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To assess measurement system variation, we propose an alternative to the standard plan that uses a random
sample of parts to repeatedly measure. The new plan, called Leveraged Measurement System Assessment
is conducted in two stages. In the first stage, called the baseline, a number of parts are measured once.
In the second stage, we select a few extreme parts (based on their initial measurement in the baseline)
and remeasure each of them a number of times. We demonstrate the advantage of the leveraged over the
standard plan by comparing the bias and standard deviation of estimators of the intraclass correlation
coefficient. We also present a method to determine sample size when planning a Leveraged Measurement
System Assessment.
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1. INTRODUCTION

Good measurement systems are critical in a manufactur-
ing environment to allow control and to support process im-
provement and decision making. More generally, measurement
systems are needed in any scientific inquiry or quantitative
decision-making process. As a result, it is important to have
efficient methods to assess the properties of measurement sys-
tems.

To assess the variability of a measurement system, we repeat-
edly measure a number of parts. We adopt the common random
effects model

Yij = Pi + Eij, i = 1,2, . . . , k and j = 1,2, . . . ,n, (1)

where Pi is a random variable representing the true dimen-
sion of part i, Eij is a random variable representing the error
on the jth measurement on the ith part, n is the number of re-
peated measurements on each part, and k is the number of parts.
We assume that the part effects Pi are independent and iden-
tically distributed normal random variables with mean μ and
variance σ 2

p , the measurements errors Eij are independent and
identically distributed normal random variables with mean zero
and variance σ 2

m, and Pi and Eij are mutually independent. The
variance of Yij, called the total variation, is σ 2

t = σ 2
p + σ 2

m. By
adopting model (1), we assume that μ, σp, and σm are constant
over the time needed to conduct the measurement assessment
investigation.

With model (1), we also assume the studied measurement
system has no operator effects. This occurs with automated
measurement systems. For example, in one application piston
diameters are measured by an inline gauge with automated part
handling. Operators play no part in the operation of the gauge.
Using manufacturing jargon, in our context, σm captures mea-
surement repeatability but not reproducibility.

To quantify the contribution of the measurement system to
the total variation, we use the intraclass correlation coefficient,

ρ, defined as the ratio of the process variation over the total vari-
ation, that is, ρ = σ 2

p /σ 2
t . Note that 0 ≤ ρ ≤ 1 and the larger the

value of ρ, the smaller is the contribution of the measurement
system to the overall variation.

The intraclass coefficient is equivalent to gauge repeatability
γ = σm/σt (Automotive Industry Action Group 2002) where
smaller values are better. The commonly used cut-off values
to determine if a measurement system is acceptable are γ =
0.10 and γ = 0.30. These values correspond to ρ equal to 0.99
and 0.91, respectively.

A standard measurement assessment plan (SP) is to sample k
parts selected at random from the process and measure them n
times each for a total of N = nk measurements (Automotive In-
dustry Action Group 2002). The SP typically uses two or three
operators, each of whom measure 10 parts two or three times
for a total of 40 to 90 measurements. In the context considered
here, there is no need to use different operators. Throughout
the paper, we use a standard plan with 10 parts and 6 repeated
measurements on each part as a basis of comparison. This plan
produces the data yij, where i = 1, . . . , k and j = 1, . . . ,n. Fol-
lowing Donner and Eliasziw (1987), we estimate ρ by the sam-
ple intraclass correlation coefficient

MSA − MSW

MSA − (n − 1)MSW
, (2)

where MSA and MSW are

MSA =
k∑

i=1

n(yi· − y··)2/(k − 1),

MSW =
k∑

i=1

n∑
j=1

(yij − yi·)2/[k(n − 1)]
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and

yi· =
n∑

j=1

yij/n, y·· =
k∑

i=1

n∑
j=1

yij/nk.

In this article, we introduce a new leveraged plan (LP) where
we deliberately select extreme parts to remeasure from an initial
baseline sample. We demonstrate the advantages of the LP over
the standard plan (SP) by comparing the standard deviation and
bias of a number of estimators for ρ.

The paper is structured as follows. In the next section, we
describe the LP in more detail. In Section 3, we present four
estimates of ρ for the LP, give a numerical example, and com-
pare the properties of the four estimators for a particular LP.
In Section 4, we compare the standard and leveraged plans us-
ing the bias and standard deviation of the derived estimators. In
Section 5, we compare different designs for LPs when the total
sample size is fixed. Based on empirical evidence, we recom-
mend a specific plan for any total sample size. In Section 6, we
look at methods for assessing the assumptions required for a LP
to be effective and also briefly look at the issue of robustness.
Finally, in Section 7, we provide some discussion and possible
extensions to the LP discussed here.

2. THE LEVERAGED MEASUREMENT
ASSESSMENT PLAN

We conduct a leveraged measurement system assessment in
two stages:

Stage 1: Sample b parts at random from the process to obtain
a baseline. We denote the observed values {y10, y20, . . . ,

yb0} and the baseline average and sample variance by yb =
1
b

∑b
i=1 yi0 and s2

b = 1
b−1

∑b
i=1(yi0 − yb)

2.
Stage 2: From the baseline sample, select k parts using the

observed measured values. In particular, to improve the
estimation of ρ, sample k parts so that:

• the initial measurements are extreme relative to the
baseline average, and

• the average of the initial measurements of the se-
lected parts is close to the baseline average.

We denote the k selected parts using the set R. These k
parts are then repeatedly measured n times each to give
the additional data {yij, i ∈ R and j = 1, . . . ,n}. The total
number of measurements in the LP is N = b + nk.

For example, for a LP with k = 2, we might pick the parts
with the minimum and maximum initial measurement in the
baseline sample. In Stage 1, we must select and measure the
parts over a sufficiently long time that we get a meaningful es-
timate of σt from the baseline sample. This recommendation
matches the requirements for the SP (Automotive Industry Ac-
tion Group 2002).

We use the term leveraged plan because of the reuse of units
with extreme values. In a more general context, the term lever-
age is sometimes used by the proponents of the problem solv-
ing system initially proposed by Dorian Shainin. Units with rel-
atively large and small values of the response are compared to
identify the major causes of the variation. See Steiner, MacKay,
and Ramberg (2008) for a fuller description.

3. ESTIMATES FOR THE LEVERAGED PLAN

We present and compare four estimates of ρ. The first, here
called the ANOVA estimate, is straightforward. It is based on
(2) using the variation within the repeated measurements to es-
timate σm and the variation from the baseline to estimate σt.
The ANOVA estimate does not benefit from leveraging; in fact,
we lose one degree of freedom per part because we do not
include the baseline measurement in the calculation of MSW
in (2). The second is the maximum likelihood estimate (MLE)
that must be determined by numerical approximation. The third
estimate uses a regression approach that exploits the fact that
the conditional mean of the repeated measurements, given the
initial measurement, depends linearly on ρ. Finally, the fourth
estimate is a linear combination of the ANOVA and regression
estimates.

Note that the three alternatives to the MLE use the baseline
data only to estimate μ and σ 2

t and then use the repeated mea-
surements, conditional on the baseline data, to estimate ρ.

3.1 ANOVA Estimate

We use the variation within the repeated measurements to
get an ANOVA-like estimate of ρ. For each part i in R, the
variation within the repeated measurements

∑n
j=1(Yij − Yi·)2

is independent of Yi0 and

MSW =
∑

i∈R
∑n

j=1(yij − yi·)2

k(n − 1)
(3)

is an estimate of σ 2
m. Note that the average yi· in the above ex-

pression does not include the baseline measurements. Since the
baseline variance s2

b is an estimate of σ 2
t and ρ = σ 2

p /σ 2
t , by

rearrangement, we obtain the ANOVA estimate

ρ̂a = 1 − MSW

s2
b

. (4)

Transforming the corresponding estimator, we see that (1 −
ρ̂a)/(1 − ρ) has an F-distribution with k(n − 1) and b − 1 de-
grees of freedom and so the distribution of the ANOVA estima-
tor depends only on ρ and not the other unknown parameters μ

and σt. We have

E(ρ̂a) = 1 − (1 − ρ)
b − 1

b − 3
= ρ(

b − 1

b − 3
) − 2

b − 3
, (5)

σ 2
a = Var(ρ̂a)

= (1 − ρ)2 2(b − 1)2[k(n − 1) + (b − 1) − 2]
k(n − 1)[(b − 1) − 2]2[(b − 1) − 4] . (6)

Note that the ANOVA estimator does not require the selected
parts in R to be representative of the process. It does, however,
require that the measurement errors be representative which
might be untrue for atypical parts; see Section 6.
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3.2 Maximum Likelihood Estimate

For a single part i selected at random, the joint distribution of
the baseline measurement and the n repeated measurements is⎛⎜⎜⎝

Yi0
Yi1
...

Yin

⎞⎟⎟⎠ ∼ N

⎛⎜⎜⎝μ

⎡⎢⎢⎣
1
1
...

1

⎤⎥⎥⎦ , σ 2
t

⎡⎢⎢⎣
1 ρ . . . ρ

ρ 1
...

. . .
...

ρ . . . 1

⎤⎥⎥⎦
⎞⎟⎟⎠ . (7)

The distribution of the repeated measurements {Yi1, . . . ,Yin}
conditional on the baseline measurement Yi0 = yi0 is⎛⎜⎝ Yi1

...

Yin

∣∣∣∣∣∣∣Yi0 = yi0

⎞⎟⎠ ∼ N

⎛⎝μ + ρ(yi0 − μ)

⎡⎣1
...

1

⎤⎦ ,

� = σ 2
t

⎡⎣ 1 − ρ2 ρ(1 − ρ)
. . .

ρ(1 − ρ) 1 − ρ2

⎤⎦⎞⎠ .

(8)

The covariance matrix � has a special form which allows
us to obtain the following well-known properties (Dillon and
Goldstein 1984):

�−1 = 1

σ 2
t (1 − ρ)(1 + nρ))

×
⎡⎣1 + ρ(n − 1) −ρ

. . .

−ρ 1 + ρ(n − 1)

⎤⎦ ,

|�| = σ 2n
t (1 − ρ)n(1 + nρ).

Using the properties of �, we can write the conditional like-
lihood (conditional on y0) for the repeated measurements on a
single part. The measurements for one part are independent of
the measurements from another part; thus the conditional like-
lihood for k parts, each with n measurements, is the product of
the individual likelihoods. The conditional log-likelihood for n
repeated measurements on k parts is

lr(μ,σ 2
t , ρ|y10, . . . , yb0)

= −nk

2
logσ 2

t − nk

2
log(1 − ρ) − k

2
log(1 + nρ)

− 1

2

1

σ 2
t (1 − ρ)(1 + nρ)

×
{
(1 + nρ)k(n − 1)MSW

+ n
∑
i∈R

[yi· − μ − ρ(yi0 − μ)]2
}
,

where MSW is defined, as in the ANOVA estimate, by (3) and
the part average yi· omits the baseline measurement yi0. Assum-
ing the b parts in the baseline sample are selected at random
from the process, the marginal log-likelihood of the baseline is

l0(μ,σ 2
t ) = −b

2
logσ 2

t − 1

2σ 2
t

{(b − 1)s2
b + b(yb − μ)2}.

Thus, the (unconditional) log-likelihood for the LP is

l(μ,σ 2
t , ρ) = l0(μ,σ 2

t ) + lr(μ,σ 2
t , ρ|y10, . . . , yb0). (9)

This likelihood is appropriate regardless of how we select the
parts to be remeasured in Stage 2 of the LP; see Appendix A.
To get the MLEs of μ,σ 2

t and ρ, we maximize (9). Solutions
can be found numerically.

The asymptotic variance–covariance matrix of the maximum
likelihood estimators is the inverse of the Fisher information
matrix, given by

J(μ,σ 2
t , ρ) =

⎛⎜⎜⎝
(1−ρ)nk+b(nρ+1)

σ 2
t (nρ+1)

0

0 1
2

b+nk
σ 4

t

nE[SC]
σt(nρ+1)

− 1
2

nkρ(n+1)

σ 2
t (nρ+1)(1−ρ)

nE[SC]
σt(nρ+1)

− 1
2

nkρ(n+1)

σ 2
t (nρ+1)(1−ρ)

E[− ∂2

∂ρ2 l(μ,σ 2
t , ρ)]

⎞⎟⎟⎠ , (10)

where

E

[
− ∂2

∂ρ2
l(μ,σ 2

t , ρ)

]
= 1

2

kn2

(1 + nρ)2
+ knρ(n + 1)

(1 + nρ)(1 − ρ)2

− 1

2

kn

(1 − ρ)2
+ nE[SSC]

(1 − ρ)(1 + nρ)
,

SSC =
∑
i∈R

[
Yi0 − μ

σt

]2

, and SC =
∑
i∈R

[
Yi0 − μ

σt

]
.

We show in Appendix B that if a sampling plan is chosen
such that E[SC] = 0 and E[SSC] is large, then the asymptotic
variance of the MLE for ρ is reduced. This observation is the
reason for the Stage 2 recommendations in the definition of the
LP in Section 2. A plan with both these properties is to choose
an equal number of parts with extreme baseline measurements
on either side of the baseline average.

When using maximum likelihood, standard errors for the es-
timates can be obtained from the inverted information matrix
(see Appendix B) with the parameters replaced by their esti-
mates.

3.3 Regression Estimate

We now derive an alternative to maximum likelihood that has
a closed form using a regression model. From (8), the distrib-
ution of the average of the repeated measurements on a single
part, given the baseline measurement is

Yi·|(Yi0 = yi0) ∼ N

(
μ + ρ(yi0 − μ),σ 2

t (1 − ρ)

(
ρ + 1

n

))
.

(11)
The averages of the repeated measurements on different parts

are mutually independent. Since in (11), the mean depends on
ρ linearly and the variance is the same for each part, we can
use regression to estimate ρ. The conditional mean of Yi· also
depends on μ but we use the baseline average yb to estimate
this unknown.

The regression estimate of ρ (Montgomery, Peck, and Vining
2001) is

ρ̂r =
∑

i∈R(yi· − yb)(yi0 − yb)∑
i∈R(yi0 − yb)

2
. (12)
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If we standardize each quantity in (12), we see that the marginal
distribution of ρ̂r depends only on ρ. The distribution of ρ̂r ,
conditional on the baseline sample, is normal with mean

E[ρ̂r|y10, . . . , yb0] = ρ +
[
(μ − yb)

ŜC

ŜSC

]
(1 + ρ) (13)

and variance

Var[ρ̂r|y10, . . . , yb0] = σ 2
t (1 − ρ)(1/n + ρ)

s2
bŜSC

,

where

ŜC =
∑
i∈R

[
yi0 − yb

sb

]
and ŜSC =

∑
i∈R

[
yi0 − yb

sb

]2

(14)

are the baseline estimates of SC and SSC as defined in (10).
The estimator ρ̂r has a small bias (conditionally) because we

recommend choosing parts in Stage 2 so that ŜC ≈ 0 and ŜSC
is large. We also expect that yb will be close to μ since the
baseline sample is selected at random from the process. Un-
conditionally, ρ̂r is unbiased because Yb is independent of the
random variables corresponding to ŜC and ŜSC.

The unconditional variance of ρ̂r is

σ 2
r = Var(ρ̂r)

≈ (1 − ρ)

(
ρ + 1

n

)
E

[
σ 2

t∑
i∈R(Yi0 − Yb)2

]
(15)

because ρ̂r is approximately conditionally unbiased. We esti-
mate E[σ 2

t /(
∑

i∈R(Yi0 − Yb)
2)] from the baseline observations

with the inverse of ŜSC as given by (14). As with the MLE,
choosing parts to remeasure with extreme baseline measure-
ments with average close to the yb reduces the variance of the
regression estimator.

Note that the regression estimator uses the average but not the
variability of the repeated measurements to estimate ρ unlike
the next estimator.

3.4 Combined Estimate

An estimate which has a closed form and turns out to have
properties similar to the MLE is a combination of the two es-
timators ρ̂a and ρ̂r as described in Sections 3.1 and 3.3, re-
spectively. We can show that, given the baseline data, these two
estimators are conditionally independent. Furthermore, as seen
in (13), the estimator ρ̂r is nearly unbiased. Hence the marginal
covariance of ρ̂r and ρ̂a is close to 0. In what follows, we ignore
this covariance. The combined estimator is a linear combination
of ρ̂r and ρ̂a with weights selected to minimize the variance.

In general, if we have two unbiased independent estimators
ρ̂r and ρ̂a with known variances σ 2

a and σ 2
r , the minimum vari-

ance linear combination is

wρ̂r + (1 − w)ρ̂a = σ 2
a

σ 2
r + σ 2

a
ρ̂r + σ 2

r

σ 2
r + σ 2

a
ρ̂a. (16)

This combined estimator is approximately unbiased because it
is a weighted sum of two approximately unbiased estimators,
ρ̂a and ρ̂r . An estimating function can be created from (16) by
subtracting its expectation. Multiplying by σ 2

r + σ 2
a , we get

�c(ρ) = σ 2
a ρ̂r + σ 2

r ρ̂a − (σ 2
a + σ 2

r )ρ. (17)

To find ρ̂c, we replace ρ̂r and ρ̂a by the corresponding esti-
mates, substitute the quantities in (6) for σ 2

a and (15) for σ 2
r and

set the corresponding function to zero. We obtain the combined
estimate ρ̂c, as a root of the quadratic equation (18).(

vF − E

[
1

SSC

])
ρ2

c

+
(

E

[
1

SSC

][
ρ̂a − 1

n

]
− vF[1 + ρ̂r]

)
ρc

+
(

vFρ̂r + E

[
1

SSC

]
ρ̂a

n

)
= 0, (18)

where vF = σ 2
a /(1 − ρ)2. As with the regression estimate, we

estimate E[ 1
SSC ] from the baseline data with the inverse of ŜSC

as given by (14).
In this case, the appropriate estimate is the smaller root be-

cause the larger root is greater than one. Note that ρ̂c is not just a
simple weighted average of the two previous estimates because
the variances σ 2

r and σ 2
a depend on ρ.

From Jorgensen and Knudsen (2004), the asymptotic vari-
ance of the combined estimator is approximately

Var(ρ̂c) ≈ Var[�c(ρ)]
E
[

∂
∂ρ

�c(ρ)
]2

= σ 2
a σ 2

r

(σ 2
a + σ 2

r )
. (19)

The asymptotic variance covariance matrix (see Jorgensen
and Knudsen 2004) of μ̂, σ̂ 2

t , as estimated from the baseline,
and ρ̂c, as given by solving (18), is

Var

⎛⎝ μ̂

σ̂ 2
t

ρ̂c

⎞⎠ ≈

⎛⎜⎜⎜⎝
σ 2

t
b 0 0

0 2σ 4
t

b−1
2σ 2

t (1−ρ)

b−3
σ 2

r
σ 2

r +σ 2
a

0 2σ 2
t (1−ρ)

b−3
σ 2

r
σ 2

r +σ 2
a

σ 2
a σ 2

r
(σ 2

a +σ 2
r )

⎞⎟⎟⎟⎠ .

(20)
The variance of the combined estimator depends on ρ

through σ 2
a and σ 2

r .

3.5 Numerical Example of Various
Estimates for ρ From an LP

Steiner and Mackay (2005) present an example of a lever-
aged measurement assessment study. Although they calculate
only the ANOVA estimator, we can apply all four methods of
estimation for illustration. In the example, three parts, a large,
small, and medium-sized part, were selected from the baseline
study to be remeasured. To more closely match the suggestions
in this paper to select an equal number of extreme parts on
each side of the baseline average, we proceed assuming only
one large and one small part were selected. A baseline of 100
parts was randomly selected from the process. The baseline
data, given as a difference from nominal, are shown in Table 1.

The baseline average yb is 0.540 and baseline variance is
s2

b is 25.865. The parts chosen in Stage 2 were parts 50 and
70 (i.e., R = {50,70}), with baseline measurements 12.8 and
−12.2, respectively. These two parts were measured an addi-
tional 18 times each. Note that the average of the two baseline
measurements for the selected parts is very close to the baseline
average. Part 21 with baseline value −12.8 could have been se-
lected instead of part 70 but for reasons unknown to us, this was
not done.
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Table 1. Baseline data of 100 camshaft journal diameters

5.3 0.0 −4.1 −6.4 −5.7 7.1 −0.5 −1.7 −2.7 2.1
0.9 −1.5 −5.4 3.3 6.0 2.4 −1.2 3.4 −2.9 −6.4

−12.8 −7.3 1.5 1.9 5.6 −5.2 2.4 0.9 −2.5 −0.8
4.6 4.1 −7.8 10.3 0.0 −0.9 −3.3 5.7 8.2 1.5

−5.3 4.2 4.6 10.5 −3.4 0.5 1.4 9.1 −1.1 12.8

−2.7 −3.2 4.4 1.0 1.2 −4.0 −1.6 −2.5 −6.9 1.2
−2.2 −0.6 −5.4 −6.0 −1.1 0.1 −3.5 2.5 1.4 −12.2
−1.5 −6.0 9.7 5.2 10.4 2.2 9.2 3.6 1.8 1.7
−2.0 −0.8 −4.1 −4.5 4.2 7.8 −3.2 1.9 −0.4 0.5

4.3 2.3 6.1 5.0 4.6 8.4 6.1 −7.1 4.7 −7.4

The individual measurements for each remeasured part are
shown in Table 2 with the average and standard deviation for
the repeated measurements within each part. We see that the
measurement system is easily able to distinguish the two parts
and that the measurement variation for the two parts is roughly
the same. There is no evidence to contradict the model assump-
tions in this example. It is interesting to note (as pointed out
by an observant referee) that all of the remeasured values for
part 70 are larger than the baseline value. This suggests that
there was a large measurement error in the baseline value of
this part. This phenomenon is more likely to happen if the mea-
surement variation is relatively large compared to the process
variation.

To check the normality assumptions, we constructed
QQ-plots (not shown here) of the baseline data and the residuals
of the repeated measurements excluding the baseline measure-
ments. There is no evidence agianst the normality assumptions.
Also, the sample variances s2

50 and s2
70 are not significantly dif-

ferent.
Using (3), the ANOVA estimate is

ρ̂a = 1 − MSW

s2
b

= 1 − (s2
50 + s2

70)/2

s2
b

= 1 − (0.40997 + 0.68029)/2

25.865
= 0.97892.

The estimates of SC and SSC using the two selected parts
and the baseline summary statistics are

ŜC = −2.51 + 2.41 = −0.10 and

ŜSC = 6.275 + 5.811 = 12.086.

The maximum likelihood estimates for (μ,σ 2
t , ρ) are (0.551,

25.392,0.97809).

Using (12), the regression estimate is

ρ̂r =
∑

i∈R(yi· − yb)(yi0 − yb)∑
i∈R(yi0 − yb)

2

= 145.8 + 148.9

162.3 + 150.3
= 294.7

312.6
= 0.94267.

We need vF and the baseline estimate of SSC to determine
the coefficients of the quadratic equation (18) used for the com-
bined estimator. Using vF = Var(F34,99) = 0.0845, the com-
bined estimate of ρ is the smaller root of the quadratic equation

0.001755011ρ2
c − 0.0877455ρc + 0.08414984 = 0.

The two roots of this equation are 0.97816 and 49.019 so we
have ρ̂c = 0.97816. Table 3 summarizes the four estimates and
their corresponding standard errors. Since ρ appears to be large
for this measurement system, there is little difference in the es-
timates and their standard errors with the exception of the re-
gression estimate which has much higher standard error.

To create confidence intervals using an estimator with a
skewed distribution, it is common to work on a transformed
scale. Fisher’s z transformation performs well here. We let

θ = 1

2
log

1 + ρ

1 − ρ
,

∂θ

∂ρ
= 1

1 − ρ2
,

(21)

θ̂ = 1

2
log

1 + ρ̂

1 − ρ̂

and then

Var(θ̂ ) ≈ Var(ρ̂c)

[
∂θ

∂ρ

]2

. (22)

To create a confidence interval for ρ, we first create a confi-
dence interval for θ and then transform the limits. We illustrate
the calculations using the combined estimate. The transformed

Table 2. Example of a Stage 2 sample with 2 extreme parts repeatedly measured 18 times each

Part 50 Part 70
y50 0 = 12.8 y70 0 = −12.2

10.9 13.2 12.8 12.6 12.7 14.1 −10.3 −11.1 −10.0 −12.2 −11.0 −11.1
12.9 13.1 12.0 13.3 12.6 13.4 −10.9 −10.0 −10.6 −11.4 −11.5 −11.1
12.0 12.9 11.7 11.8 12.2 14.1 −11.4 −10.7 −10.3 −11.4 −9.8 −11.5

y50· = 12.7 y70· = −10.9
s2
50 = 0.68029 s2

70 = 0.40997
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Table 3. Estimates of ρ for the camshaft journal diameters example

Standard
Estimate error

ρ̂a 0.97892 0.00613
ρ̂r 0.94267 0.06881
ρ̂c 0.97816 0.00628
ρ̂MLE 0.97809 0.00597

estimate, using (21) is 1
2 log( 1+0.97816

1−0.97816 ) = 2.2531. The stan-
dard error of this estimate is given in (22), using the stan-
dard error of the combined estimate (found in Table 3), is

0.00628
(1−0.978162)

= 0.14535. A 95% confidence interval for θ is
2.25 ± 1.96(0.145) = (1.968,2.538) and the approximate 95%
confidence interval in terms of ρ is (0.962,0.988).

3.6 Comparison of Estimates of ρ in the LP

We consider a LP with b = 30, k = 6, and n = 5 because this
is the plan that we will recommend in Section 5 when the total
number of measurements is 60. For Stage 2, we chose the six
parts which have the three largest and three smallest measure-
ments from the baseline of 30 parts. For the simulation, we did
not try to match the average of the selected parts with the base-
line average. Figure 1 shows the bias and standard deviation for
the ANOVA estimator (ρ̂a), the MLE, the regression estimator
(ρ̂r), and the combined estimator (ρ̂c). The results of the simu-
lation are based on 10,000 samples for each of 23 values of ρ

spread over the interval (0.01, 0.99) with higher density where
the bias and standard deviation are changing rapidly. We used
the same set of values for ρ in all simulations.

The regression and ANOVA estimators are efficient, rela-
tive to the MLE, for different values of ρ which explains why
the combined and the MLE estimators perform similarly when
ρ ≥ 0.3. Since the typical situation for a measurement system
has ρ larger than 0.5, we can use the combined estimate with-
out loss of efficiency. We see similar results for leveraged plans
with other values of b, k, and n.

4. LEVERAGED VERSUS STANDARD PLANS

To demonstrate the value of leveraging, we again resort to
simulation. We compare the following two plans, each with a
total of 60 measurements:

• SP with k = 10 and n = 6 (a commonly used plan in prac-
tice)

• LP with b = 30, k = 6, and n = 5 (as recommended in
Section 5).

We use maximum likelihood estimation for both plans to make
the comparisons fair. We quantify the difference between the
plans using bias and standard deviation calculated from 10,000
simulations at 23 values of ρ spread over the interval (0.01,
0.99). We see from Figure 2 that the LP is substantially better
than the SP with smaller standard deviation for all values of ρ

and less bias when ρ ≥ 0.4.
We can also compare the LP and SP by looking at the total

number of measurements required to give a desired precision
in the estimation of ρ. Figure 3 shows the total sample size re-
quired for a LP to have the same precision (standard deviation)
as the SP (k = 10,n = 6) for different values of ρ. In Figure 3,
the selected LP corresponds to the suggested plan from Sec-
tion 5. For example, at ρ = 0.91, the SP has a standard deviation
of 0.060 (see Figure 2). The LP with the same standard devia-
tion for estimating ρ has a total sample size of 34, where k = 3,
n = 5, and b = 19. We see similar results for other choices of n
and k in the SP.

We conclude from the comparisons that the two-stage lever-
aged plan provides a substantial benefit over the standard plan.

5. LEVERAGED PLAN DESIGN

In this section, we show how to design a LP (i.e., choose val-
ues for b, k, and n) when the total number of measurements is N
and the precision desired for the estimate of ρ using the com-
bined estimator are specified. Here k corresponds to the parts
with the most extreme baseline values relative to the baseline
average. As with most sample size calculations, we must also
specify a value of ρ to select the plan. We consider two spe-

Figure 1. Comparison of the bias and standard deviation for estimators of ρ in a LP.
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Figure 2. Comparison of standard deviation and bias for a leveraged and standard plan.

cific values of ρ, namely 0.80 and 0.91. The value ρ = 0.91
corresponds to the minimum acceptable value as specified in
Automotive Industry Action Group (2002). We also include
ρ = 0.80 to show how the standard deviation of ρ̂c behaves with
a poor measurement system.

When calculating the asymptotic variance (19) for the com-
bined estimator, we need to replace 1

ŜSC
by its expected value

because σ 2
r , as shown in (15), depends on E[ 1

SSC ]. This quan-
tity corresponds to the sum of the standardized squares of the
k chosen observations from the baseline. In an LP, we choose
parts to be remeasured based on their extreme baseline values
which correspond to the k/2 lowest and k/2 highest observed
values in the baseline. For odd values of k, we chose the extra
part with baseline value to be larger than the baseline average.
This implies these extreme baseline values can be represented
as order statistics from the standard normal distribution. We can
write for k even,

E

[
1

SSC

]
= E

(
1

Z2[1:b] + · · · + Z2[k/2:b] + Z2[b−k/2+1:b] + · · · + Z2[b:b]

)
,

(23)

where Z[i:b] is the ith order statistic from a sample of b stan-
dard normal random variables. We estimate (23) by simulating
10,000 samples of b observations.

To start, we consider N = 60. In Table 4, we give the approx-
imate standard deviation, as given by (19), of the combined es-
timator for ρ for the five top, middle, and bottom LP plans (out
of approximately 200 choices). The standard deviation for each
design was calculated using (19). These results are very close to
those obtained through simulation. Plans with higher standard
deviations tend to have a low number of observations allocated
to the baseline. The designs with the lowest standard deviation
have b � nk, that is, b � N/2.

In Table 5, we show the plans corresponding to the lowest
stdev(ρ̂c) for different values of N = b+nk when ρ equals 0.80
and 0.91. We see that as ρ increases, the optimal value of k
decreases somewhat. The differences in performance among the
plans with the same N is small, but notice that the baseline size
b is close to N/2 for all the best plans. Using this empirical
evidence, we suggest using b � N/2, n � 5 and then k � N/10.
This plan is in every set of the top five in Table 5. Since the LP
design parameters must be integers, given a total sample size N,
we recommend the plan with k equal to the greatest integer less
than or equal to N/10, n = 5, and b = N − 5k.

In Table 6, assuming that we use the recommended plan, we
give the value of N required to achieve a specified standard er-
ror of the transformed estimator (21) when given a value of ρ.

Figure 3. Sample size requirements for a leveraged plan with the same standard deviation as the standard plan.
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Table 4. Estimation precision for ρ for a variety of LPs for b + nk = 60

ρ = 0.80 ρ = 0.91

Baseline # of # meas. Baseline # of # meas.
size parts per part size parts per part

b k n stdev(ρ̂c) b k n stdev(ρ̂c)

Top 5 plans 32 7 4 0.0684 32 4 7 0.0350
30 6 5 0.0688 33 3 9 0.0351
33 9 3 0.0688 30 5 6 0.0351
30 10 3 0.0689 30 6 5 0.0352
35 5 5 0.0690 30 3 10 0.0352

Middle 5 plans 18 14 3 0.0785 38 11 2 0.0394
42 1 18 0.0785 45 3 5 0.0396
22 2 19 0.0788 45 1 15 0.0397
25 1 35 0.0789 21 1 39 0.0401
18 7 6 0.0792 20 2 20 0.0401

Bottom 5 plans 7 1 53 0.1766 6 3 18 0.1017
6 2 27 0.1831 6 2 27 0.1058
5 5 11 0.1870 6 1 54 0.1138
6 1 54 0.2053 5 5 11 0.1203
5 1 55 0.2475 5 1 55 0.1496

Table 5. The five plans with the lowest stdev(ρ̂c) for different values of N = b + nk

ρ = 0.80 ρ = 0.91

Baseline # of # meas. Baseline # of # meas.
Total size parts per part Total size parts per part

N b k n stdev(ρ̂c) N b k n stdev(ρ̂c)

30 18 3 4 0.1065 30 18 2 6 0.0552
30 18 4 3 0.1068 30 16 2 7 0.0555
30 15 5 3 0.1076 30 18 3 4 0.0556
30 18 2 6 0.1078 30 18 1 12 0.0557
30 15 3 5 0.1081 30 17 1 13 0.0558

50 26 6 4 0.0766 50 26 4 6 0.0393
50 26 8 3 0.0769 50 26 3 8 0.0393
50 25 5 5 0.0770 50 29 3 7 0.0393
50 30 5 4 0.0771 50 28 2 11 0.0394
50 29 7 3 0.0771 50 25 5 5 0.0395

75 39 9 4 0.0599 75 40 5 7 0.0306
75 40 7 5 0.0601 75 39 6 6 0.0306
75 43 8 4 0.0602 75 39 4 9 0.0307
75 39 12 3 0.0603 75 40 7 5 0.0307
75 35 10 4 0.0603 75 43 4 8 0.0308

100 52 12 4 0.0507 100 51 7 7 0.0259
100 48 13 4 0.0509 100 52 6 8 0.0259
100 50 10 5 0.0509 100 52 8 6 0.0259
100 56 11 4 0.0509 100 50 10 5 0.0260
100 55 9 5 0.0510 100 50 5 10 0.0260

125 65 15 4 0.0447 125 62 9 7 0.0228
125 61 16 4 0.0448 125 65 10 6 0.0229
125 65 12 5 0.0448 125 61 8 8 0.0229
125 69 14 4 0.0449 125 62 7 9 0.0229
125 60 13 5 0.0449 125 65 6 10 0.0229

200 100 25 4 0.0346 200 102 14 7 0.0177
200 104 24 4 0.0347 200 98 17 6 0.0177
200 100 20 5 0.0347 200 95 15 7 0.0177
200 96 26 4 0.0347 200 96 13 8 0.0177
200 105 19 5 0.0347 200 104 12 8 0.0177
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Table 6. Values of N for estimating ρ with a specified standard
deviation for the recommended plan

Assumed value of ρ

stdev(θ̂) 0.2 0.4 0.6 0.8 0.91 0.99

0.25 22 27 32 39 44 49
0.20 31 38 45 55 62 69
0.15 48 60 73 89 101 113

0.14 54 68 82 101 115 127
0.13 62 77 94 115 131 146
0.12 71 89 109 133 152 168
0.11 83 105 128 157 178 198
0.10 98 125 153 188 213 236

0.09 120 154 188 231 261 289
0.08 151 194 238 292 329 362
0.07 197 256 314 383 429 469
0.06 273 356 436 528 586 633
0.05 409 538 657 780 852 908

For example, suppose historical data suggests ρ ≈ 0.91 and we
want to estimate ρ with a standard deviation of at most 0.025.
Then from (22), we have stdev(θ̂ ) ≈ stdev(ρ̂c)

1
1−ρ2 . Thus, we

require the standard deviation on the transformed scale to be
0.025

1−0.912 ≈ 0.145. Now in Table 6, we look down the column

with ρ = 0.91 and stdev(θ̂) = 0.15 to get the total sample size
of 101. Using the suggested plan, we require 51 parts for the
baseline study. Then, from the baseline, we select k = 10 ex-
treme parts, five on each side of the average, to repeatedly mea-
sure them n = 5 times each.

6. MODEL ASSUMPTIONS AND CONSIDERATIONS

To use an LP, we recommend selecting a number of extreme
parts in Stage 2. Questions then arise about the sensitivity of the
LP (relative to a SP) to the model assumptions and to methods
for detecting departures from the assumed model.

A key assumption of model (1) is that the properties of the
measurement system are independent of those of the underly-
ing process. This assumption is sometimes called linearity of
the measurement system (Automotive Industry Action Group
2002). In particular, we are assuming that the bias (if any) and
the standard deviation σm do not depend on the part size P.
Many measurement systems are nonlinear in that σm increases
as the part size increases.

If the bias is constant across part size, this bias gets subsumed
into the process mean and has no effect on the estimation of
ρ for either a LP or SP. If the bias varies across part size so
that, given Pi = pi, the mean of Eij in (1) depends on pi, then
we can rewrite the model so that the part effect is redefined
to include this bias. With either plan, we can estimate ρ but
its value is inflated because the varying bias is included in the
process variation. Neither the SP or LP can detect varying bias.

If the measurement variability is a function of part size, then,
with either plan, the meaning of ρ is not clear and we are unsure
what it is we are estimating. Since we repeatedly measure parts
a number of times with either a SP or an LP, we have some
power to detect if σm is varying over part size. With a LP, we
typically have fewer repeated measurements. However, if the

measurement variability is increasing with part size, by using
extreme parts we have a greater chance to detect the difference.
It is unclear which plan has the advantage to detect this type of
nonlinearity.

For a LP, we can check the normality assumption for the
baseline measurements using a QQ plot. We can also construct
a QQ plot for the residuals of the repeated measurements, ig-
noring the baseline measurement, to check the normality of the
measurement errors. In practice, if an outlier is observed in the
baseline measurements, we do not recommend the use of the
corresponding part in the second stage. Such an outlier may
be due to either the process or the measurement system. We
would advise a separate study of this part, because, if the ex-
treme value is due to the measurement system, finding such an
outlier in a small baseline study suggests that there may be a
larger problem with the measurement system.

A referee raised the issue of robustness of the LP to depar-
tures from normality to underlying distributions with heavier
tails. One might expect problems because of the use of parts
with extreme baseline measurements. To investigate this issue,
we conducted a small simulation with four cases: both the part
and measurement error distribution are normal, the part distrib-
ution is t5 and the measurement error distribution is normal, the
part distribution is normal and the measurement error distribu-
tion is t5, and both the part and measurement error distributions
are t5. From the simulation, we found that changing the part
or measurement error distribution has surprisingly little effect
other than a small increase in the standard deviation for all es-
timators and a change in the bias of the ANOVA estimate.

In summary, we can assess the assumptions of model (1) as
easily as for the LP as for the SP. Departures from the model
affect both plans, but there is no evidence, based on a cursory
study, that the LP has greater sensitivity to these departures than
does the SP.

7. DISCUSSION AND SUMMARY

For the purpose of this paper, we assume the total variation σt

and the process mean μ are unknown but interest lies in esti-
mating ρ. This assumption is reasonable for a new measure-
ment system or for an existing measurement system where we
do not use prior information and matches common practice. In
Browne, Mackay, and Steiner (2009), we demonstrate the ad-
vantages of leveraging for the routine assessment of a measure-
ment system currently used for 100% inspection where we can
assume μ and σt are known so that σm is the only remaining
unknown. For leveraging to be effective in this case, we must
have a supply of premeasured parts.

There are widely used performance measures other than ρ

such as the PT ratio, that is, σm/tolerance, that depend only on
σm so there is no need to estimate μ and σt. If our assump-
tions are correct, the best plan for estimating σm is to repeat-
edly measure any single part. In this case leveraging does not
help. However, if a supply of premeasured parts is available (ef-
fectively a baseline sample), then selecting the part with initial
measurement far from the average increases the efficiency of
estimation.

One extension to the proposed LP is to consider making a dif-
ferent number of measurements on the selected extreme parts.
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We can show that by repeatedly measuring the more extreme
parts more often that we can increase efficiency. The gain from
this effort is marginal compared to the increased complexity of
the plan.

Leveraging can be applied to other variance component prob-
lems in which one source of variation can be held fixed (e.g.,
the process) and the other can be varied (e.g., the measurement
system). One example is an assembly–disassembly experiment
(see Steiner and Mackay 2005, sec. 10.4) where we have an as-
sembled product with several components. The goal is to deter-
mine which is the greater source of output variation, the com-
ponents or the assembly operation. We select k = 2 products
for the study. Each product is disassembled, reassembled, and
then remeasured. These three steps are repeated several times.
Performing the experiment in this way ensures the variation
from the components is held fixed while the assembly contri-
bution varies in each run. We use leveraging by selecting the
two products for the experiment to have extreme and opposite
performance when initially measured. To make this selection,
we need a large number of previously measured products.

In summary, we present a new two-stage plan that uses lever-
aging to assess the intraclass correlation coefficient ρ of a mea-
surement system. We define leverage to be the purposeful selec-
tion of parts with extreme baseline measured values. We show
that a LP with the same number of total measurements is more
efficient than the SP in which the parts to be remeasured are
sampled randomly from the process. In terms of planning, we
recommend a LP that uses about half the measurement effort
to generate the baseline sample in Stage 1. This sample must
be representative of the process to get reasonable estimates of
the overall process mean and standard deviation. In Stage 2, we
select k extreme parts from the baseline sample so that the aver-
age of their baseline measurements is close to the baseline av-
erage. We choose k sufficiently small so that we have resources
to measure each of these parts n = 5 additional times.
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APPENDIX A: CONDITIONAL DISTRIBUTION

The conditional distribution given a baseline measurement
does not depend on the rank of the baseline measurement from
a sample.

Theorem 1. If Yij = Pi + Eij where Pi ∼ N(0, σ 2
p ) and Eij ∼

N(0, σ 2
m) (i = 1,2, . . . ,b and j = 0,1,2, . . . ,n) then if we sam-

ple {Y10, . . . ,Yb0} and order them such that {Y(1)0 ≤ · · · ≤ Y(b)0}
then the conditional distribution Y(i)1, . . . ,Y(i)n|Y(i)0 is given
in (8).

Proof. The distribution of {Yi0,Yi1, . . . ,Yin} is multivariate
normal as given in (7).

From the properties of the multivariate normal distribution
(Dillon and Goldstein 1984) we have that Yi1, . . . ,Yin|Yi0 = yi0
is given by (8).

Rewriting the joint density of {Y10,Yi1, . . . ,Y1n,Y20, . . . ,

Y2n, . . . ,Yb0, . . . ,Ybn} we get

h(y10, . . . , ybn)

=
b∏

i=1

f (yi0, yi1, . . . , yin)

which the distribution defined in (7)

=
b∏

k=1

f (yk1, . . . , ykn|yk0)f (yk0)

which the distribution defined in (8)

=
b∏

k=1

f (yk1, . . . , ykn|yk0)

b∏
k=1

f (yk0)

do a change of variables such that

y(1)0 ≤ y(2)0 ≤ · · · ≤ y(b)0

=
[

b∏
k=1

f (.yk1, . . . , ykn|yk0)

]
n!

b∏
j=1

f
(
y(j)0

)
integrate all ykl where k �= i

= f (yi1, . . . , yin|yi0)
n!

(i − 1)!(n − i)!
× [

F
(
y(i)0

)]i−1[1 − F
(
y(i)0

)]n−i
f
(
y(i)0

)
= f (yi1, . . . , yin|yi0)f

(
y(i)0

)
.

We can see that this is the joint distribution of {Y(i)0,Y(i)1 . . . ,

Y(i)n}. Thus, the conditional distribution of Y(i)1, . . . ,Y(i)n|Y(i)0
is (8).

APPENDIX B: FISHER INFORMATION

To show that SC = 0 and SSC 	 0 reduces the asymptotic
variance of the MLE, let

J(μ,σ 2
t , ρ) =

( x 0 t
0 y v
t v z

)
,

where x, y, z ≥ 0. Using the principal minors, the determinant
and inverse of J are

det(J) = x

∣∣∣∣ y v
v z

∣∣∣∣ − 0 + t

∣∣∣∣0 t
y v

∣∣∣∣ = x(yz − v2) − t2y,

J−1 = 1

det(J)

( yz − v2 vt −yt
vt xz − t2 −xv

−yt −xv xy

)
.

This means the asymptotic variance of maximum likelihood es-
timator of ρ is

Asvar(ρ̂) = xy

x(yz − v2) − t2y
= 1

z − v2/y − t2/x
.
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Ideally, Asvar(ρ̂) is close to zero. From (10) we see that se-
lecting parts to repeatedly remeasured affects t and z.
Asvar(ρ̂) is reduced when z is large and t = 0. Since, x, y, z ≥ 0,
we can reduce Asvar(ρ̂) by decreasing v2 or t2. We cannot
change v, but we can set t = 0 by selecting parts with baseline
measurements such that E[SC] = 0. If we choose parts with
large and small extreme measurements we can get E[SC] = 0,
which means t = 0 and E[SSC] is large which increases z.

[Received December 2007. Revised January 2009.]
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