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Other assignable causes in Jin and Shi (1999) resulted in oscil-
lation of the tonnage signature that amounted to highly struc-
tured changes in γ (x, x′). Again, an algorithm that incorpo-
rates knowledge of the specific structure of the change can re-
sult in much more powerful detection. With limited, incomplete
knowledge of the structure of the change, monitoring coeffi-
cients of a Fourier or wavelet representation of the profiles can
sometimes be useful (see Chicken, Pignatiello, and Simpson
2009, and the references therein).

In general, premodeling potential assignable causes and their
effects on the profiles may be quite difficult for many ap-
plications, requiring advanced engineering knowledge and re-
sources. It will be useful to have better “Phase I” exploratory
data analysis tools for discovering and empirically modeling
the effects of typical assignable causes based on large historical
sets of profiles, over which various assignable causes occurred.
It will also be useful to have an approach that looks specifi-
cally for a small set of patterns that might be easily premod-
eled, while simultaneously monitoring for more general profile
changes via a Tt,h,λ-like statistic. Apley and Lee (2010) devel-
oped a related approach for multivariate process data, but this
will be difficult to extend to profile data.

I will close by thanking the authors for a thought-provoking
article and a useful approach that I hope will find its way into
SPC practitioners’ toolboxes. I would also like to thank the ed-
itor, David Steinberg, for recognizing the merit of their work
and inviting these discussions.
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Profile monitoring is an area of growing interest and impor-
tance. The authors develop a methodology that meets many of
the needs of practitioners. They propose a flexible model based
on a solid statistical foundation. Nonparametric local regression
methods and random effects form the core of their approach.
The random effects provide a convenient way of modeling co-
variance between responses observed at different points along
the curve, a common feature of functional data. The procedure
is quick in Phase II and appears to readily adapt to a variety of
profile shapes.

To organize our discussion, we attempt to outline a list of
desirable attributes and questions we can ask of a profile mon-
itoring methodology. After describing each, we examine Qiu,
Zou, and Wang in the context of that attribute or those ques-

tions. Before presenting our list, we briefly discuss a motivating
example.

Example. To help fix ideas and provide a broader basis for
discussing desirable attributes, we briefly describe a profile
monitoring problem familiar to us. Mosesova (2007) provides
additional details. The data arise from a manufacturing process
in which a ram force-fits a steel valve seat into an aluminum
cylinder head. Every insertion yields a force–time profile, three
of which are displayed in Figure 1. In this particular process, a
feedback controller adjusts the force in an attempt to maintain
constant ram velocity during insertion. After an initial rise in
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Figure 1. Three force–time profiles.

force corresponding to contact of the ram and the valve seat,
the insertion force remains roughly constant as the seat is in-
serted. Once fully inserted, the force is increased in an attempt
to maintain constant velocity. Every head has four cylinders,
each with an intake and exhaust valve. The insertions displayed
in Figure 1 correspond to three consecutive insertions of the in-
take valve in the same cylinder. Data are available on all eight
valves for thousands of heads, ordered by time and date of man-
ufacture.

1. FLEXIBILITY OF PURPOSE

The general goal of any process monitoring methodology is
to detect changes that stand out above the common cause varia-
tion. Profiles can change in many ways, and ideally, the method-
ology can be adapted to be sensitive to prescribed changes. We
may want to:

(a) Detect changes in particular features of the profile such
as the maximum value, the location of the maximum, or the
time point at which a specified event occurs (e.g., force begins
increasing from 0 in Figure 1).

(b) Detect changes away from the “normal” profile toward
one of several prespecified “bad” profiles. This might be ac-
complished via measures of closeness to representative profiles,
or specification of a model in which some parameters identify
departures toward the bad profiles.

(c) Detect unspecified changes in the mean profile.
(d) Detect changes in the variation (or covariance) of the

residual profiles. This variation can be either functional (“wig-
gle”) or noise (background randomness).

(e) Detect both persistent changes and single outlying pro-
files.

Purposes (c), (d), and (e) arise in conventional monitoring
applied to a single response variate. Purposes (a), (b), and the

idea of functional variation in (d) are unique to profile mon-
itoring and arise from the functional nature of the data. Qiu,
Zou, and Wang focus on purpose (c). Their methodology is
designed to detect persistent changes of the mean profile. In
Phase I, the authors obtain an estimate of the in control (IC)
mean profile. In Phase II, at each observation point, they obtain
an estimate of the current mean profile using an exponentially
weighted moving average (EWMA) scheme combined with a
local linear kernel estimate that allows for nonconstant vari-
ance at each point along the profile as estimated in Phase I.
The monitoring statistic in Equation (11) is based on the dif-
ferences between the estimates of the current and the IC mean
profiles.

Although all the ingredients of process monitoring are
present in the proposed chart, they are assembled in a non-
standard way. A more conventional approach is to calculate
a discrepancy measure for each profile, and then use EWMA
(or another charting method) to combine the discrepancies. For
example, if we have a new profile yi then we can define the dis-
crepancy (yi − g0(xi))

T�−1
i (yi − g0(xi)), where �i is the co-

variance matrix for yi calculated using the results from Phase I.
The embedding of the EWMA in the estimation process will
make it more difficult to swap EWMA for other kinds of chart-
ing, such as cumulative sum (CUSUM) or Shewart charts. We
feel it will be difficult to adapt the Qiu, Zou, and Wang approach
to detecting single outlying profiles. In addition, practitioners
may be more willing to use a new monitoring method if the
elements of that method resemble existing strategies.

The need for multiple charts for different purposes is com-
mon in process monitoring where we are looking to detect
changes other than persistent shifts in the mean, e.g., X̄ and s
charts for a single characteristic. Shewhart charts have greater
power to detect a single outlying observation, while EWMA
or CUSUM’s are good for quickly detecting relatively small
persistent changes or drifts. Ideally, in any methodology, there
should be flexibility to detect a variety of possible process
changes. The statistic being charted can be designed for spec-
ified departures from the IC condition and simultaneous chart-
ing used for combinations of departures. An important question
(beyond the scope of this discussion) is to determine when the
unconventional method proposed by the authors is better than
the more conventional approach we describe.

Although the proposed method focuses on purpose (c), one
may ask whether it can be modified to detect changes in (a) spe-
cific features, (b) departures in specified directions, or (d) un-
specified changes in variation. Note, as suggested by the au-
thors, inclusion of the weight function �1(s) in the monitoring
statistic Tt,h,λ in Equation (11) allows for increased sensitiv-
ity to detect changes in specified sections of the mean profile
that correspond to features of interest. To detect specified de-
partures, the mean Phase I curve g0 can be replaced by “bad”
curves in the calculation of Equation (11), although this will re-
quire a change in control limits. An out-of-control process will
be flagged by profiles close to the “bad” baseline. It is not clear
how to adapt the proposed methodology to detect changes in
the covariance structure (d).
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2. FLEXIBILITY OF APPLICATION

Process monitoring is an inherently applied discipline. A suc-
cessful profile monitoring method will see widest application if
it can be adapted to a wide variety of contexts:

(a) Does the method require retooling for different profile
shapes?

(b) What happens if the data are collected in subgroups?
(c) Within each profile, must observations be made at

equally spaced time points? Must different profiles be observed
at the same time points?

(d) Do the profiles need registration? For instance, the
curves in Figure 1 cannot be easily monitored until they are
aligned by an affine transformation of the “time” axis. Sim-
ilar registration of the vertical (e.g., force) axis may also be
required. In some circumstances, nonlinear time warping func-
tions (Ramsay and Silverman 2005) may be required to align
multiple points of interest along curves.

(e) How much of the procedure can be automated? Is com-
putation in Phase II quick? In some applications, the data
stream might be huge and fast, and even setting up the chart
might require automation.

(f) Are there automatic or semiautomatic choices of tuning
constants (e.g., EWMA weight λ or kernel bandwidth h)?

(g) Are covariates observed that will affect each curve? For
instance, in our application, there can be cylinder and valve
effects. While eight separate analyses (four cylinders by two
valve types) can be carried out, a combined model with covari-
ate effects (e.g., additive shifts for cylinder number and valve
type) may increase power by borrowing strength across multi-
ple data streams. In general, covariates can be fixed for each
curve (as in our valve seat insertion example), or vary over time
as the curve is observed.

The methodology of Qiu, Zou, and Wang does well at (a)
and (c). The nonparametric curve estimation is very flexible,
does not require equally spaced data, and should be applicable
to any shape of curves. Registration (d) is not discussed in the
article, although we suspect the authors are implicitly assuming
curves are registered. The authors pay special attention to the
design of Phase II modeling, gaining computation speed (e) by
dropping random effects from the model and employing quick
updating formulae. The choice of tuning parameters (f) is dis-
cussed, though fine tuning may still be somewhat of an art form.
Tuning constants are difficult to set automatically since they
will depend on the nature of the out-of-control condition one
wishes to detect. For instance, in Figure 1, the out-of-control
condition might be the shape of “wiggle” near time = 1.5 (re-
quiring a small smoothing bandwidth) or the height of the flat
section around time = 1.6 (requiring a large smoothing band-
width). Practitioners may have little information about such a
condition.

Subgrouping (b) is a common technique employed in uni-
variate control charting. It also may be an issue in the AEC
example in Qiu, Zou, and Wang where there was sampling of
profiles from batches of AEC’s. In the Phase I modeling or the
Phase II charting, there is no explicit recognition that within
batch variation may be different than between batch variation.

Qiu, Zou, and Wang did not consider adjustment for co-
variates (f). Such adjustments are not common in conventional

monitoring. Extensions to this case will require that the locally
linear model be augmented to include regression terms for the
covariates with either fixed or random effects.

3. MODELING ASSUMPTIONS

All modeling requires assumptions, often to simplify compu-
tation or theoretical derivations, or to focus attention on aspects
of the problem that are particularly relevant. In profile monitor-
ing, three key questions are:

(a) Is there heteroscedasticity at different time points within
a curve?

(b) Do correlations exist between measurements made at dif-
ferent time points on the same curve?

(c) Do dependencies exist between different curves?

Qiu, Zou, and Wang model heteroscedasticity (a) in both
Phases I and II. In Phase I, they allow for within-profile corre-
lation (b) via a random effects term. However, the correlations
are not used explicitly for monitoring, as random effects are
dropped from the Phase II model. Also, the weighted local like-
lihood before Equation (9) uses only variances (i.e., diagonals
of the covariance matrix). Will it be straightforward to replace
the sum in Equation (11) by a quadratic form that includes an
inverted covariance matrix? We believe detection power might
be enhanced by explicitly accounting for such covariances in
Phase II.

The authors make the standard assumption that profiles are
independent over time (c). However, autocorrelation is com-
mon, especially if 100% inspection is employed. Profiles sam-
pled within the same batch or close together in time are apt to
be more alike than profiles sampled from different batches or
far apart in time.

4. PHASE I ISSUES

The availability of in-control data for Phase I modeling is
a key component of any monitoring methodology since it en-
ables calibration of statistics that are to be used for detection of
process changes in Phase II. Considerations in Phase I include:

(a) Phase I calculations are done off-line providing plenty of
modeling and computation time.

(b) The data used Phase I must be sampled from an IC
process to enable accurate calibration. Methods are needed to
check the Phase I data for outliers or other anomalies that
should be removed before calculating the control limits.

(c) A combination of theory and analysis of Phase I data
must provide control limits for use in Phase II.

Qiu, Zou, and Wang effectively exploit the availability of off-
line IC data (a) for estimating the IC mean profile and for de-
veloping Phase II control limits. They assume that IC data are
available, but as noted in their discussion, provide no methodol-
ogy to identify anomalies (b). Without such tools, it is difficult
to imagine implementing the proposed chart in Phase II.

Calculation of control limits (c) with specified IC average
run lengths (ARL’s) is a key component of any monitoring pro-
cedure. Qiu, Zou, and Wang adopt an empirical approach that
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requires a large IC Phase I dataset. In determining the IC ARL’s,
the authors need to remove the effect of the initial conditions for
the EWMA. As the EWMA weight for τ profiles in the past is
(1−λ)τ using τ = 30 is unlikely to be sufficient. With λ = 0.02
(the smallest recommended value), (1 − λ)30 = 0.55, which is
the weight of the initial value in the EWMA statistic.

In Table 1, the authors compare random and fixed effect mod-
eling. The fixed effect model does not have the desired in-
control ARL. To make the comparison fair, we see no reason
why the control limits for the fixed effects approach cannot be
set to achieve the desired IC ARL.

5. PROPERTIES OF THE PHASE II ALGORITHM

In Phase II, we see the fruits of our labor with a method that
will signal when the process goes out-of-control. We require:

(a) Simple and quick calculations as new profiles arrive.
(b) Good detection properties for relevant departures (as de-

scribed previously under flexibility of purpose).
(c) Interpretability.

The authors demonstrate promising indications on all these
criteria. The absence of random effect terms in Phase II of the
model (as noted earlier) means that the Phase I and II models
are different. We wonder whether such a difference will have

any impact on detection properties (b). The proposed method is
interpretable, in that the EWMA-smoothed curve that signalled
the departure can be directly compared to the IC mean profile.
However, the complex form of the model will make it difficult
to pinpoint the cause of a signal if it is not evident in the dis-
played curve.

6. CLOSING THOUGHTS

The need for profile monitoring is increasing due to the
availability of high-resolution data from many processes. This
stimulating article shows how flexible nonparametric statistical
methods can be used in a specific profile monitoring frame-
work. The approach of Qiu, Zou, and Wang has many es-
sential attributes that we feel a profile monitoring method-
ology should have and promises extensions in many direc-
tions.
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I would like to congratulate Qiu, Zou, and Wang on an in-
teresting and innovative article that addresses a fundamental
profile monitoring problem in statistical process control (SPC).
I think this is a timely discussion because there is an urgent need
for SPC techniques in various industries (not only in manufac-
turing, but also in service) that can handle complex functional
monitoring and surveillance on a real-time basis. The proposed
methodology focuses on the single covariate case, but it should
be possible to extend it to a more practical case with multiple
covariates. In my discussion I will focus on the profile monitor-
ing cases with high-dimensional multiple covariates.

Due to the technological progress in hardware and software,
most companies and organizations record and process huge
amounts of data about production, business transactions, and
service operations. These data streams contain very useful in-
formation that can be extracted through data modeling, charac-
terization, monitoring, and forecasting. To remain competitive,

it is important for organizations to develop enterprise systems
that allow managers to characterize relationships among perfor-
mance and variables and to detect and prevent abnormal activi-
ties in operation.

Statistical monitoring and surveillance was widely recog-
nized as an important and critical tool for detecting and identi-
fying abnormal behavior (Tsung, Zhou, and Jiang 2007). Con-
ventional approaches such as using statistical process control
(SPC) techniques for system monitoring and surveillance of-
ten assume that the state of a system can be represented by a
single random variable or a random vector of low dimension-
ality. However, many systems are far more complicated and
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