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The standard plan for the assessment of the variation due to a measurement system involves a number

of operators repeatedly measuring a number of parts in a balanced design. In this article, we consider

the performance of two types of (unbalanced) assessment plans. In each type, we use a standard plan

augmented with a second component. In type A augmentation, each operator measures a different set

of parts once each. In type B augmentation, each operator measures the same set of parts once each.

The goal of the paper is to identify good augmented plans for estimating the gauge repeatability and

reproducibility (GR&R), a ratio that compares the contribution of the measurement system to the overall

process variation. We show that, if there are three or more operators or if we include the possibility of

part-by-operator interaction, then use of an appropriate augmented plan can produce substantial gains

in efficiency for estimating GR&R compared with the best standard plan with the same total number of

measurements.
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Introduction

I
N MANY manufacturing processes, parts will be

measured to ensure that certain specifications are
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met. However, these measurements may be mislead-
ing if the measurement system (the devices, people,
and protocol used to measure a part) is itself not ad-
equate. Accordingly, many quality systems require
the periodic assessment of critical measurement sys-
tems used to qualify parts or to make decisions about
process control.

Here we deal with the assessment of a nondestruc-
tive measurement system that determines a single
continuous characteristic or dimension. In assessing
such a system with r operators, it is standard prac-
tice to randomly sample k parts from the current
process and have each of the r operators measure
each part n times for a total of N = krn measure-
ments. We call this a standard plan (SP), denoted
by SP(k, n). Common choices suggested by the forms
in AIAG (2003, pp. 216–217) are k ≤ 10; r = 2, 3;
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n = 2, 3 so that 40 ≤ N ≤ 90. In our experience,
most measurement assessment studies in industry
follow these guidelines closely. In this article, we look
carefully at the standard plan and suggest a different
allocation of the total number of measurements. We
also consider augmented (unbalanced) plans in which
some parts are only measured once by an operator.

There has recently been considerable activity in
the development of different study plans and the
corresponding analyses for measurement system as-
sessments in a wide variety of situations. De Mast
et al. (2010) look at ordinal measurement systems.
Van Wieringen and De Mast (2008) and Danila et
al. (2010) consider the assessment of binary measure-
ment systems. Van Der Muelen et al. (2009) examine
the assessment of a destructive measurement system.
Browne et al. (2009b, 2010) look at the use of two-
stage plans for assessing gauge repeatability & repro-
ducibility (GR&R) where parts for the second stage
(a standard plan) are selected based on an initial
measurement.

For a standard plan, we use the following model
to specify the attributes of interest in the measure-
ment system and to analyze the data collected for
the assessment:

Yijl = Pi + μj + POij + Mijl (1)

where i = 1, 2, . . . , k (parts), j = 1, 2, . . . , r (oper-
ators), l = 1, 2, . . . , n (repeats), Yijl is a random
variable representing the observed response for the
repeated measurement l by operator j on part i, Pi

is a random variable representing the variation of
the true dimension of part i, Mijl is a random vari-
able that represents the measurement error when the
same operator repeatedly measures the same part
(i.e., measurement repeatability), and μj represents
the effect of operator j. We also include the random
variable POij to allow the operator effect to change
from part to part, i.e., to allow for interaction be-
tween the operator and parts. We make the addi-
tional distributional assumptions that Pi ∼ N(0, σ2

p),
POij ∼ N(0, σ2

po), Mijl ∼ N(0, σ2
m) and that all of

these random variables are independent.

Many authors treat the operator effects as ran-
dom. That is, they suppose the μj ’s are a sample
from a normal distribution. This assumption makes
sense when there is a large number of operators and
only a sample is available for inclusion in the assess-
ment. In this instance, efficient plans require a large
number of operators who may not be available in
most manufacturing settings. Here we consider only

the fixed-effects case when a small number of opera-
tors are part of the measurement system and are all
included in the assessment study. Because the true
part value is a random effect, we adopt the tradi-
tional approach of describing the possible part-by-
operator interaction using a random effect. The in-
teraction is quantified parsimoniously by the single
parameter σpo. Burdick et al. (2005) discuss the issue
of fixed versus random operator effects and provide
an analysis for both cases. They also provide a large
number of references.

We define

σ2
o =

r∑
j=1

(μj − μ̄)2

r

as in Burdick et al. (2005, p. 83). Note that σ2
o

quantifies the measurement variation due to the rela-
tive biases of each operator (i.e., measurement repro-
ducibility) but is not a variance in the usual sense.
Similarly, we define and interpret the total variation
σ2

t = σ2
p + σ2

o + σ2
po + σ2

m. If the system is auto-
mated with no operator effects or has a single opera-
tor (r = 1), we have σ2

o = 0 and we cannot estimate
σ2

po separately from σ2
m, so we also set σ2

po = 0 in this
case. We also separately consider the case when there
is no part-by-operator interaction by setting σ2

po = 0.

A common metric for assessing a measurement
system compares the variation due to the measure-
ment system (repeatability and/or reproducibility)
to the overall variation due to the process (i.e., due
to differences in the true dimensions and the mea-
surement system). We define the gauge repeatability
and reproducibility (GR&R) (AIAG, 2003) as

γ =

√
σ2

o + σ2
po + σ2

m

σ2
t

. (2)

According to AIAG (2003, p. 77), a measurement
system is deemed to be acceptable if γ is less than
0.1, unacceptable if γ is greater than 0.3, and is in
need of improvement if 0.1 ≤ γ ≤ 0.3. If the estimate
of γ is large, we can examine the estimates of σo, σpo,
and σm separately to identify the source of the large
measurement-system variation.

To estimate γ, we need a plan that provides an
estimate of the underlying process variation σp. Al-
ternate metrics, such as the precision to tolerance
(PT) ratio, depend only on the measurement-system
variation

√
σ2

o + σ2
po + σ2

m and do not require an es-
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timate of σp. The optimal design of an assessment
study to estimate the PT ratio and other such met-
rics will be different from what we propose. In other
situations, the goal may be to estimate the individual
variance components. This change of goal will lead to
different assessment plans. In this paper, we focus on
finding good plans for estimating γ while preserving
some information about the separate variance com-
ponents.

Other authors have compared balanced plans in
the context of measurement system-assessment. If
the measurement system is automated or has a single
operator, Shainin and others (Shainin (1992), Traver
(1995)) recommend an Isoplot® study, where k = 30
parts are selected and each is measured twice, i.e.,
n = 2. The Shainin plan provides better balance be-
tween the number of degrees of freedom available for
estimating the measurement and process variation,
and, as we shall see, is the optimal SP for estimat-
ing γ in this case. Walter et al. (1998) look at the
optimal standard plan for estimating the interclass
correlation using power calculations. They consider
only plans with random operator effects that are sub-
sumed into the repeatability component σm. Varde-
man and Van Valkenberg (1999) look at the design
of standard plans for N fixed with a flexible crite-
rion that depends on which parameters are of most
importance. They point out, somewhat facetiously,
that if the goal is to estimate only the numerator of
γ2 (i.e., the total variance attributable to the mea-
surement system), as is required for assessment cri-
teria like the PT ratio, then it is best to use a single
part. They also note that, if operator effects are ran-
dom, then the usual standard plan with r = 2 or
3 cannot estimate σ2

o with any usable precision. We
can add the same comment about estimating σ2

p with
relatively few parts (i.e., 10), as is typical in practice.
The reference manual of the AIAG (2003) on page 99
notes that their suggested number of appraisers, tri-
als, and parts “represents the optimal conditions for
conducting the study”. We shall see that this state-
ment is far from the truth if we use a criterion based
on the precision of the estimate for γ.

As noted by a referee, there is often available in-
formation from process records that can be incor-
porated into the analysis. For example, the GR&R
analysis in MinitabTM (2007) allows the substitution
of an available estimate of the total variation. Browne
et al. (2009a) and Danila et al. (2010), in the binary
situation, demonstrate the considerable value of this
extra information. In the current context, with fixed

operator effects, we may have additional process in-
formation by operator, i.e., estimates of μj for each

operator (and hence σo) and
√

σ2
p + σ2

po + σ2
m. The

presence of this information will change the recom-
mended plans described below. We do not pursue this
issue further here.

In this paper, we compare standard plans with two
types of augmented plans in which not all parts are
measured the same number of times. In all cases, the
number of operators r is fixed. The augmented plans
have two components. One component is a standard
plan using k parts with n repeated measurements
by each operator. There are two possibilities for the
other component

Type A: Randomly sample kA parts (different from
those selected in the SP component) where
kA is a multiple of r. Each operator mea-
sures kA/r different parts once. We call this
an A plan, denoted by A(k, n, kA).

Type B: Randomly sample kB parts (different from
those selected in the SP component). Each
operator measures each of these parts
once. We call this a B plan, denoted by
B(k, n, kB).

Plan A(k, n, kA) has a total of N = krn+kA mea-
surements using k +kA parts. Plan B(k, n, kB) has a
total of N = krn + rkB = r(kn + kB) measurements
using k+kB parts. If we set kA or kB to zero, the cor-
responding augmented plan is an SP. Note that the
second component of plan B corresponds to an SP
with n = 1. The two components of an augmented
plan can be conducted simultaneously or in any or-
der. Within each component, every part is measured
the same number of times.

The goal of this work is to identify augmented
and standard plans that efficiently estimate γ when
N , the total number of measurements available, is
fixed. We measure efficiency of any augmented plan
at a particular set of parameter values by comparing
the asymptotic standard deviations (not variance) of
the maximum likelihood estimates of γ from the aug-
mented plan relative to the best SP. Here “best”
means the standard plan with the smallest asymp-
totic standard deviation at the given parameter val-
ues. We search for augmented plans that have effi-
ciency greater than 1 over a whole range of values
for the unknown parameters.

If we set n = 1 in an SP or in the SP component
of either plan A or B, then no part is measured more
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than once by any operator. Looking at the model
(1), we see that, in this case, σpo and σm are not
separately identifiable or estimable but σ2

po+σ2
m and,

hence, γ can be estimated. Also, any plan B is now
an SP with each of the r operators measuring k +kB

parts. If we suspect that there is part-by-operator
interaction that we want to identify separately, then
we include only plans with n > 1 in the comparisons.

Here is the outline of the paper. In the next sec-
tion, we derive the likelihood function and the Fisher
information of the standard and augmented plans.
Then we use the marginal asymptotic standard de-
viation of γ to rank various possible plans. We con-
sider the special cases when there is no part by op-
erator interaction (i.e., σ2

po = 0) and when there are
no operator effects (r = 1) separately. In each case,
we recommend specific plans and, when appropriate,
calculate the efficiency of the recommended plans rel-
ative to the best standard plan. Because our choice is
based on an asymptotic criterion, we also check the
performance of the recommended plans using simula-
tion. We provide access to software that a reader can
use to evaluate other plans with N and r fixed. We
also provide MATLAB® (2008) code for the analysis
of data from an augmented plan based on maximum
likelihood estimation. A brief discussion and sum-
mary follows.

Likelihood, Fisher Information, and
Asymptotic Standard Deviations

We rank standard and augmented plans using the
asymptotic precision as given by the inverse of the
Fisher information matrix. We focus on estimation
of γ with the parameters σo, σpo, and σm considered
secondary. With other goals, different plans would be
recommended. To derive the information matrix, we
need the likelihood.

Following the derivation in the Appendix and de-
noting the observed data yijl i = 1, 2, . . . , k, j =
1, 2, . . . , r and l = 1, 2, . . . , n, the log-likelihood con-
tribution from a standard plan or the SP component
of an augmented plan is

l1(�μ, σ2
p, σ2

po, σ
2
m)

= −1
2

⎧⎨
⎩b1

k∑
i=1

r∑
j=1

n∑
l=1

(yijl − μj)2

+ b2

k∑
i=1

r∑
j=1

[
n∑

l=1

(yijl − μj)

]2

+ b3

k∑
i=1

⎡
⎣ r∑

j=1

n∑
l=1

(yijl − μj)

⎤
⎦

2
⎫⎪⎬
⎪⎭

− k

2
ln

[
(σ2

m + nσ2
po + rnσ2

p)(σ2
m + nσ2

po)
r−1

× (σ2
m)r(n−1)

]
. (3)

We can find the log-likelihood contribution for the
data from the augmented component of plan B by
setting n = 1 in Equation (3). If we denote the ob-
served data in this component by zij , i = 1, . . . , kB ;
j = 1, . . . , r we have

lB(�μ, σ2
p, σ2

po, σ
2
m)

= −1
2

⎧⎨
⎩(b1 + b2)

kB∑
i=1

r∑
j=1

(zij − μj)2

+ b3

kB∑
i=1

⎡
⎣ r∑

j=1

(zij − μj)

⎤
⎦

2
⎫⎪⎬
⎪⎭

− kB

2
ln

[
(σ2

m + nσ2
po + rσ2

p)(σ2
m + σ2

po)
r−1

]
.

(4)

For an augmented plan A, each operator measures
different parts once, and measurements on all parts
are independent. From model (1), we have, for any
measurement made by operator j, Zj ∼ N(μj , σ

2
p +

σ2
po + σ2

m) and so, denoting the observed measure-
ments by zij , i = 1, . . . , kA/r; j = 1, . . . , r the log-
likelihood contribution from the augmented compo-
nent of plan A is

lA(�μ, σ2
p, σ2

po, σ
2
m)

= −1
2

r∑
j=1

kA/r∑
i=1

(zjl − μj)2

σ2
p + σ2

po + σ2
m

− kA

2
ln(σ2

p + σ2
po + σ2

m).

(5)

The overall log likelihood is then the sum of the
contributions from Equations (3) and (5) for plan A
and Equations (3) and (4) for plan B.

To calculate the asymptotic standard deviations
for any assumed values for the unknown parameters,
we find the Fisher information matrix symbolically
using MapleTM to calculate the appropriate second
derivatives of the overall likelihood and then substi-
tute the expected values and change variables to give
results in terms of γ. The derivation is sketched in
the Appendix.
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We also consider the special case where we as-
sume there is no part-by-operator interaction. We
set σ2

po = 0 in the above calculations up to the stage
of finding the partial derivatives of the log-likelihood
function. We then proceed as before, except we purge
the appropriate row and column corresponding to σ2

po

from the information matrix and the change of vari-
ables matrix D (given in the Appendix). We also use
this calculation for the case n = 1 in the SP compo-
nent for both type A and B plans, where σ2

m is now
the sum of the repeatability and part-by-operator
components of the variation. If we consider the case
with a single operator (or no operator effects), we set
r = 1 and σ2

po = 0 and σ2
o = 0 and alter the informa-

tion matrix and the matrix D accordingly. Note the
simplification of the parameter γ given in Equation
(2) in these instances.

Without displaying the information matrix explic-
itly, we note two of its properties that have impor-
tant consequences. First, because of the block diag-
onal form of both the information in the original
parameterization and the matrix D, we can show
that the final information matrix does not depend
on the specific values of μ1, . . . , μr but only on σ2

o .
Second, because we can calculate the overall infor-
mation by summing the components for each part,
a scale change in the number of parts in a standard
plan or in the SP component of a plan A or plan B
produces the same scale change in the information
that then acts inversely on the asymptotic variance.
So, for example, if we have r = 3 operators, the rel-
ative efficiency of A(5, 2, 30) to SP(10, 2) (two plans
each with 60 measurements) is the same as the rela-
tive efficiency of A(7, 2, 42) compared with SP(14, 2)
(two plans each with 84 measurement).

Comparison of Plans

To compare plans, we suppose that the total num-
ber of measurements N and the number of operators
r are fixed. Here we consider values of N between
60 and 100 with 1 ≤ r ≤ 4. With each combina-
tion, we examine each possible SP, plan A (integer
values k, n, kA with krn + kA = N), and plan B
(integer values for k, n, kB with r(kn + kB) = N).
We substitute a range of possible values for the un-
known parameters and then rank all possible plans
according to the asymptotic standard deviation of γ.
Because γ is defined as the square root of a ratio
of variances, with no loss of generality we can set
σ2

t = σ2
p + σ2

o + σ2
po + σ2

m = 1. Note throughout the
comparisons of augmented plans, we conservatively

use the asymptotic standard deviation of the esti-
mate of γ (not its variance) from the best standard
plan at the particular parameter values as the basis
to calculate relative efficiency.

Plans with One or No Operator

Many measurement systems are automated with
no operator effects. This also corresponds to a sys-
tem with a single operator. In our formulation of
the problem, we then have r = 1, σo = σpo = 0,
and γ, the parameter of interest, simplifies to γ =√

σ2
m/(σ2

p + σ2
m). Also with r = 1, augmented plans

A and B are equivalent. Both augmented plan types
start with a standard plan with k parts each mea-
sured n times. Then, in the augmented component,
we measure an additional kA (or kB) parts once.

Suppose N = 60 and the true value of γ equals 0.3.
In Table 1, we list the best four plans in increasing
order of the asymptotic standard deviation of γ. For
purposes of comparison, we also include the standard
plan with k = 10 parts, each measured n = 6 times.

The best plan is SP(30, 2), the Shainin proposal
for an IsoplotTM study. Not surprisingly, we see sim-
ilar results (not presented here) for other values of
N and γ. In general, when there are no operator
effects, it is best to use a standard plan that bal-
ances the degrees of freedom for estimating σp and
σm by minimizing the number of repeated measure-
ments, i.e., choosing n = 2. There is a substantial
improvement in precision for estimating γ for the
Shainin plan over the default AIAG (2003) standard
plan with 10 parts. Because of the scaling property,
for example, we also have a 23% improvement using
SP(45, 2) over SP(15, 6). Augmentation provides no
benefit here. We can use standard ANOVA methods
to analyze the data from the recommended standard
plan.

TABLE 1. Five Plans for Estimating γ when

r = 1, N = 60, and γ = 0.3

Plan SE(γ̂) SE(σ̂m) Relative efficiency

SP(30, 2) 0.0523 0.0387 1.00
A(29, 2, 2) 0.0525 0.0394 1.00
A(28, 2, 4) 0.0527 0.0401 0.99
A(16, 3, 12) 0.0529 0.0375 0.99
SP(10, 6) 0.0680 0.0300 0.77
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Plans with More than One Operator and No
Part-by-Operator Interaction

Now suppose we have more than one operator and
we assume, as is commonly done in GR&R studies,
that there is no part-by-operator interaction.

We consider three cases where the number of op-
erators is r = 2, 3, or 4, each with two values of N
close to 60 and 96. We use N = 64 for r = 4 so
that there is a large number of possible augmented
plans. We specify three values of γ = 0.5, 0.3, and
0.1, corresponding to a poor, acceptable, and good
measurement system. Because

γ =

√
σ2

o + σ2
m

σ2
p + σ2

o + σ2
m

in this case, we set σ2
p + σ2

o + σ2
m = 1 (without loss

of generality because γ is not changed by a scale
change) so that σ2

o + σ2
m = γ2. We then specify

σ2
m = δγ2, where δ = 0.1, 0.5, 0.9, to look at situa-

tions when the repeatability (σm) makes up a small,
medium, or large proportion of the overall measure-
ment system variation as captured by γ.

For each value of r, N , and the nine pairs of values
for γ and δ, we rank all possible SP A, and B plans
using the asymptotic standard deviation of the MLE
of γ as described in the previous section. For exam-
ple, with r = 2 and N = 60, there are 103 plans of
type A and B and 8 standard plans. Table 2 presents
a comparison of the best plans of each type when
r = 2, N = 60, γ = 0.3, and δ = 0.1 (σm is relatively
small compared with σo). We also include the widely
used AIAG (2003) standard plan SP(10, 3).

Here there is a small gain over the best SP (about
7% reduction in standard error) in estimating γ with
an augmented plan A with 5 parts measured twice
by both operators and then two sets of 20 parts mea-
sured once by each operator, i.e., the A(5, 2, 40) plan.
All of the best plans are substantially better than the

TABLE 2. Comparison of Plans with

r = 2, N = 60, γ = 0.3, δ = 0.1

Plan Relative
type SE(γ̂) SE(σ̂m) SE(σ̂o) efficiency

A(5, 2, 40) 0.0347 0.0173 0.0210 1.07
B(2, 2, 26) 0.0383 0.0119 0.0122 0.97
SP(30, 1) 0.0371 0.0122 0.0122 1.00
SP(10, 3) 0.0621 0.0095 0.0122 0.60

SP with k = 10. The plan A(5, 2, 40) has the same
7% gain over the best SP when δ = 0.1 for other
values of γ. However, for δ = 0.5 or 0.9, the plan
A(5, 2, 40) is 12% to 25% less efficient than the best
SP. In this case, we recommend the SP(30, 1) plan.

We see a similar pattern for r = 3. For exam-
ple, when N = 60, in all cases except when γ = .5
and δ = 0.9, there is a plan A that is superior to
the best SP. Unfortunately, the best plan A varies
as the parameters are changed. When δ = 0.1, the
plan A(3, 2, 42) has a relative efficiency of about 1.26.
However for larger values of δ, this plan is 2% to
12% less efficient than the best SP. Accordingly, with
r = 3, we recommend the SP(20, 1) plan.

In Table 3, we present a second example with
r = 4, N = 64, γ = 0.3, δ = 0.5. Here there is an 18%
gain in estimating γ by using the best plan A rather
than the best SP. With 4 operators, as shown by the
right-most column of Table 4, the plan A(4, 2, 32)
does well over the entire parameter space compared
with the best standard plan SP(16, 1). There is sig-
nificant improvement relative to the best SP in all
cases except when γ = 0.5 (the measurement sys-
tem is highly variable) and δ = 0.9 (most of the
measurement variability is due to repeatability, i.e.,
σm � σo). In this case, there is no loss in efficiency.
Also (not shown here), there is no material difference
between A(4, 2, 32) and the best plan A for any value
of γ and δ in our array.

Because these comparisons are based on an
asymptotic criterion, we also checked the relative ef-
ficiency of A(4, 2, 32) versus SP(16, 1) using simula-
tion. We generated 10,000 samples for each plan us-
ing all pairs of values for γ = 0.5, 0.3, 0.1 and δ = 0.1,
0.5, 0.9. We then calculated the maximum likelihood
estimates of the parameters for each sample. We pro-
vide a summary of these estimates for both plans in
Table 4. The plan A(4, 2, 32) provides a less biased
estimate of γ with smaller standard deviation over

TABLE 3. Comparison of Plans with

r = 4, N = 64, γ = 0.3, δ = 0.5

Plan Relative
type SE(γ̂) SE(σ̂m) SE(σ̂o) efficiency

A(4, 2, 32) 0.0456 0.0283 0.0366 1.18
B(2, 2, 12) 0.0567 0.0212 0.0265 0.95
SP(16, 1) 0.0537 0.0217 0.0265 1.00
SP(8, 2) 0.0720 0.0200 0.0265 0.75
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TABLE 4. Simulated and Theoretical Comparison of A(4, 2, 32) to SP(16, 1) for r = 4, N = 64

A(4, 2, 32) SP(16, 1)

Standard Standard Simulated Theoretical
γ δ Average deviation Average deviation efficiency efficiency

0.5 0.1 0.511 0.052 0.525 0.072 1.38 1.37
0.5 0.5 0.507 0.070 0.522 0.080 1.14 1.12
0.5 0.9 0.509 0.086 0.522 0.086 1.00 0.99
0.3 0.1 0.309 0.038 0.321 0.057 1.50 1.39
0.3 0.5 0.307 0.048 0.320 0.060 1.25 1.17
0.3 0.9 0.305 0.055 0.312 0.065 1.18 1.09
0.1 0.1 0.103 0.014 0.108 0.022 1.57 1.39
0.1 0.5 0.102 0.017 0.108 0.023 1.35 1.20
0.1 0.9 0.101 0.018 0.107 0.024 1.33 1.14

all of the parameter values except when γ = 0.5,
δ = 0.9, as predicted by the theoretical information
calculations. In all cases, the simulated efficiency is
higher than predicted by the asymptotic calculations.

We investigated and compared the best plans of
each type for r = 2, 3, 4 and N ≈ 60, 90 with γ and δ
as described above. To save space, we do not present
all of the results here. We draw the following conclu-
sions when there is no part-by-operator interaction,
based on this empirical investigation:

• The best standard plans have n = 1 and k =
N/r. That is, we maximize the number of parts
in the study. We can justify this conclusion by
noting that maximizing the number of parts
maximizes the degrees of freedom for estimat-
ing the part variation and, because we are us-
ing the part-by-operator sum of squares to es-
timate σ2

m, increasing the number of parts also
increases the degrees of freedom for estimating
σ2

m. Because each part is measured by each op-
erator, parts act as blocks, so we also get good
estimates of the operator means μ1, . . . , μr and
hence σ2

o by increasing the number of parts.
Note that this conclusion is contrary to the
AIAG (2003) recommended plans (see sample
forms pp. 216–217) that suggest setting n = 2
or 3.

• In all cases, the best standard plan is superior
to the best plan B.

• The best augmented plans have n = 2 and use
a small number of parts in the SP component.

• For two or three operators, augmentation pro-
vides little gain unless σm is relatively small

compared with σo. If δ = 0.1 and r = 2, 3, then
the best plan A is about 6% (r = 2) and 20%
(r = 3) more efficient in estimating γ than the
best SP. These results are independent of N in
the range 60 < N < 100.

• With four operators and N = 64, the plan
A(4, 2, 32) is (almost) uniformly better than the
best SP and the gains in efficiency are relatively
large when δ < 0.5. For any value of N , we
can scale this plan and see the same gains in
efficiency. For example, if N = 96, the plan
A(6, 2, 48) has the same good properties.

• The simulated results show that the asymptotic
calculations are conservative. The actual effi-
ciency of the recommended augmented plans is
better than predicted by these calculations.

Plans with More than One Operator and
Possible Part-by-Operator Interaction

Now we consider a measurement system with two
or more operators in which we allow for the pos-
sibility of part-by-operator interaction. We proceed
as in the case with no interaction with r = 2, 3, 4
and N ≈ 60, 90. There are two added complications.
First, we have an extra parameter, σpo, and γ is given
by Equation (2). We set σ2

p +σ2
o +σ2

po +σ2
m = 1 with-

out loss of generality so that γ2 = σ2
o +σ2

po +σ2
m. The

first two terms are due to operator-to-operator dif-
ferences, so, for a given value of γ, we look at three
cases of σ2

m = δγ2 with δ = 0.1, 0.5, 0.9, so the re-
peatability contribution to γ is relatively small to
large. Then, for given values of γ and δ, we con-
sider three cases, β = 0.1 0.5, 0.9, where the con-
tribution of σ2

o is a relatively small to large propor-
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TABLE 5. Four Plans with r = 2, N = 60, γ = 0.3, δ = 0.5, and β = 0.5

Plan type SE(γ̂) SE(σ̂m) SE(σ̂po) SE(σ̂o) Relative efficiency

A(11, 2, 16) 0.0552 0.0320 0.0678 0.0445 1.10
B(2, 2, 26) 0.0494 0.0713 0.1097 0.0341 1.23
SP(15, 2) 0.0607 0.0274 0.0581 0.0387 1.00
SP(10, 3) 0.0713 0.0237 0.0570 0.0433 0.85

tion of the total operator contribution (σ2
o + σ2

po) to
the measurement system variation. Algebraically, we
have σ2

o = β(1 − δ)γ2 and σ2
po = (1 − β)(1 − δ)γ2.

The second complication is that we must decide if
we are going to entertain plans with n = 1. In this
case, we cannot separately estimate σ2

po and σ2
m, but

we can estimate σ2
po + σ2

m and hence γ. Including
n = 1 plans is equivalent to assuming that there is
no interaction (or more accurately, that any interac-
tion is subsumed by the repeatability σ2

m), so that
we should compare n = 1 plans with those alterna-
tives considered in the previous section. Here we do
not allow n = 1 plans, so that we can get separate
estimates of σ2

po and σ2
m.

For given values of N and r, we look at the best
plans of each type as we sweep across the 27 combi-
nations of γ, δ, and β. Consider the case with r = 2,
N = 60, γ = 0.3, δ = 0.5 (the repeatability σ2

m is the
same as the reproducibility σ2

o + σ2
po), and β = 0.5

(operator and part-by-operator effects are equal). Ta-
ble 5 gives the best plans of each type. For the sake
of comparison, we also include the AIAG (2003) rec-
ommended SP(10, 3).

The asymptotic standard error for estimating γ is
about 23% smaller for the best plan B compared with
the best standard plan and about 18% smaller than
the best plan A. In the best plan B, we use only two
parts with two repeated measurements by each oper-
ator in the SP component. In the augmented compo-
nent, we have a large number of parts (26) measured
once by each operator. For this plan, the estimates of
σ2

po and σ2
m are highly correlated because most of the

information is about their sum. The plan SP(10, 3)
is much less efficient than the best plan B. We found
that a plan B with 2 parts measured twice by each
of the two operators in the SP component was uni-
formly the best plan. This result is not surprising
because this plan is very close to the corresponding
standard plan with n = 1 that is more efficient for
estimating γ but cannot separately estimate σ2

po and
σ2

m.

For example, when N = 60 and r = 2, we see
in Table 6 a comparison of B(2, 2, 26) with the best
standard plan SP(15, 2). We also include the results
of a simulation with 10,000 samples to demonstrate
how well the asymptotic calculations rank the plans.

TABLE 6. Simulated and Theoretical Comparison of B(2, 2, 26) to SP(15, 2) for r = 2, N = 60, β = 0.5

B(2, 2, 26) SP(15, 2)

Standard Standard Simulated Theoretical
γ δ Average deviation Average deviation efficiency efficiency

0.5 0.1 0.511 0.069 0.522 0.095 1.37 1.33
0.5 0.5 0.512 0.077 0.524 0.093 1.21 1.20
0.5 0.9 0.513 0.082 0.530 0.093 1.13 1.11
0.3 0.1 0.309 0.049 0.320 0.068 1.39 1.33
0.3 0.5 0.311 0.051 0.322 0.070 1.37 1.23
0.3 0.9 0.309 0.056 0.327 0.068 1.21 1.16
0.1 0.1 0.105 0.018 0.107 0.025 1.39 1.34
0.1 0.5 0.104 0.019 0.106 0.025 1.32 1.24
0.1 0.9 0.103 0.019 0.108 0.026 1.37 1.17
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TABLE 7. Relative Efficiencies of Some Good Type A Plans with 3 or 4 Operators

m = 3, N = 60 m = 4, N = 64

γ δ β A(5, 2, 30) A(6, 2, 24) A(7, 2, 18) A(4, 2, 32) A(5, 2, 24) A(6, 2, 16)

0.5 0.1 0.1 0.99 1.04 1.07 1.10 1.15 1.16
0.5 0.1 0.5 1.17 1.19 1.19 1.31 1.32 1.29
0.5 0.1 0.9 1.51 1.47 1.40 1.70 1.63 1.49
0.5 0.5 0.1 1.05 1.09 1.11 1.17 1.21 1.20
0.5 0.5 0.5 1.15 1.18 1.18 1.29 1.30 1.27
0.5 0.5 0.9 1.28 1.28 1.26 1.44 1.42 1.35
0.5 0.9 0.1 1.09 1.12 1.13 1.21 1.24 1.22
0.5 0.9 0.5 1.10 1.14 1.14 1.23 1.26 1.23
0.5 0.9 0.9 1.12 1.15 1.15 1.25 1.27 1.24
0.3 0.1 0.1 1.08 1.12 1.15 1.21 1.26 1.26
0.3 0.1 0.5 1.22 1.25 1.24 1.37 1.39 1.35
0.3 0.1 0.9 1.53 1.50 1.43 1.73 1.66 1.52
0.3 0.5 0.1 1.16 1.20 1.20 1.31 1.35 1.32
0.3 0.5 0.5 1.24 1.27 1.26 1.41 1.42 1.36
0.3 0.5 0.9 1.36 1.36 1.33 1.53 1.51 1.43
0.3 0.9 0.1 1.22 1.25 1.24 1.38 1.40 1.35
0.3 0.9 0.5 1.24 1.26 1.25 1.40 1.41 1.36
0.3 0.9 0.9 1.25 1.27 1.26 1.41 1.42 1.37
0.1 0.1 0.1 1.12 1.17 1.19 1.27 1.32 1.31
0.1 0.1 0.5 1.23 1.27 1.27 1.39 1.42 1.38
0.1 0.1 0.9 1.54 1.51 1.44 1.73 1.68 1.54
0.1 0.5 0.1 1.21 1.25 1.25 1.38 1.41 1.38
0.1 0.5 0.5 1.28 1.31 1.30 1.45 1.47 1.41
0.1 0.5 0.9 1.39 1.39 1.36 1.57 1.55 1.47
0.1 0.9 0.1 1.29 1.31 1.30 1.47 1.49 1.42
0.1 0.9 0.5 1.30 1.32 1.31 1.48 1.49 1.42
0.1 0.9 0.9 1.31 1.33 1.32 1.50 1.50 1.43

We display the results only for β = 0.5 because both
the simulated and theoretical calculations do not de-
pend significantly on β. The augmented plan has
smaller bias and is more efficient than the best SP.
The actual efficiency is again somewhat larger than
predicted by the asymptotic calculations.

For r = 3, 4, we see a very different behavior. In
this case, there are a number of type A plans that
are (almost) uniformly better than the best standard
plans and always better (over our grid of parame-
ter values) than any type B plan. In Table 7, we
show the relative efficiencies of a few type A plans
compared with the best SP. There are significant im-
provements possible over the best standard plan. We
checked some of these results using a simulation with
10,000 runs. For example, when r = 3, N = 60, we
compared A(6, 2, 24) to SP(10, 2) over the complete

grid of values for γ, δ, and β. In all cases, there is less
bias with the augmented plan and the estimated effi-
ciencies are substantially higher than those predicted
by the asymptotic calculations.

We summarize our findings when we allow for the
possibility of part-by-operator interaction as follows:

• The best plans have n = 2 in the SP compo-
nent. That is, there is minimal repeated mea-
surement by the same operator on the same
part.

• The best plans use few parts in the SP compo-
nent and a large number of parts in total.

• With r = 2 operators, a good plan for es-
timating γ is B(2, 2, 28) when N = 64 or a
scaled version for other values of N . For exam-
ple, if N = 96, the scaled version is B(3, 2, 42).
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Note that the best plan in this case is close to
SP(30, 1), so the estimates of σ2

po and σ2
m are

highly correlated.

• With r = 3 or 4 operators, there are good
type A plans, e.g., A(6, 2, 24) for r = 3 and
A(5, 2, 24) for r = 4 with relatively few parts
in the SP component. We can realize substan-
tial benefits in estimating γ using one of these
plans.

• Simulations suggest that the asymptotic results
are conservative. Efficiencies of the good aug-
mented plans are higher than predicted.

We provide MATLAB® code at http://www.bisrg
.uwaterloo.ca/ and also as part of the supplementary
material for this article at http://www.asq.org/pub/
jqt/. The code can be used to select and compare
good plans using the asymptotic calculations. In any
given situation, a practitioner can investigate a wide
variety of potential plans and select one that meets
his or her needs. At the same websites, we also pro-
vide an example and corresponding MATLAB® code
that will calculate the estimates and their standard
errors for either type of augmented plan.

Discussion and Conclusions

The idea of augmented plans raises several design
and analysis issues.

In many situations, augmented assessment plans
provide a means to estimate γ more efficiently than
the best standard plan with the same number of op-
erators and total measurements. One drawback of
the type A augmented plans is that we cannot use
ANOVA in the analysis because some parts are only
measured by one of the operators. With type B aug-
mented plans, we can apply the results of Chapter
7 in Burdick et al. (2005) to get approximate confi-
dence intervals. However, in such an unbalanced de-
sign, the properties of the ANOVA-based estimates
of γ can be examined only by simulation and so are
not useful in the planning stage of the study. The
easily calculated Fisher information is a convenient
basis for comparison of plans and, with maximum-
likelihood estimation, provides a method of analy-
sis. To derive approximate confidence intervals for γ,
we suggest using the asymptotic standard deviation
as given by the Matlab code (perhaps on a trans-
formed scale to avoid problems near 0 or 1) or other
likelihood based methods. We have not explored the
properties of such approximate confidence intervals.

In a series of papers, Browne et al. (2009, 2010)
consider the use of leveraging to increase the effi-
ciency of standard plans. In these plans, the order of
the two components is important. In the first stage
of a type A leveraged plan, each operator measures
a separate set of parts once. Then a standard plan is
carried out using extreme parts selected from those
measured in stage 1. Browne et al. do not consider
the possibility of a part-by-operator interaction. Note
that the leveraged plans use fewer parts, so it is not
clear how their performance compares with the aug-
mented plans described here. This is another issue
for future investigation.

We compared plans for estimating γ under the
constraint that the total number of measurements N
is fixed. There may be different costs to measuring
one part repeatedly rather than a number of parts
once and, in this instance, we should compare plans
under the constraint that the total cost is fixed. We
have not investigated this issue.

Augmented plans are not sequential. We can carry
out the components in any order. Another possibil-
ity is to carry out the SP component first and then
select an augmented component based on a prelimi-
nary analysis of the SP data. Such a design may have
superior performance over the augmented plans rec-
ommended here.

The results of the simulations were surprising to
us. Good plans (as ranked by asymptotic standard
deviation of the estimator for γ) were typically close
to unbiased and the actual standard deviations in
the simulations were larger for both the augmented
and corresponding standard plans but the efficien-
cies of the augmented plans were larger than those
predicted by the asymptotic calculations.

The idea of augmentation is to use more parts,
consistent with the recommendation of Burdick and
Larsen (1997). Typical standard plans with 10 parts
do not provide sufficient information to adequately
estimate σp and hence γ. The plans we recommend
all increase the number of parts relative to the AIAG
(2003) recommended standard plans and reduce the
number of repeated measurements on the same part
by each operator. That is, we recommend only plans
with n = 1 or 2. Also note that the recommended
augmented plans are almost uniformly more efficient
than the best SP over a wide range of the parame-
ter values. We summarize our recommended plans as
follows:

1. For a system with a single operator or with no
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operator effects, use the standard plan with N/2
parts each measured n = 2 times.

2. If you are willing to assume no part-by-operator
interaction or if you are willing to confound es-
timation of the part-by-operator interaction and
the measurement repeatability,

• For r = 2 or 3 operators, use the standard plan
with n = 1 to maximize the number of parts in
the study.

• For r = 4 operators, use a type A plan with
n = 2 and a small number of parts in the SP
component. For example, use A(4, 2, 32) if N =
64, and a scaled version of this plan for other
values of N .

3. If you wish to include the possibility of part-by-
operator interaction (and wish to separately esti-
mate σ2

po and σm),
• For r = 2 operators, use a type B plan with

a small number of parts in the SP component,
e.g., B(2, 2, (N − 8)/2).

• For more operators, use a type A plan with n =
2. For r = 3, use a scaled version of A(6, 2, 24),
and for r = 4, use a scaled version of A(5, 2, 24)
with scaling depending on the ratio N/60.

4. If you have some knowledge of the possible param-
eter values γ, δ, β, use the provided software to
investigate a number of plans over the restricted
range of parameter values.
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Appendix

In this appendix, we show the derivation of the
likelihood result given in Equation (3) and discuss
the derivation of the corresponding Fisher infor-
mation. Here we sketch the derivation and avoid
the tedious details by using MAPLETM (2009) and
MATLAB® (2008) to carry out the symbolic and nu-
merical calculations. In model (1), we assumed that
measurements made on different parts are indepen-
dent; thus, we can write the log likelihood and Fisher
information for each part and then add over all parts.
Consider the distribution of all measurements on a
randomly selected part i that is measured by r op-
erators n times each, as in the SP (or the SP com-
ponent of plan A or B). We order the random vari-
ables by operator so that �Yi = (�Y T

i1 , �Y T
i2 , . . . , �Y T

ir )T,

where �Yij = (Yij1, Yij2, . . . , Yijn)T corresponds to the
n measurements by operator j on part i. We let Ja be
a column vector of a 1’s, Ja×b be an a × b matrix of
1’s, and Ia be the a× a identity matrix. From model
(1), we have �Y ∼ MV N(�μ,Σ) with

�μ = (�μ1, �μ2, . . . , �μr)T,

where
�μj = μj(1, 1, . . . , 1)T = μjJn

and

Σ = σ2
mIrn + σ2

po

⎛
⎜⎜⎜⎝

Jn×n 0 · · · 0

0 Jn×n 0
...

... 0
. . . 0

0 · · · 0 Jn×n

⎞
⎟⎟⎟⎠

+ σ2
pJrn×rn

= σ2
mIrn + σ2

poIr ⊗ Jn×n + σ2
pJrn×rn.

The matrix Σ has a special form that allows us to
write its inverse explicitly as Σ−1 = b1Irn + b2Ir ⊗
Jn×n + b3Jrn×rn, where the Kronecker product ⊗
creates the appropriate block diagonal matrix, and
we have

b1 = 1/σ2
m,

b2 = − σ2
po

σ2
m(σ2

m + nσ2
po)

,

b3 = − σ2
p

(σ2
m + nσ2

po)(σ2
m + nσ2

po + rnσ2
p)

.

We can also write

det(Σ) = (σ2
m + nσ2

po + rnσ2
p)(σ2

m + nσ2
po)

r−1

× (σ2
m)r(n−1).

The log-likelihood contribution from part i with n
repeated measurements by r operators is

−1
2
(�yi − �μ)TΣ−1(�yi − �μ) − 1

2
ln(det Σ)

where

(�yi − �μ)TΣ−1(�yi − �μ)

= b1

r∑
j=1

n∑
l=1

(yijl − μj)2

+ b2

r∑
j=1

[
n∑

l=1

(yijl − μj)

]2

+ b3

⎡
⎣ r∑

j=1

n∑
l=1

(yijl − μj)

⎤
⎦

2

.
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Adding over all parts then gives the overall likelihood
expression (3).

To calculate the Fisher information, we take sec-
ond partial derivatives and then expected values of
the sum of squares involving the data as given in
Equation (6).

E

⎡
⎣ k∑

i=1

r∑
j=1

n∑
l=1

(yijl − μj)2

⎤
⎦

= krn(σ2
p + σ2

po + σ2
m)

E

⎡
⎣ k∑

i=1

r∑
j=1

{
n∑

l=1

(yijl − μj)

}2
⎤
⎦

= krn(nσ2
p + nσ2

po + σ2
m)

E

⎡
⎢⎣ k∑

i=1

⎧⎨
⎩

r∑
j=1

n∑
l=1

(yijl − μj)

⎫⎬
⎭

2
⎤
⎥⎦

= krn(nrσ2
p + nσ2

po + σ2
m), (6)

and, for plan A,

E

⎡
⎣ k∑

i=1

r∑
j=1

kA/r∑
l=1

(zjl − μj)2

⎤
⎦ = kA(σ2

p + σ2
po + σ2

m).

From the form of the likelihood contributions, be-
cause all functions involving the μj ’s are quadratic,

• The second partial derivative with respect to
any of the μj ’s does not involve the observed
measurements and is independent of j.

• The mixed partial derivatives involving μj and
μq are constants not involving the data and are
the same for all j and q.

• The expected value of any mixed partial deriva-
tive involving only one of the μj ’s is zero.

• The expected value of any of the second partial
derivatives involving σ2

p, σ2
po, σ2

m depend only
on the expected values of the data-based sums
of squares in the likelihoods.

To determine the asymptotic variance (and stan-
dard deviation) of the estimator for γ, we substi-
tute the assumed parameter values and invert the
matrix numerically with MATLAB® (2008). Finally,
because we are interested only in γ, σ2

p, σ2
po, and σ2

m,
we pre- and postmultiply the information matrix by
the matrix of partial derivatives,

D =
∂(μ1, . . . , μr, σ

2
p, σ2

po, σ
2
m)

∂(γ, σ2
p, σ2

po, σ
2
m)

.

Again, we use MapleTM to calculate these partial
derivatives and MATLAB® to find their numerical
values.
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