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Abstract: In the traditional plan for assessing the reliability of a measurement system, a number of raters

each measure the same group of subjects. If the system has a large number of raters, we recommend a new set

of plans that has two advantages over the traditional plan. First, the proposed plans provide greater precision

for estimating the intraclass correlation coefficient with the same total number of measurements. Second,

the plans are flexible and can be adapted to constraints on the number of times any subject can be assessed

or the number of times any rater can make an assessment. We provide a simple tool for planning a reliability

study, access to the software for the planning in the case where there are constraints and an example to

demonstrate the analysis of data from the proposed plans. The Canadian Journal of Statistics 39: 344–
355; 2011 © 2011 Statistical Society of Canada

Résumé: Dansunplan traditionnel pour déterminer la fiabilité d’un systèmedemesures, plusieurs évaluateurs

mesurent tous les sujets d’un même groupe. Lorsqu’il y a un grand nombre d’évaluateurs, nous recomman-

dons un nouvel ensemble de plans qui possède deux avantages par rapport au plan traditionnel. Premièrement,

les plans proposés procurent une plus grande précision pour l’estimation du coefficient de corrélation intra-

classe avec unmême nombre de mesures. Deuxièmement, ces plans sont flexibles et ils peuvent être modifiés

pour contraindre le nombre d’évaluations par sujet ou encore le nombre de mesures faites par un évaluateur.

Nous suggérons un outil facile d’utilisation pour planifier une étude de fiabilité et pour utiliser le logiciel

de planification lorsqu’il y a des contraintes. Nous présentons aussi un exemple pour illustrer l’analyse de

données partir des plans proposés. La revue canadienne de statistique 39: 344–355; 2011 © 2011 Société

statistique du Canada

1. INTRODUCTION

Reliability studies are widely used in medical and other contexts to assess both new and existing

measurement systems. See Shoukri et al. (2004) for a reviewof the design issues, especially sample

size, in such studies from amedical perspective. Burdick et al. (2005) in their book provide a more

extensive review from an industrial perspective. Measurement systems, especially in the medical

context, often include a large number of raters or operators who are one source of the variability

seen when the same subject is measured more than once by different raters. In this article, we

address the planning and analysis of efficient reliability studies when we can assume the raters

used in the study are a random sample from a large population of possible raters. We adopt the
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following model for a single measurement on one subject that explicitly displays the sources of

variation.

Y = P + O + M (1)

The random variable Y represents the measured value, P is a random variable representing

the true value of the characteristic,O is a random variable representing the rater (operator) effect,

and M is a random variable, which represents the residual variation due to other sources in

the measurement system. We make the usual normality and independence assumptions: P ∼
N(µ, σ2

p), O ∼ N(0, σ2
o ), M ∼ N(0, σ2

m) and P, O, and M are independent. In model (1), µ

represents the overall mean measurement, σp quantifies the variation due to differences in the

actual characteristic values among subjects, σo quantifies the variation due to differences among

the raters, and σm quantifies the variation due to other sources in the measurement system. We

see the effects of this final source of variation when there are repeated measurements by a single

rater on the same subject. The overall variation due to the measurement system is captured by

O + M with standard deviation
√

σ2
o + σ2

m.

The intraclass correlation coefficient, denoted ρ, is a standard metric for assessing the quality

of ameasurement system (Donner and Eliasziw, 1987). The intraclass correlation is the correlation

between two measurements on the same subject by different raters. From model (1), we have

ρ = σ2
p

σ2
p + σ2

o + σ2
m

(2)

If ρ is large the measurement system performs well since the variation due to real differences

among the subjects is much larger than the variation introduced by the measurement system.

Ideally ρ > 0.8 and any measurement system with ρ < 0.5 is unacceptable. In this article, in the

assessment of a measurement system, we presume that ρ is the primary parameter of interest. A

parameter of secondary interest is δ = σ2
m/(σ2

o + σ2
m). If δ is close to 0, much of the overall mea-

surement variation is due to rater to rater differences; if δ is close to 1, the rater to rater differences

are relatively small compared to the other sources of variation in the measurement system.

The traditional plan for estimating ρ is to select k subjects and r raters (at random) and then

have each rater measure each subject once for a total of N= krmeasurements [1]. We denote such

a plan by SP(k,r). We extend model (1) to describe the data from this plan

Yij = Pi + Oj + Mij, i = 1, . . . , k; j = 1, . . . , r (3)

where we make the additional assumptions that there is independence both within and between

{P1, . . . , Pk}, {O1, . . . , Or}, and {M11, . . . , Mkr}. In an industrial context, Burdick et al. (2005)
consider the planning and analysis for SP(k,r) using model (3).

Donner and Eliasziw (1987) andWalter et al. (1998) discuss optimal choices for k and r based
on maximizing power at a given alternative for a test of the hypothesis ρ = ρ0. The test is based

on a one-way analysis of variance where in model (3), the rater effects are subsumed into the

“other sources” terms, so the model becomes

Yij = Pi + M∗
ij
, i = 1, . . . , k; j = 1, . . . , r (4)

where we now assume that {P1, . . . , Pk} and {M∗
11, . . . , M∗

kr
} are independent. Walter et al.

(1998) present an example where there are 30 subjects and 25 raters available and two further

constraints. Due to respondent burden and time considerations, no subject can be measured more

than four times and no rater can make more than six measurements. They recommend a plan in

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



346 STEINER ET AL Vol. 39, No. 2

which there are five replicates of SP(6,4) so that there are 20 raters, 30 subjects, and a total of 120
measurements made during the assessment.

Within each of the replicate standard plans, when model (3) is collapsed into model (4), the

assumption of independence of the terms {M∗
1j, . . . , M∗

6j} for each rater j is violated. If ρ0 is

relatively large, the correlation between any pair of these terms can be substantial. It is not clear

whether the claimed power properties of the optimal design are met. In their discussion, Walter

et al. (1998) acknowledge this issue and suggest that if there are substantial rater effects, more

measurements are required to meet the power requirements.

In this article, we compare the precision of estimates of ρ from various standard plans to the

precision of the corresponding estimates from multiple replicates of a smaller standard plan. We

use different (randomly selected) subjects and raters in each replicate of the SP. We denote this

plan with b replicates by SP(k,r)b. With a replicated SP, we make a total ofN= krbmeasurements

and use kb different subjects and rb different raters. The plan proposed by Walter et al. (1998), as

described above, is SP(6,4)5. In our comparisons, we select k, r, and b so that the replicated plans
have the same total number of measurements as the standard plans.

We start with a heuristic argument that suggests why replicate standard plans may be more

efficient in estimating ρ than are the corresponding standard plans. Next, we calculate the likeli-

hood function, the Fisher information and a variance approximation for the MLE of ρ for both

standard and replicated standard plans. We then compare the two types of plans and show that

multiples of SP(2,2) have good properties. Next we provide a simple contour plot that can be

used when planning a reliability study to determine the required number of multiples of SP(2,2)
to achieve a pre-specified precision for the estimate of ρ. We also give an example to demonstrate

how to estimate ρ and its standard error with available software. In the subsequent section, we

look at cases when there are constraints on the design as described above. Finally, we provide a

summary and discuss several issues that arise as a result of this work.

2. REPLICATED STANDARD PLANS

We motivate the good performance of replicated standard plans with the following argument.

Since both the subjects and raters are random effects in model (3), we need a reasonable number

of subjects and raters (Burdick et al., 2005) to estimateσ2
p andσ2

o . In a two-way analysis of variance

for SP(k,r) (with no interaction), the three sums of squares for subjects, raters, and residual have

k− 1, r− 1, and (k− 1)(r− 1) degrees of freedom, respectively. These degrees of freedom roughly

correspond to how well we can estimate the three variance components σ2
p, σ

2
o , and σ2

m. If k and
r are large enough to produce good estimates of σ2

p and σ2
o , then we have a very large number of

degrees of freedom (k− 1)(r− 1), to estimate σ2
m. This lack of balance in the degrees of freedom

results in inefficient estimation of ρ especially when σ2
m is small. With a replicated plan, on the

other hand, with a small number of subjects and raters for each replicate, the number of degrees of

freedom within each replicate for each component of variance is similar. With SP(2,2)b, the plan
we recommend in the next section, there is one degree of freedom for each component of variance

within each replicate. When we then combine information across the replicates using maximum

likelihood estimation, there is a much better balance in the information about each component

of variance than with a single large standard plan. As we show later, this results in more precise

estimation of ρ when ρ > 0.5, that is, for any reasonable measurement system.

It is not clear how to combine the among- and within-replicate sum of squares in order to

use ANOVA for the replicated plans. Instead, we use likelihood methods for both planning and

analysis. The likelihood for a replicated SP is the product of the likelihoods for each of the

component SPs because of the independence assumptions and since each replicate uses different

raters and different subjects. We start with likelihood for SP(k,r) using model (3). We give the
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details of the derivation and the subsequent calculation of the Fisher information and variance

approximations in the Appendix. We stack the data in a single column vector y with the first

r elements corresponding to subject 1, the next r to subject 2, and so on. Using model (3), the

distribution of the corresponding random variable, Y, is multivariate normal with mean µ1kr

where 1kr is a vector of 1’s of length kr and variance–covariance matrix

�kr = Ikrσ
2
m +




Jrσ
2
p 0 0

0
. . . 0

0 0 Jrσ
2
p


 +





 σ2

o 0 0

0
. . . 0

0 0 σ2
o


 · · ·


 σ2

o 0 0

0
. . . 0

0 0 σ2
o




...
. . .

...
 σ2

o 0 0

0
. . . 0

0 0 σ2
o


 · · ·


 σ2

o 0 0

0
. . . 0

0 0 σ2
o







(5)

where Jr is an r× r matrix of 1’s.
Because the variance–covariance matrix has this simple form, the closed form expressions for

the inverse and determinant of �kr given in the Appendix allows us to write the log-likelihood

function as

l(µ, σ2
p, σ2

o , σ2
m |y ) = − 1

2
ln(|�kr|)− 1

2
(y−µ)T

−1∑
kr

(y−µ)

= − 1
2
ln

[
(rσ2

p + kσ2
o + σ2

m)(σ
2
m)

kr−k−r+1(rσ2
p + σ2

m)
k−1(kσ2

o + σ2
m)

r−1
]

− 1
2


b1

k,r∑
i,j

(yij−µ)2 + b2
k∑

i=1

(
r∑

j=1

(yij−µ)

)2

+ b3
r∑

j=1

(
k∑

i=1

(yij−µ)

)2

+ b4

(
k,r∑
i,j

(yij−µ)

)2



(6)

where the constants bi, i= 1, . . . ,4 are functions of k, r, σp, σo, and σm and are also given in the

Appendix.

The log-likelihood of a replicated SP is the sum of the log-likelihoods from each of the

individual component standard plans. Given the data from a SP or a replicated SP, we maximize

the likelihood to estimate the model parameters.

We use the Fisher (expected) information to find approximations for the variance of the

estimators of the three variance components σ2
m, σ

2
o , and σ2

p. From the log-likelihood given by (6),

the corresponding Fisher information matrix is given by the negative of the expected value of the

partial second derivatives with respect to µ, σ2
m, σ

2
o , and σ2

p. The information about µ is separate

from the information about σ2
m, σ2

o , and σ2
p, that is, the information matrix is block diagonal.

We found the long and messy expressions using Maple (Maplesoft, 2009). To avoid transcription

errors, we used the Matlab (The Mathworks Inc., 2008) facility to accept pasted expressions from

Maple (Maplesoft, 2009). In the Appendix, we give the expected values of the sums of squares

in (6) that involve the data.

Denoting the lower 3× 3 matrix of Fisher information matrix as F, the approximation for the

variance–covariancematrix of theMLEs of the parameters (σ2
m, σ2

o , σ2
p) is given byF

−1. To find an

approximation for the variance of theMLE of ρ, we use the delta method. The variance of the esti-

mator of ρ is approximatelyDTF−1D, whereD is the gradient vector [∂ρ/∂σ2
m, ∂ρ/∂σ2

o , ∂ρ/∂σ2
p].

We provide Matlab (The Mathworks Inc., 2008) code (www.bisrg.uwaterloo.ca) for finding this

variance approximation as a function of σ2
m, σ

2
o , and σ2

p.

3. COMPARISON AND RESULTS

In this section we compare SP and replicated SP plans with the same value of N, the total number

of measurements, using the asymptotic standard deviation for the MLE of ρ where we assume
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k≥ 2, r≥ 2 to ensure we can estimate all the model parameters. In setting this constraint, we

exclude the plans SP(k,1)b and SP(1,r)b that correspond to one-way designs.

We rank various plans by comparing the asymptotic standard deviation of the ML estimators.

We start by reporting part of the results of an extensive simulation where we compared the

approximations of the standard errors based on the Fisher information to those produced by

simulation. We also examined the bias of the estimators which are asymptotically unbiased when

both the number of raters and subjects goes to infinity. For example, we compared simulated and

asymptotic results for SP(2,2)15 and SP(10,6) over a range of values for the underlying parameters.

Both of these plans require a total of 60measurements and SP(2,2)15 uses 30 subjects and 30 raters.
Without loss of generality, we set σ2

m + σ2
o + σ2

p = 1. For each simulation, we used 10,000 trials.

In Table 1, we see, for the cases reported, that the information-based and simulated standard

errors for the MLEs are very close. In all cases, the MLEs have a negative bias that is smaller and

negligible for the replicated plan. This bias is a well-known problem with maximum likelihood

estimation based on model (4) (Swallow and Monahan, 1984).

More generally, for a wide variety of standard and replicated plans with different k and r,
the information-based approximations and simulated standard errors are very close as long as the

total number of subjects and raters is reasonably large. In this case, for the replicated plans, the

biases are negligible. We conclude that we can use the information-based approximations of the

standard error as a basis for comparing various plans. For the remainder of the article, we refer

to this approximation as the standard error.

To find good plans for specified values of N, we looked at all possible standard and replicated
plans. For a grid of values for ρ and δ, we rank plans based on the standard error for the MLE of ρ.

Not surprisingly, the best plan depends on the (unknown) parameter values. However, we found

that the replicated SP(2,2)b plan is either the best or close to the best plan when we constrain ρ to

be >0.5, that is, when the measurement system is not very poor. We also found that unless δ is

close to 1 (i.e., when σ2
o is small relative to σ2

m), there is a replicated SP that is much better than

the best SP for any particular choice of ρ and δ. We summarize the results in Figures 1 and 2 by

Table 1: Simulated biases and standard errors and approximated standard errors.

SP(2,2)15 SP(10,6)

σ2
m σ2

o σ2
p ρ σ2

m σ2
o σ2

p ρ

True 0.45 0.05 0.5 0.5 True 0.45 0.05 0.5 0.5

Sim. mean 0.426 0.074 0.475 0.474 Sim. mean 0.448 0.048 0.455 0.450

Sim. SE 0.138 0.090 0.200 0.145 Sim. SE 0.092 0.052 0.251 0.146

Approx. SE 0.161 0.123 0.204 0.137 Approx. SE 0.095 0.061 0.261 0.143

True 0.125 0.125 0.75 0.75 True 0.125 0.125 0.75 0.75

Sim. mean 0.125 0.125 0.726 0.733 Sim. mean 0.125 0.117 0.689 0.713

Sim. SE 0.045 0.072 0.224 0.091 Sim. SE 0.026 0.080 0.333 0.119

Approx. SE 0.046 0.071 0.227 0.083 Approx. SE 0.026 0.087 0.352 0.112

True 0.01 0.09 0.9 0.9 True 0.01 0.09 0.9 0.9

Sim. mean 0.010 0.089 0.868 0.891 Sim. mean 0.010 0.086 0.823 0.879

Sim. SE 0.004 0.035 0.241 0.046 Sim. SE 0.002 0.054 0.390 0.079

Approx. SE 0.004 0.035 0.245 0.041 Approx. SE 0.002 0.057 0.409 0.067
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Figure 1: Efficiency of SP(2,2)30 versus SP(20,6) (left) and the best SP (right), N= 120.

comparing the efficiency of the SP(2,2)b (b= 15, 30) plan to a specific standard SP or the best

SP for the given the values of ρ and δ. We define efficiency as the ratio of standard errors (not

variances, as is often done). The replicated SP is preferred if the efficiency is >1.

We see in Figures 1 and 2 that replicated plan SP(2,2)b is substantially better at estimating ρ

than is any standard plan. When δ is small and ρ is large the gains are substantial. The standard

and replicated plans have similar efficiency when ρ is small and δ is large. We find similar results

for other values of b.
To determine how many replicates of the SP(2,2) plan are required to give a desired standard

error for the MLE of ρ, note that the Fisher information matrix for SP(2,2)b is b times the Fisher

information for SP(2,2). And so the standard error of the MLE for SP(2,2)b is the standard error

for SP(2,2) divided by
√

b. In Figure 3, we plot contours of the standard error for SP(2,2) as a
function of ρ and δ. Note that for this plan, the standard error is sensitive to changes in ρ but

not δ.

We illustrate the use of Figure 3 with the following example. Suppose we think ρ ≈ 0.8 and

δ ≈ 0.5. We want to estimate ρ with a standard error of about 0.05. From Figure 3, the SE(ρ̂)

for SP(2,2) is 0.27 when ρ = 0.8 and δ = 0.5. Then, solving 0.27/
√

b = 0.05 gives b= 29. The

replicated plan SP(2,2)29 will provide the desired precision. This plan has 58 raters, 58 subjects,
and 116 measurements. We cannot safely apply the results in Figure 3 unless b> 15, that is, we

have a least 60 measurements in total.

Figure 2: Efficiency of SP(2,2)15 versus SP(10,6) (left) and the best SP (right), N= 60.
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Figure 3: Contour plot of the standard error of ρ̂ for SP(2,2).

Figure 4: Contour plot of the standard error of δ̂ for SP(2,2).

We stated that the primary goal of the assessment study is to estimate ρ and we recommend

a replicated plan that is efficient in estimating the primary parameter. We can also look at δ =
σ2

m/(σ2
m + σ2

o ), a parameter that describes the relative contribution of the rater to rater differences

to the variation due to the entire measurement system. In Figure 4, we show contours of the

standard error of δ̂ for SP(2,2). We see that the standard error depends highly on δ and not on ρ.

We also note, not surprisingly, that SP(2,2) provides far less information about δ than for ρ. For a

plan with b copies of SP(2,2), the standard error of δ̂ is 1/
√

b times the value given by Figure 4.

4. A NUMERICAL EXAMPLE

To illustrate the analysis of a replicated standard plan, we use data from the SP(2, 2)10shown in

Table 2. Note there are 20 subjects and 20 raters.
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Table 3: Best four plans satisfying the constraints.

k r n b SE(σ2
m) SE(σ2

o ) SE(σ2
p) SE(δ) SE(ρ)

6 4 1 5 0.0082 0.0213 0.2386 0.1166 0.0315

6 5 1 4 0.0079 0.0207 0.2654 0.1129 0.0332

3 2 2 10 0.0079 0.0260 0.2418 0.1380 0.0350

2 2 3 10 0.0075 0.0261 0.2951 0.1374 0.0389

The MLEs from this data are (µ̂, σ̂2
m, σ̂2

o , σ̂2
p)= (1.958, 0.047, 0.132, 1.479). Thus, we have

ρ̂ = 0.892. By substituting the estimates into the Fisher information, we get an approximate stan-

dard error for ρ̂ of 0.0512. Since ρ must lie between 0 and 1, it is best to derive the confidence

interval on a transformed scale. We have found that the Fisher z-transform seems to work well.

We let θ = 1/2 log((1 + ρ)/(1−ρ)) then ∂θ/∂ρ = 1/(1−ρ2) and SE(θ̂) = (SE(ρ̂))/(∂ρ/∂θ) =
(SE(ρ̂))/(1−ρ̂2). So, for instance, to derive an approximate 95% confidence interval for ρ, we

translate to the θ scale and find the approximate 95% confidence interval on this scale using

θ̂ ± 2SE(θ̂). Then, we translate back to the ρ scale. In the example, using the transformation,

we have θ̂ = 1.43 and SE(θ̂)= 0.2505. Thus, an approximate 95% confidence interval for θ is

1.43± 0.5. Translating back to the ρ scale, we get the approximate 95% confidence interval (0.73,

0.96). In this case the confidence interval is wide because only 40 measurements were made.

Matlab (The Mathworks Inc., 2008) code to find the MLEs and the approximate standard errors

is available at (www.bisrg.uwaterloo.ca).

5. REPLICATED PLANS WITH CONSTRAINTS

In some contexts, there may be constraints on the number of raters or subjects available for the

assessment. We let the maximum values be R and K. Because of limited subject tolerance or

because it is not possible to subdivide the test material into more than a few specimens, there

may be a maximum number A of measurements that can be made on any one subject (Walter

et al., 1998). Similarly there may be a constraint on the number of subjects B any one rater can

assess. The total number of measurements N satisfies the constraints N ≤ RB and N ≤ KA. The

replicated SP plans proposed in this article are well suited to adapt to these sorts of constraints. A

SP(k, r)b plan uses kb subjects, rb raters and each subject is assessed only r times. By selecting

k, r, and b appropriately, we can find all replicated plans that satisfy the given constraints.

Matlab (The Mathworks Inc., 2008) code for comparing the efficiency of all replicated SPs
satisfying the constraints is available on the web site www.bisrg.uwaterloo.ca. The inputs to the

program are the constraints N, K, R, A, and B as well as initial guesses for ρ and δ. If there is no

limit to one of these design parameters, we set its value sufficiently high so that it has no impact.

The program identifies all plans that satisfy the constraint including those with n > 1. Recall that

n is the number of times each rater measures each subject. The feasible plans are ranked using

the approximate standard error of the MLE of ρ.

Walter et al. (1998) give an example where there are at most K= 30 subjects, at most R= 20

raters and each rater can assess at mostB = 6 subjects.We know thatN ≤ 120. There are 18 plans

that satisfy the constraints withN = 120. Table 3 lists the four plans with smallest standard errors

for ρ̂ when ρ = 0.9 and δ = 0.5. The single standard plan SP(6,20) satisfying the constraints has
SE(ρ) = 0.0553. Note that there are plans with n > 1 that are close to optimal.

We investigated SP(6, 4)5 over the range 0.7 ≤ ρ ≤ 0.99, 0.1 ≤ δ ≤ 0.9 and found that it

was uniformly the best plan satisfying the constraints with the smallest standard error for ρ.
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The SP(6, 4)5 is the plan recommended byWalter et al. (1998). Note however that here we are

selecting this plan based on its properties using the appropriatemodel (3), not the one-wayANOVA

model (4). The analysis with the incorrect model can yield substantial bias in the estimation of ρ

when there are substantial rater to rater differences.

In the above example,SP(6, 4)5 consists of replicates ofSP(6,4),which is the smallest standard

plan with a feasible value of b that meets the constraints and uses exactlyN = 120 measurements.

We conjecture that this is generally true but cannot provide a proof. It is also interesting to note,

for example, if R = K = 40 and B = 6, the plan SP(3, 3)13 using 117 measurements produces a

slightly smaller approximate standard error for ρ than does SP(6, 4)5 when ρ = 0.9 and δ = 0.5

We suspect that higher powers of smaller standard plans are generally better because of the

heuristic degrees of freedom argument presented earlier.

6. DISCUSSION AND SUMMARY

In our search for good measurement assessment plans, we also considered other ways to augment

the traditional plan. We tried plans with the structure SP(k, r) × SP(s, 1)b where k and r are

small. In the augmented part, b different raters measure each different subject once. This type

of augmentation works well in the fixed rater effects case (Stevens et al. 2010) but with random

rater effects, this structure never produced the best plan. More generally, we also considered

augmented plans that consisted of a small SP together with any number of copies of another SP
that could have different number of subjects and raters. For N fixed and some combinations of ρ

and δ, these augmented plans were somewhat better than the replicated SP we recommend in this

article. However, due to the additional complexity of implementing the plan and the difficulty of

scaling the plan to a different total number of measurements we did not look at these plans any

further.

For simplicity of exposition, we refer to raters throughout this article. The results are also

applicable where the measurement system is automated (i.e., there are no rater effects) but there

is a population ofmeasurement devices.Withmodel (1), we assume there is no interaction between

subject and rater. That is, the effect of a particular rater is the same regardless of the subject. If, in

fact, there is interaction so the effect of a rater changes from subject to subject, this extra variation

is subsumed by M. It is not clear how this extra source of variation might change the results we

have presented.

In summary, to assess the reliability of a measurement system where we assume raters are

random effects and we ignore possible subject by rater interaction, we recommend a replicated

standard plan as an improvement over the traditional plan. The replicated plan consists of many

copies of the simple plan where two subjects are measured once by each of two raters. We

showed that the replicated SP was more efficient for estimating ρ, the intraclass correlation

coefficient, when ρ > 0.5, that is, when the measurement system is reasonable. The replicated

SP plan SP(2, 2)b has other advantages over the SP since each subject is measured only two

times regardless of the value of b. If there are constraints on the number of subjects, raters, and

the number of times each subject can be measured or each rater measure, then we recommend

investigating all feasible plans of the form SP(k, r)b.

APPENDIX

We can write the variance–covariance matrix given in (5) compactly as

�kr = Ikrσ
2
m + (Ik ⊗ Jr)σ

2
p + (Jk ⊗ Ir)σ

2
o
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where Ia is an a × a identity matrix, Ja is an a × amatrix of ones, and⊗ is the Kronecker product.

By direct multiplication, the inverse is

�−1
kr = Ikrb1 + (Ik ⊗ Jr)b2 + (Jk ⊗ Ir)b3 + Jkrb4

where the constants bi, i = 1, . . . , 4 are functions of k, r, σ2
p, σ

2
o , and σ2

m

b1 = 1

σ2
m

, b2 = − σ2
p

σ2
m(rσ

2
p + σ2

m)
, b3 = − σ2

o

σ2
m(kσ

2
o + σ2

m)

b4 = σ2
pσ2

o (2σ
2
m + rσ2

p + kσ2
o )

r2σ4
pσ4

m + 2rσ6
mσ2

p + k2σ4
oσ4

m + 2kσ6
mσ2

o + 3krσ4
mσ2

pσ2
o + kr2σ4

pσ2
oσ2

m + k2rσ2
pσ4

oσ2
m + σ8

m

The determinant of �kr is

|�kr| = (rσ2
p + kσ2

o + σ2
m)(σ

2
m)

kr−k−r+1(rσ2
p + σ2

m)
k−1(kσ2

o + σ2
m)

r−1

The log-likelihood function for a standard plan with k subjects and r raters is thus given by

(6). The expected values of the sums of squares in the likelihood needed to determine the Fisher

information are

E


 k,r∑

i,j

(yij−µ)2


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o + σ2

m), E
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2
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2
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