The third and probably best option is to use

so-called response modeling (Wu and Hamada

2000). In response modeling we directly model the

effect of both the control and noise factors on the

output. With response modeling, we do not first sum-

marize the results for each combination of the control

factors but model the individual responses directly.

The first two analysis options are possible with

both desensitization and robustness experiments.

With robustness experiments, response modeling

is not normally possible because noise factors

are not manipulated in the experiment. Response

modeling is possible for a robustness experiment

if we measure the values of the noise factors

during each run (Freeny and Nair 1992). By mea-

suring the noise factors, we can also check

whether each run has roughly the same variation

in the dominant noise factors. Note that the varia-

tion seen in the noise factors in the robustness

experiment would likely be smaller than the varia-

tion we deliberately create in a desensitization

experiment. This lack of variation in the noise

factors will make detecting noise by control

interactions more difficult.

It can be argued that robustness experiments are

more flexible than desensitization experiments

because in the analysis we do not need to model

the noise by control interaction explicitly. This

allows us, in theory, to indirectly find higher order

control by noise interactions.

To illustrate the response model approach,

consider again the gear example we discussed in

the Introduction. Here, following Miller et al.

(1993), for simplicity we ignore the split-plot nature

of the conducted experiment. Analyzing the experi-

ment as a split plot will not change the estimated

effects but may alter which effects are identified as

significant. Figure 3 gives the normal probability

plot of the effects when we fit a model with all terms

up to the three-factor interactions.

FIGURE 3 Normal probability plot in the gear experiment (when

output is Y).
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The results suggest a model with eight significant

terms. Fitting the corresponding model and adding

all main effects to preserve effect hierarchy from

the two-way interactions, we get:

The largest effect comes from Factor H. This is

seen both in the normal probability plot given in

Figure 3 and the difference in the mean levels of

the output for the low and high level of H in the

individual value plot given in the top panel of

Figure 4. Neither of the other two noise factors F or

G appears to be important. This suggests that these

noise factors were not well chosen. That is, varying

F and G has not helped induce variation in distortion.

Excluding F and G from the outer array would have

simplified the experiment without substantially

reducing the efficiency. Also, recall that setting the

levels of factor G (initial gear size) was difficult

and expensive because it required extensive sorting

of parts. It would have been easy to discover that

F and G were unimportant noise factors in a

preliminary observational study.

Because H is the only important noise factor, the

goal is to find large interactions between H and one

(or more) of the control factors. The experimental

results suggest that there is only one significant noise

by control interaction (involving H), namely, DH.

This suggests that we can reduce variation in the

output by changing the level of the control factor

D. However, it is disappointing that the effect of

DH is small relative to the effect of H. We see

this effect of the DH interaction indirectly in the

(somewhat) smaller variation in the output for the

low level of D compared with the high level of D

in the bottom panel of Figure 4. Assuming that the

fitted linear model is reasonable, we would need to

move D much further than we have tried in the

experiment to substantially reduce the variation in

the output. Other constraints would not permit such

a dramatic change.

With some additional information about the noise

variation we can use the fitted model to estimate

how much we could reduce the output variation by

changing factor D. In the process, half of the gears

Estimated Effects and Coefficients for y (Coded Units)

Term Effect Coef SE Coef T P

Constant 14.336 0.3288 43.60 0.000

A �3.047 �1.523 0.3288 �4.63 0.000

B �5.297 �2.648 0.3288 �8.05 0.000

C �1.984 �0.992 0.3288 �3.02 0.003

D �0.625 �0.312 0.3288 �0.95 0.344

E 1.250 0.625 0.3288 1.90 0.060

F 0.844 0.422 0.3288 1.28 0.202

G �1.391 �0.695 0.3288 �2.11 0.037

H �14.391 �7.195 0.3288 �21.88 0.000

B�F 1.844 0.922 0.3288 2.80 0.006

C�F 2.594 1.297 0.3288 3.94 0.000

D�H �1.688 �0.844 0.3288 �2.57 0.012

F�H 1.719 0.859 0.3288 2.61 0.010

C�D�F �1.859 �0.930 0.3288 �2.83 0.006

S¼3.72021; R2¼ 84.67%; R2 (adj)¼82.92%.

Analysis of Variance for y (Coded Units)

Source DF Seq SS Adj SS Adj MS F P

Main effects 8 8,094.9 8,094.9 1,011.87 73.11 0.000

Two-way

interactions

4 509.7 509.7 127.43 9.21 0.000

Three-way

interactions

1 110.6 110.6 110.63 7.99 0.006

Residual error 114 1,577.8 1,577.8 13.84

Total 127 10,293.1

FIGURE 4 Individual value plots for gear example.
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are place in the up position (H¼ 1) and the other

half are down (H¼�1). As a result, on the coded

scale we have sd(H) equal to 0.5. Then, using the

estimated effects, if we move the control factor D

to its low level, we would reduce the output standard

deviation to 4.9 ð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:195� :844ð Þ20:52 þ 3:722

q
Þ.

Note that the residual variation is slightly too small

because we have included the non-important noise

factors F and G in the model removing their effect.

The process standard deviation from preliminary

studies is 5.1, so the predicted reduction in variation

by changing D is small.

Summary of the Qualitative

Comparison of Desensitization
and Robustness Experiments

The goal of both desensitization and robustness

experiments is to find settings of the control factors

that make the process less sensitive to variation in

the dominant noise factors. In the experiment we

want the observed output values for each treatment

combination (defined in terms of the control factors)

to capture the variation we expect to see over the

long term. Here, we summarize the qualitative

advantages=disadvantages of robustness and desen-

sitization experiments.

The major advantages of the desensitization

experiments over robustness experiments are

. Knowing the dominant cause(s) may suggest

that we can address the cause directly, thereby

avoiding the need to look for a robust solution.

. Knowing the dominant cause(s) may make it

easier to select control factors that interact with

these causes.

. Desensitization experiments allow for a more

efficient response model analysis.

. Because the noise factors are set in the experi-

ment, we can guarantee their variation within each

combination of the control factors.

The major advantages of the robustness studies

over desensitization studies are

. Less process knowledge is required—we do not

need to identify or even search for the dominant

noise factors.

. Robustness experiments are easier to run because

we do not need to hold noise factors fixed.

. The analysis of a robustness experiment is less

model dependent than for a desensitization

experiment.

QUANTITATIVE COMPARISON

OF ROBUSTNESS AND
DESENSITIZATION EXPERIMENTS

In this section we quantitatively compare robust-

ness and desensitization experiments and attempt

to quantify the benefit of knowing and controlling

the dominant cause when conducting a Taguchi

experiment.

The best way to summarize the performance of

the two types of experiments is not immediately

clear because the performance depends on the

analysis method employed. Because our focus is

primarily on comparing the robustness and desensi-

tization plans, in each case we use the best

available analysis. For the robustness experiment,

the analysis is the usual one based on the

standard deviation of the output for each treatment

combination. For the desensitization experiment,

we use the response modeling approach.

One way to compare the two types of experiments

is to look at how well each can estimate the variabil-

ity (standard deviation) of the output for any treat-

ment combination defined by the levels of the

control factors that were used in the experiment.

We consider this comparison in the following sub-

section, where, in addition, to simplify the compari-

son, we use only a single control factor and a single

noise factor. This matches the suggestion made ear-

lier about including only dominant noise factors in

desensitization experiments and the assumption that

a dominant cause exists.

Ultimately, the usefulness of a desensitization or

robustness experiment depends on the quality of

the decisions made from each experiment about

the best process settings for the control factors. In a

later subsection we consider the comparison of the

two types of experimental plans in the context of

decision making and use the gear example, dis-

cussed in the Introduction, to illustrate the superior-

ity of desensitization plans.
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Comparison Based on Precision of
the Estimate of the Output Variation

To quantify performance of the two types of

plans, we adopt model [3] reproduced below

Y ¼ b0 þ b2x þ ðb1 þ b3xÞZ þ R

and assume Z � N lz ;r
2
z

� �
and R � N lr ;r

2
r

� �
. For

the comparison, without loss of generality, because

the mean output level given x will not matter in

our comparison, we set b0¼ b2¼ 0, lr¼ lz¼ 0, and

x0¼ 0. From model [3] the output variation is

sdðY j xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1 þ b3
� �2

r2z þ r2r

q
½4�

For the comparison we can simplify further by

assuming b1¼ b3¼ 1 and rr¼ 1. These choices do

not affect the comparison of the two plans but

impact the relative importance of the dominant cause

and the levels of the control factor. With these

additional assumptions for the parameters, from [4],

Z is a dominant cause if ð1þ xÞ2r2z > 1. So in the cur-

rent process where x¼ x0¼ 0, Z is a dominant cause

if r2z > 1. The levels of x used in the desensitization

and robustness experiments then reflect the potential

to reduce process sensitivity to variation in the domi-

nant cause. Note that in estimating the performance

measure [4] we are estimating a standard deviation.

We consider how well we can estimate [4] with com-

parable robustness and desensitization experiments.

In this comparison, the desensitization experiment

consists of k replicates of the 22¼ 4 treatment experi-

ment defined by the high and low levels of the noise

and control factor. This is equivalent to a crossed

array with full-factorial designs for both the inner

and outer arrays. The levels of the control factor

are �x and the levels of the dominant cause z are

�2rz. The corresponding robustness experiment

has only two treatments given by the high and

low levels of the control factor. To make the

experimental effort comparable, the robustness

experiments use 2k repeats for each treatment.

Both experiments produce a total of 4k observations.

For the robustness experiment, we estimate the

output standard deviation directly based on the

experimental results. This means that we estimate

sd(Y j x) using the sample standard deviation of

robustness experiment results when the level of the

control factor is x. We can theoretically determine

the precision of the estimator for sd(Y j x). The

sampling distribution of the sample variance, denoted

s2, is a scaled chi-square (Abramowitz and Stegun

1972):

s2 �
r2y

n� 1
v2n�1 )

Varðs2Þ ¼
r2y

n� 1

 !2

2 ðn� 1Þ ¼
2 r4y
n� 1

;

where n is the number of observations used in the

calculation of s2. So, using a linear approximation to

the square root evaluated at the expected value,

the performance of the robustness experiment is

approximately

Prob ffi
ryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 n� 1ð Þ
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xð Þ2r2z þ 1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 2k � 1ð Þ

p ; ½5�

because in the robustness experiment we use 2k

observations (repeats) to estimate sd(Y j x) for each

level of x. From [5] we see that the performance of

the robustness experiment depends on the size of

the dominant cause, how far we move the control

factor, and the number of repeats.

For the desensitization experiment, we start with

model [3]. For a fixed x, the standard deviation of

the output, sd(Y j x), is given by Eq. [4]. To estimate

sd(Y j x), we must either know or estimate b1, b3,
rr, and rz. The first three can be estimated from

the desensitization experiment, whereas rz must be

estimated from prior knowledge. We also need rz
in the planning of the experiment to set the low

and high levels of the dominant cause z.

For the desensitization experiment we consider

two extreme cases.

1. Assume that b1, rz, and rr are known; that is,

assume that we have complete knowledge about

the dominant cause and its relationship to the out-

put from prior investigations. We need only to

estimate b3 from the desensitization experiment.

2. Assume that only rz is known so we can set the

levels of Z in the experiment. We estimate b3,
b1, and rr from the desensitization experiment.

In practice, the extent of our knowledge will

usually be between these extreme cases. If we spend
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some resources looking for a dominant cause before

conducting a Taguchi experiment, as we recom-

mend, we will have an estimate of the relationship

between the dominant cause and the output. As

suggested by Steiner and MacKay (2005), we will

likely have results from an observational study where

the dominant cause and output are measured on a

number of parts. We can estimate b1 (really

b1þ b3x0, but we assume x0¼ 0) and rr from these

data using a simple linear regression model. In the

overall analysis, we can combine these estimates

with the results of the desensitization experiment.

For case 1 we can determine the performance

of the desensitization experiment theoretically.

Assuming that rz, rr, and b1 are known and the

current value of x (i.e., x0) is equal to zero, the

standard deviation of the output at some new x-level

can be estimated with a desensitization experiment

by estimating b3 (we denote the corresponding

estimate by b̂b3). We have the estimate Var

ð bYY j xÞ ¼ ðb1 þ b̂b3xÞ2r2z þ r2r and because we use a

regression model to estimate b3 it can be shown

(Asilahajani 2008) that the variance of the estimate

is
r4r þ 2r2r ð4nl2Ar2zÞ

8n2
where A¼ 1þ b̂b3x, lA¼ E(A),

r2A ¼ VarðAÞ, and n equals the total number of

observations. Using linear approximation to square

root at the expected value, and denoting Pdesens as

the standard deviation of the estimator of stdev

(Y j x), we get

Pdesensffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4rþ2r2r ð16kl2Ar2zÞ

128k2

r �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr2z l2Aþr2Að Þ

q� �
:

For case 2, we use simulation with 10,000 trials for

each combination over the range x between 0.2 and

2.0 in steps of 0.2 and rz between 1 and 2 in steps of

0.1. These conditions cover situations where Z is a

large cause but not strictly dominant (rz¼ 0.8) to

the case where Z is a clear dominant cause. For each

run of the simulation, we fit the regression model [3]

to the desensitization experiment results and esti-

mate sd(Y j x) using expression [4] with unknown

parameters replaced by their estimated values.

In Figure 5, we compare the robustness and

desensitization experiments using the ratio Prob=

Pdesens. Because smaller performance values are bet-

ter, we see that in both plots across the whole range

of x and rz the desensitization experiment is much

more efficient than the robustness experiment

because the ratios are all much bigger than one.

Desensitization becomes more beneficial as Z

becomes a more dominant cause and when the

potential for improvement increases (i.e., as x

increases).

Comparison Based on Decisions

from the Gear Example Model

Another way to compare desensitization and

robustness experiments is based on the decisions

made regarding the best combination of control fac-

tors from the experimental results. To simulate this in

a more complex situation where there are multiple

control factors, we use the gear example described

in the Introduction. Suppose we assume that the

fitted model given in the section on analysis issues

FIGURE 5 Contours of the performance ratio Prob/Pdesens. Case

1 on left, case 2 on right.
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represents reality. That is, we assume that we can

generate data with the (true) model:

Y ¼ 14:336� 1:523xA � 2:648xB � 0:992xC � 0:312xD

þ 0:625xE þ 0:422xF � 0:695xG � 7:195xH

þ 1:297xCxF þ 0:922xBxF þ 0:859xFxH

� 0:844xDxH � 0:93xCxDxF þ R; ½6�

where R � N ð0;r2r Þ and rr¼ 3.7 as given by the

model fit in the section on analysis issues. Given

model [6], and considering xF, xG, and xH as noise

factors with variances r2F , r
2
G , and r2H , respectively,

the process variance r2y is

r2y ¼ ð�7:195� 0:844xDÞ2r2H þ ð0:422þ 1:297xC

þ 0:922xB � 0:93xCxDÞ2r2F þ ð�0:695Þ2r2G
þ ð0:859Þ2r2Fr2H þ r2r : ½7�

In the simulation study we further assume that the

three noise factors xF, xG, and xH are uncorrelated

random variables that all have distribution N(0,

0.52).

For the desensitization experiment, we include

only the dominant cause (H) and the five control fac-

tors (A, B, C, D, and E). The experiment is a 25�1

fractional-factorial design for the control array

crossed with both levels of the noise factor H. The

total number of observations is 32 (25�1� 2) times

the number of replicates.

Table 3 shows ry (i.e., square root of Eq. [7]) for all
16 combinations of factors A to E in the 25� 1

fractional-factorial design. The smallest output varia-

tion (4.9128) is obtained when we have either treat-

ment 5 or 13. So the optimal settings are

A: high or low

B: high

C: low

D: low

E: high or low

Recall that the most important control factor is D

because it is the only control factor that interacts with

the dominant cause H in model [6].

The robustness experiment is a 25�1 fractional-

factorial with the five control factors. We use the

same combinations, shown in Table 3, as in the

desensitization experiment. The total number of

observations is determined based on the number of

repeats. To make a fair comparison, for the robust-

ness experiment we use the number of repeats equal

to twice the number of replicates used in the desen-

sitization case. This way both experiments have the

same total number of observations. For example, if

there are two replicates in the desensitization case

(2� 25� 1� 2¼ 64 observations), there are four

TABLE 3 Treatment Combination Recommended for 1,000 Runs of the Simulation

Desensitization Robustness

Treatment A B C D E ry 32 obs 64 obs 128 obs 32 obs 64 obs 128 obs

1 �1 �1 �1 �1 1 5.079 135 147 135 69 78 86

2 �1 �1 �1 1 �1 5.496 21 6 1 58 47 30

3 �1 �1 1 �1 �1 4.969 96 103 124 60 85 80

4 �1 �1 1 1 1 5.479 15 5 1 54 38 36

5 �1 1 �1 �1 �1 4.913 100 124 106 67 87 89

6 �1 1 �1 1 1 5.500 18 4 0 61 53 50

7 �1 1 1 �1 1 5.209 119 118 110 71 79 91

8 �1 1 1 1 �1 5.545 16 7 2 50 44 25

9 1 �1 �1 �1 �1 5.079 96 108 130 73 70 95

10 1 �1 �1 1 1 5.496 10 4 1 49 41 33

11 1 �1 1 �1 1 4.969 92 115 131 69 86 88

12 1 �1 1 1 �1 5.479 15 7 0 64 41 40

13 1 1 �1 �1 1 4.913 130 104 141 68 85 90

14 1 1 �1 1 �1 5.500 14 7 0 67 59 50

15 1 1 1 �1 �1 5.209 107 130 117 60 69 82

16 1 1 1 1 1 5.545 16 11 1 58 36 33
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repeats in the robustness experiment (4� 25�1¼ 64

observations).

For each simulated desensitization experiment, we

fit a model relating the output (y) to the six main

effects for the control and noise factors and all five

two-way interactions between the control and noise

factors. From this fitted model we determine which

of the 16 treatment combinations used in the experi-

ment is predicted to yield the lowest output standard

deviation. For the robustness experiment we select

the treatment combination with the lowest sample

standard deviation for the output. Each experiment

and analysis was simulated 1,000 times.

We summarize the results in Tables 3–5. Table 3

shows the number of times out of the 1000 simu-

lated experiments that each treatment combination

was selected for each of the six experiments given

by desensitization and robustness experiments with

32, 64 or 128 observations. For instance, for the

robustness experiment with 64 observations, Table

3 shows that the optimal treatment combinations

#5 or #13 are selected only (87þ 85)¼172 times

out of 1000 simulation runs. From Table 3 compar-

ing the rows with factor D at the low (optimal)

level to rows with D at the high level, we see that

the desensitization experiment is much more likely

to yield settings that have small values of ry
compared with a robustness experiment. With a

desensitization experiment with 64 observations,

by contrast, the low level of factor D is identified

as preferred 94.9% of the time and the optimal

treatment combinations 5 and 13 are recommended

124þ 104¼ 228 times out of 1000.

Table 4 shows the proportion of times each con-

trol factor is set at its low or high levels. For instance,

for the robustness experiment with 64 observations,

Table 4 shows that factor D is selected at its low level

64% of the time. We see that the desensitization

experiment is much more likely than the robustness

experiment to recommend the optimal low level for

the most important control factor D. With factors B

and C that have a much smaller effect that D,

both desensitization and robustness experiments

recommend low and high levels with roughly equal

proportion. The row labelled ‘‘interpretation’’ sum-

marizes whether we are likely to recommend the

high or low level of the control factor. The label

‘‘H=L’’ suggests both levels are roughly equally

common recommendations.

Table 5 summarizes the results from Table 3

numerically by calculating the average and standard

deviation of the true ry values for the proposed

TABLE 4 Proportion of the Recommended Settings by Each Method per 1,000 Runs of the Simulation

A B C D E

Method Levels

32

obs

64

obs

128

obs

32

obs

64

obs

128

obs

32

obs

64

obs

128

obs

32

obs

64

obs

128

obs

32

obs

64

obs

128

obs

Robustness H 0.51 0.489 0.512 0.502 0.513 0.51 0.487 0.478 0.475 0.462 0.36 0.298 0.499 0.496 0.507

L 0.49 0.511 0.488 0.498 0.487 0.49 0.513 0.522 0.525 0.538 0.64 0.702 0.501 0.504 0.493

Interpretation H=L H=L H=L H=L H=L H=L H=L H=L H=L H=L H=L H=L H=L H=L H=L

Desensitization H 0.48 0.486 0.521 0.52 0.505 0.477 0.476 0.496 0.486 0.125 0.051 0.006 0.535 0.508 0.52

L 0.528 0.514 0.479 0.48 0.495 0.523 0.524 0.504 0.514 0.875 0.949 0.994 0.465 0.492 0.48

Interpretation H=L H=L H=L H=L H=L H=L H=L H=L H=L Low Low Low H=L H=L H=L

Optimum

setting

High or Low High Low Low High or Low

TABLE 5 Summarizes of the Calculated Performance Measures

Number of observations

Robustness Desensitization

ry Mean ry Standard deviation ry Mean ry Standard deviation

32 5.26 0.245 5.10 0.186

64 5.20 0.243 5.07 0.150

128 5.18 0.231 5.04 0.116
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treatment combinations. Because there are only 16

treatments to choose from and only eight unique ry
values, the distribution of the realized ry values is

discrete. Note that the best method will yield the

lowest average and the least variation in ry . The

results in Table 5 show that the desensitization

experiment has a lower ry average and thus higher

efficiency than the robustness experiment regardless

of the number of observations.

DISCUSSION AND CONCLUSIONS

We have shown qualitatively and quantified, using

some examples, the superiority of the desensitization

experiment over the robustness experiment when the

goal is to reduce variation in an existing process.

Because a desensitization experiment is only possible

with a known (and controllable for the experiment)

dominant cause, this conclusion provides further

evidence that when applying robust parameter

design to improve an existing process we should first

try to find dominant causes of the output variation.

As discussed in Steiner and MacKay (2005), a

dominant cause can be found using observational

studies and the method of elimination. Using only

engineering knowledge and tools such as cause-and-

effect diagrams to determine which noise factors to

include in the desensitization experiment is fraught

with difficulty. Including any unimportant cause

greatly increases the complexity of the Taguchi

experiment because it will require more observations

and holding an additional noise factor fixed during

the experiment.

Inclusion of an unimportant cause will not

increase the power of the experiment to find a better

way to run the process. Even more critically, failing

to include the dominant cause as one of the noise

factors relegates the experiment to failure.

Using prior information to help plan the Taguchi

experiment allows process improvement teams to

connect stages of process improvement algorithms,

such as DMAIC in Six Sigma (Breyfogle 1999)

together. This makes sense because clearly when

using DMAIC what we learn in the analysis stage

should be useful in the improve stage.

Robustness experiments have some qualitative

advantages over desensitization experiments as sum-

marized previously. However, as we have suggested

with our examples, robustness experiments are

inefficient and typically require many repeats to find

better process settings. We conclude that robustness

experiments should be considered only when we

are unable to find the dominant cause or when the

dominant cause cannot be controlled during the

experiment.
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