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Monitoring binary outcomes using
risk-adjusted charts: a comparative
study
Edit Gombay,a Abdulkadir A. Husseinb*† and Stefan H. Steinerc

Monitoring binary outcomes when evaluating health care performance has recently become common. Classical
statistical methodologies such as cumulative sum (CUSUM) charts have been refined and used for this purpose.
For instance, the risk-adjusted CUSUM chart (RA-CUSUM) for monitoring binary outcomes was proposed for
monitoring 30-day mortality following cardiac surgery. The RA-CUSUM inherits optimality properties of the
original CUSUM charts in the sense of signaling early when there is change. However, although the RA-CUSUM
is a powerful monitoring tool, it will always eventually signal a change with probability 1 even when there is no
real change. In other words, the probability of a type I error for the RA-CUSUM is 1. It also turns out that,
because of the skewed distribution of the run lengths of the RA-CUSUM, the median is often well below the
mean, and as a consequence more than half of all its false alarms occur before the designed average run length.
In addition, when the change to be detected occurs at a later time in the series of observations being moni-
tored, the rate of false alarms increases, and the RA-CUSUM may not be appropriate. Therefore, if the price
of false alarms is high, it is preferable to use methods that control the rate of false alarms. In this paper, we
propose alternative sequential curtailed and risk-adjusted charts that control the type I error rate in the context
of monitoring 30-day mortality following cardiac surgery. We explore the merits of each of these methodologies
in terms of average run lengths as well as in terms of type I error probabilities, and we compare them to the
RA-CUSUM chart. We illustrate the methodologies by using data on monitoring performance of seven surgeons
from a medical center. Copyright © 2011 John Wiley & Sons, Ltd.
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1. Introduction

Recently, monitoring health care outcomes such as post-operative mortality rates has become common,
and new statistical methodologies such as risk-adjusted cumulative sum control charts (RA-CUSUM)
charts have emerged for this purpose. Risk-adjusted charts were used for instance in monitoring the risk
of Down’s Syndrome among Norwegian newborn babies of mothers over 30 years of age [1]; in the
report of Bristol Royal Infirmary Inquiry [2], which monitored the annual mortality rates for open-heart
surgery on children under 1 year of age; in the case of the general practitioner Dr. Harold Shipman, who
was convicted for murdering more than 200 of his patients [3]; and in monitoring incidence of congenital
malformations after the Thalidomide Tragedy of the 1960s.

When monitoring in the medical context, it is often necessary to account for variations in patient
conditions which lead to differential prior risks at the time of treatment. That is, while monitoring the
adverse outcomes of medical procedures, we must take into account the heterogeneity of the baseline
risk in order to avoid unwanted false-alarms, respond quickly to the changes, and release the clinicians
from unjustified accusation as a result of treating high-risk patients. Hence, the notion of risk adjustment
was introduced into monitoring, which means adjustment for the type of procedure and patient conditions
(risk factors) collectively referred to as case-mix.
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Cumulative monitoring over time is needed for rare adverse events rather than annual routine exam-
ination of the data [4]. Therefore, statistical process control methodologies, in particular RA-CUSUM,
have been recommended for monitoring performance in health care. In addition to RA-CUSUMs, there
are many other methods that used risk-adjusted monitoring such as (i) variable life-adjusted display of
[5, 6], (ii) cumulative risk-adjusted mortality [7], (iii) sequential probability ratio test (SPRT) of [4], (iv)
resetting SPRT of [4], (vi) Shewhart p-charts of [8], and (vii) the sets method of [9]. For further exam-
ples and discussions of the above charts, the reader is referred to Woolall [10], Grigg and Spiegelhalter
[11, 12], and Lai [13].

The most commonly used risk-adjusted chart is the RA-CUSUM. Because of the open-ended (indefi-
nite) monitoring in RA-CUSUM, the probability of signaling alarm when there is no real problem (type I
error) is 1. Also, the distribution of time to alarm (known also as run length) is exponential-type skewed
distribution, and therefore, although the average run length (ARL) may be long when there is no problem,
the likelihood of stopping much earlier than the calculated theoretical ARL is high. Furthermore, these
classical CUSUM procedures have recently come under serious theoretical scrutiny. Mei [14] has shown
that the control limits of the monitoring algorithm may work quite differently from expected under many
scenarios, resulting in performances that are not well understood. To overcome this problem, one may
employ curtailed sequential monitoring procedures based on score statistics as in [15]. In this paper, we
propose four sequential curtailed and risk-adjusted charts by using score statistics. We perform Monte
Carlo simulations to explore the merits of each of these methods in terms of ARLs as well as in terms
of type I probabilities. We also compare the proposed methods to the RA-CUSUM chart. We illustrate
the methodologies by using data on monitoring performance of seven surgeons from a cardiac surgery
center in the UK.

In Section 2, we describe the proposed sequential curtailed and risk-adjusted procedures. In Section 3,
we use baseline parameters taken from the data set on cardiac surgery outcomes reported in [16], and
we set up Monte Carlo simulations to assess the merits of each of the methods in terms of ARL and type
I errors. In Section 3.2, we apply the methods to the cardiac surgery data, and in Section 4, we provide
some discussion and recommendations.

2. The risk-adjusted charts

2.1. Concept of risk-adjusted

One of the first risk-adjusted charts was the RA-CUSUM chart proposed for Down’s syndrome
assessment in [1] and later for monitoring surgical outcomes in [16].

Risk adjustment accounts for patients’ prior risk factors when evaluating treatment risk. In the context
of mortality after surgical operation, let �t be the probability of an adverse event for the t th patient. This
probability is a function of the patient’s covariates. In cardiac surgery, we use a logistic model based on
Parsonnet score (see [17]) so that

log

�
�t

1� �t

�
D ˛C ˇxt ; (1)

where xt is the Parsonnet score of the patient. We estimate parameters ˛ and ˇ from historical data sets.
We monitor surgical outcomes by testing the null hypothesis H0 against the alternative HA, which

essentially represent the in-control and out-of-control situations, respectively. We base these hypotheses
on odds ratios because each patient has a different baseline risk level. For a given estimated risk of failure
equal to �t , the odds of failure is �t

1��t
.

Risk-adjusted charts use varying �t in the patient population in sequentially testing the hypotheses,

H0 WRt D
�0t =.1� �

0
t /

�t=.1� �t /
DR0

versus

HA WRt D
�1t =.1� �

1
t /

�t=.1� �t /
DRA; (2)

where �0t is the probability of an adverse outcome for an in-control process, and R0 is the odds ratio of
the odds of an adverse outcome for an in-control process to the odds of an adverse outcome after risk

2816

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2815–2826



E. GOMBAY, A. A. HUSSEIN AND S. H. STEINER

adjustment for patient t . Similarly, �1t is the probability of an adverse outcome for an out-of-control
process with RA being the odds ratio of the odds of an adverse outcome for an out-of-control process to
the odds of an adverse outcome after risk adjustment for patient t . Usually, RA >R0 which indicates an
increase in the failure rate. If the estimated risk �t is based on the current conditions as in [16], then we
may set R0 = 1.

We can formulate the above hypotheses in terms of a more general change point detection terminology
by setting

H0 W Rt DR0; t D 1; 2; : : : ; n

HA W Rt DR0; t D 1; 2; : : : ; �; Rt DRA; t D � C 1; � C 2; : : : ; n; (3)

where � is the change point.
The patient after whom the change started (the � th patient) is often unknown. If the sample size is

indefinite (that is, n D1) and the change under the alternative is assumed to have begun with the first
operated patient (that is, � D 1), then we have the hypotheses given in Equation (3) previously, and
methodologies used for testing such hypotheses are known as sequential tests. The RA-CUSUM chart
proposed in [16] is an example of this type of method.

We can generalize the hypotheses in Equation (3) by not specifying the alternative value RA. This
allows detection of any change regardless of its magnitude. Thus, Equation (3) becomes

H0 W Rt DR0; t D 1; 2; : : : ; n

HA W Rt DR0; t D 1; 2; : : : ; �; Rt ¤R0; t D � C 1; � C 2; : : : ; n: (4)

Such alternative hypotheses with non-specific alternatives are also known as composite alternative
hypotheses. Lai [13] discussed the use of generalized likelihood ratio (GLR) in change point detection
procedures for this type of composite hypotheses. However, we find that standardized score statistics are
more interpretable than the GLR procedures. Therefore, in the next section we provide change-detection
procedures based on score statistics in the context of surgeon performance monitoring.

2.2. Risk-adjusted and truncated sequential methods

First, we describe four truncated and risk-adjusted sequential tests as well as the RA-CUSUM method
for monitoring changes in surgical performances. Sequential tests and sequential change-detection
methods are closely related. In sequential tests, we assume the change to be at the first observation,
so it is a special case of change-detection methods where the change can be at any point in time. In
practice, we will truncate all sequential tests at some point, and in many applications, as in clinical trials
for example, truncation is desired. In fact, soon after the first open-ended classical sequential tests of
[18] were defined, efforts began to produce their truncated (curtailed) versions, where testing continued
until a maximum sample size n is reached.

Consider the null and alternative hypotheses in Equation (4) and define the standardized score statistic
process at epoch t as

St D

tX
iD1

.yi � �i / =
p
�i .1� �i /; (5)

where yi D 1 if an adverse event occurred to the i th patient and 0 otherwise, the probability of an
adverse event being �i D exp.˛ C ˇxi /=.1C exp.˛ C ˇxi //; where xi is the Parsonnet score of the
i th patient and t D 1; : : : ; n: Terms in the above sum are the standardized difference of observed and
expected values of the adverse event indicator yi .

We consider three possible test statistics that we can construct based on this type of score process.
Depending on their normalizing coefficients, the test statistics would follow different approximate distri-

butions. These statistics are as follows: (i) max1<t6n 1p
n
jSt j; (ii) max1<t6n

n
max1<j<t 1p

n

�
St � Sj

�o
;

and (iii) max1<t6n 1p
t
jSt j. We can approximate nicely the first two statistics by sup0<t<1 jW.t/j, where

W.t/ is a standard Brownian motion process. Therefore, for a given significance level (a pre-specified
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probability of false alarm), one can easily obtain the monitoring threshold, h2, for the first two statistics
by using the well-known probability distribution of such a functional of Brownian motion (see [19]),

˛ D P

�
max
1<t6n

1
p
n
jSt j> h2

�
Š P

�
max
1<t6n

�
max
1<j<t

1
p
n

�
St � Sj

��
> h2

�

Š P

�
sup
0<t<1

jW.t/j> h2

�

D 1�
4

�

1X
lD0

.�1/l

2l C 1
exp

�
�2.2l C 1/2

8h22

�
; (6)

where the threshold for monitoring depends only on the probability of false alarm, that is, h2 D h2.˛/.
A one-sided version of the first test statistic is also possible by removing the absolute value sign. Such
process would have simpler tail probabilities that we can calculate from the standard normal distribution,

˛ D P

�
max
1<t6n

1
p
n
St > h3

�
Š P

�
sup
0<t<1

W.t/ > h3

�
D 2Œ1�ˆ.h3/�; (7)

whereˆ.:/ is the cumulative distribution function of the standard normal. Thus, we can approximate the
threshold h3 by h3 Šˆ�1.1�˛=2/: Darling and Erdös [20] have calculated the asymptotic distribution
of the third test statistic. They showed that

lim
n!1

P

�
a.n/ max

16t6n
t�1=2jSt j � b.n/6 h1

�
D exp.�2eh1/; �1< h1 <1; (8)

where a.n/ D .2 log.logn//�1=2 and b.n/ D 2 log.logn/ C 1=2 log.log.logn// � 1=2 log� . From
this, we can see that max16t6n t�1=2jSt j converges to infinity at the very slow rate of .log.logn//1=2

as n!1. The practical implication of this is that increasing the monitoring time horizon (truncation
point) does not have a large effect on the threshold. Furthermore, the direct use of Equation (8) for the
threshold gives very conservative tests, as the convergence of the maximum value is so slow. We can
obtain a better approximate tail probability expression for this test statistic by approximating it through
a diffusion process and then by using a formula from Vostrikova [21] for the probability distribution of
the maximal functional of diffusion processes. That is, we can write

˛ D P

�
sup
1<t6n

1
p
t
jSt j> h1

�
Š

exp.�h21=2/h1p
2�

�
ln.n/.1�

1

h21
/C

4

h21
CO.

1

h41
/

�
; (9)

where h1 D h1.n; ˛/ is a threshold that depends on both the probability of false alarm as well as on the
truncation point, n.

These score tests have also been used in detecting changes in time series as well as in the context of
sequential testing [22–26]. The score statistic, as opposed to the likelihood ratio statistic used in RA-
CUSUM, maintains the familiar interpretation of expected minus observed, and in addition it does not
require specification of an alternative hypothesis. We can now define the following four tests (monitoring
procedures) based on the above three score test statistic processes.

1. Test 1: Signal an alarm if for some 1 < t 6 n

STAT1.t/D
1
p
t
jSt j> h1.n; ˛/:

If STAT1.t/ < h1.n; ˛/ for all t 6 n, then no evidence against the null hypothesis has been found,
and the monitoring process has to be restarted.

2. Test 2: Signal an alarm if for some 1 < t 6 n;

STAT2.t/D
1
p
n
jSt j> h2.˛/:

If STAT2.t/ < h2.˛/ for all t 6 n, then no evidence against the null hypothesis has been found,
and the monitoring process has to be restarted.
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3. Test 3: A one-sided version of Test 2 can be obtained by removing the absolute value from the
STAT2, that is, by monitoring

STAT3.t/D
1
p
n
St

with threshold h3.˛/.
4. Test 4: Signal an alarm if for some 1 < t 6 n

STAT4.t/D max
1<j<t

n�1=2
�
St � Sj

�
> h2.˛/;

otherwise conclude that there is no evidence of a change in performance, and the monitoring
process must restart.

Although Equation (6) for calculating the threshold h2 for a pre-specified false alarm rate, ˛, is in the
form of an infinite series, often the first five or so terms of the summation are enough to give an accu-
rate result. For convenience of the users, we report in Table I some values of h2 for several commonly
used values of false alarm probability, ˛. For Test 1, by using Vostrikova’s formula (9), we can see, for
example, that the truncation point nD 9600, which we will use in the simulation section later on, gives
for ˛ D 0:1; 0:05, and 0:01 the approximate thresholds 3:05; 3:30, and 3:79, respectively. Doubling the
monitoring horizon to nD 19; 200 would give approximate thresholds 3:08; 3:32, and 3:81, respectively.
It is also worth pointing out that, in order to avoid erroneous early stopping, it may be advisable to start
monitoring after at least n0 D 10 observations have been accrued. This would help the procedure per-
form better specially in the case of Test 1, in which the maximum may be attained early in the series
being monitored.

Next, we describe the risk-adjusted CUSUM of [16], designed to monitor for a change with underlying
hypotheses of the form (3).

5. RA-CUSUM: Signal an alarm if for t > 1

Zt DMax Œ0; Zt�1CWt � > h; (10)

where Z0 = 0, and Wt is the likelihood ratio contribution of the t th patient, defined by

Wt D

8<
:

log
h
.1��tCR0�t /RA
.1��tCRA�t /R0

i
if yt D 1;

log
h
.1��tCR0�t /
.1��tCRA�t /

i
if yt D 0:

(11)

The threshold value h is a function of the ARL under the null hypotheses of no change. We
can compute this critical value by using an exact formula that requires numerical integration, by
using approximate Markov chain techniques, or by using Monte Carlo simulations. For detect-
ing improved performance, Steiner et al. [16] suggested using an updated formula for detecting
decreases in the treatment failure rate, that is, RA <R0, so that the RA-CUSUM with

Zt Dmin Œ0; Zt�1 �Wt � (12)

will accumulate negative values.

The RA-CUSUM procedure defined in the previous paragraph is based on Page’s original CUSUM
procedure [27], and as such it is asymptotically optimal in the sense of minimizing the delay of alarm,
given that the time of change (the change point) has been passed [28, 29]. The test is, however, open
ended, which means that there is no maximum sample size, although it will eventually stop with
probability 1 at some finite sample.

Table I. Threshold values h2 and h3 for various probabilities of false alarm, ˛.

˛ 0.01 0.05 0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.45
h2 2.8070 2.2414 1.9600 1.7805 1.6448 1.5341 1.4395 1.3562 1.2812 1.2126
h3 2.5758 1.9600 1.6449 1.4395 1.2816 1.1503 1.0364 0.9346 0.8416 0.7554

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2815–2826
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In contrast, the proposed sequential Tests 1–4 have a maximum sample size n (also known as mon-
itoring horizon or truncation point). One way of choosing the truncation point n is to take the ARL of
the RA-CUSUM under the null hypothesis as initial guess and fine-tune it by using Monte Carlo simu-
lations in order to attain a desired power. An alternative approximate method for choosing n is based on
calculations similar to sample size calculations in the nonsequential testing setup. To illustrate the latter,
consider Test 4 and fix the level of significance to ˛. As the approximating large sample distribution
is now the distribution of sup0<t<1 jW.t/j, that is, the supremum of the standard Brownian motion’s
absolute value on the interval (0, 1), this distribution will replace the standard normal distribution in the
calculations of power for normal tests. Furthermore, assume that we wish to attain a power of 1� ˇ in
detecting an alternative odds ratio of RA with a delay of nı, 0 < ı < 1, observations after the change
point � D �n, 0 < � < 1. As the scores yi � �i depend on the Parsonnet score xi as well, where xi
is assumed to be a random variable, we have to choose a value for xi . One can take the average value
of Parsonnet scores in the historical data to calculate �i . Then routine calculations give the minimum
truncation point value

n>
�
F˛ �F1�ˇ

2ı.�A � �0/

�
;

where F˛ denotes the upper ˛-percentile of the distribution of sup0<t<1 jW.t/j and where we use a factor
of 1=2 as the maximum value of

p
�.1� �/. As an example, we take R0 D 1, RA D 2, and the average

historical Parsonnet score x D 40, and at the level of ˛ D 0:05 we wish to have power 1 � ˇ D 0:8

to detect this shift within 0:1n observations. This gives us ı D 0:1, F0:05 D 2:24, F0:8 D 0:82, and
�A��0 D 0:169. We get n> 1765 is a sufficiently large value of the truncation point. The actual power
achieved can be greater or smaller depending on whether ıC� is smaller or greater than 1, respectively.

3. Numerical studies

3.1. Simulation studies

We considered the model logit.pt /D�3:68C 0:077xt , where the coefficients are based on the surgeon
monitoring data set between 1992 and 1994 as in [16]. In the simulation study, we randomly (with
replacement) sampled Parsonnet scores from the actual scores of the surgeon monitoring data (1992–
1998). For the RA-CUSUM, we used h D 4:5, and for all tests, the odds ratios were varied over
R0 D 1 and RA D 1:5; 2. The upper quartile Q3 of the RA-CUSUM’s run lengths was found to be
9751 under the null hypothesis of no change. Accordingly, we set the truncation point for the rest of
the tests near that value, n D 9600, and we computed h1.n; ˛/ D h1.9600; 0:05/ D 3:28, whereas
h2.0:05/ D 2:24; h3.0:05/ D 1:96, independent of n. The change point was set at the start of the
monitoring process, � D 1 and at time points � D 3000; 6000; 9000.

Also, based on the simulation results, we plotted in Figures 1 and 2 the probability of a false alarm
under a doubling odds ratio and the conditional power of all tests as functions of the change point � ,
respectively. We obtained the probability of false alarms as the proportion of signals occurring before
the change point � , whereas we defined the conditional power as the proportion of signals occurring after
� but before the truncation point 9600 for the case of RA-CUSUM.

We did the Monte Carlo simulations in R (R Development Core Team (2010). R: A Language and
Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria) [30],
and each scenario was repeated 5000 times to compute ARLs and error probabilities. In Table I, we
reported the first and third quartiles (Q1;Q3), the median Q2, the mean (ARL), and the maximum of
the distribution of the run lengths of the RA-CUSUM. We also reported in the same table the ARLs for
runs stopping on or after the change (ARL> � ) and those stopping before the change (ARL< � ) as well
as the empirical probability of stopping before the change, computed as the fraction of stops occurring
before � out of the 5000 runs. For Tests 1–4, we reported the same results as for RA-CUSUM, together
with the probabilities of type I errors and powers, in Tables II–IV.

From Table I, we see that for the RA-CUSUM, the probability of stopping before the change point can
be as high as 70% in certain configurations. Also, the unconditional ARLs are well below the change
point itself when the change is not at the beginning of the series being monitored. This is clear from
the column headed by ARL in Table I, where ARL D 2581; 4012; 5332 for � D 3000; 6000; 9000,
respectively. These ARLs are before their respective change points. However, the conditional ARLs
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Figure 1. Probability of false alarm of all tests as functions of the time of change � for doubling odds ratio and
truncation point of nD 9600 for Tests 1–4.
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Figure 2. Conditional power of all tests as functions of the time of change � for doubling odds ratio and
truncation point of nD 9600 for Tests 1–4.

of the RA-CUSUM, given that the change point has been passed, are the shortest among all tests
reported here (see the columns headed by ARL > � ). For instance, the conditional run lengths are
ARLD 206; 3183; 6188; 9184 for changes of magnitude RD 2 occurring at � D 1; 3000; 6000; 9000,
respectively. This is consistent with the optimality properties pointed out by [27] and [29].

Tables II–VI show that Tests 1–4 indeed have good control over their type I errors (probabilities of
false alarm). Test 1’s ARLs are the shortest, but its power is lower than the power of the other truncated
tests. Tests 2–4 are comparable in terms of their ARLs; although Test 4 is quite conservative, it is best
in detecting late changes. It is obvious that these new methods detect change with greater delay than
RA-CUSUM, but their power is high, and we can trust that they stop for genuine changes most of the
time.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 2815–2826
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Table II. Simulated quartiles Q1;Q2, and Q3, maximum and average of the run lengths of RA-CUSUM
with hD 4:5 for detecting changes in odds ratio R at times � D 1; 3000; 6000; 9000. ARL> � , ARL< � , and
P� are the average run lengths (ARLs) for runs stopping on or after � and those stopping before � , and the
probability of stopping before � , respectively.

R Q1 Q2 ARL Q3 Max ARL > � ARL < � P�

� D 1

1.0 2063 4824 6967 9751 53280 6967 NA 0.00
1.5 236 421 546 725 3420 546 NA 0.00
2.0 114 174 206 263 1258 206 NA 0.00

� D 3000

1.5 2055 3204 2798 3513 6541 3521 1396 0.34
2.0 2079 3089 2581 3188 3928 3183 1457 0.35

� D 6000

1.5 2086 4952 4322 6339 9387 6523 2651 0.57
2.0 1737 4659 4012 6129 6721 6188 2547 0.60

� D 9000

1.5 1908 4826 5209 9140 13140 9528 3462 0.71
2.0 2227 5181 5332 9077 9781 9184 3666 0.70

Table III. Simulated type I error, quartiles Q1;Q2, and Q3, maximum and average of the run lengths of
Test 1 with truncation point n D 9600 and ˛ D 0:05 for detecting real changes in odds ratio R at times
� D 1; 3000; 6000; 9000. ARL> � , ARL< � , and P� are the average run lengths (ARLs) for runs stopping
on or after � and those stopping before � , and probability of stopping before � , respectively.

R Ǫ Q1 Q2 ARL Q3 Max ARL > � ARL < � P�

� D 1

1.0 0.055 9600 9600 9114 9600 9600 9114 NA 0.000
1.5 1.000 324 678 811 1181 3702 811 NA 0.000
2.0 1.000 103 203 248 344 1164 248 NA 0.000

� D 3000

1.5 1.000 4494 5070 5016 5747 8789 5235 218 0.044
2.0 1.000 3727 3996 3856 4242 5849 4038 191 0.047

� D 6000

1.5 0.758 7974 8791 8317 9570 9600 8721 432 0.049
2.0 1.000 6964 7324 6979 7668 8930 7382 648 0.060

� D 9000

1.5 0.058 9600 9600 9120 9600 9600 9599 590 0.053
2.0 0.060 9600 9600 9298 9600 9600 9596 1273 0.036

Table IV. Simulated type I error, quartiles Q1;Q2, and Q3, maximum and average of the run lengths of
Test 2 with truncation point n D 9600 and ˛ D 0:05 for detecting real changes in odds ratio R at times
� D 1; 3000; 6000; 9000. ARL> � , ARL< � , and P� are average run lengths (ARLs) for runs stopping on
or after � and those stopping before � , and probability of stopping before � , respectively.

R Ǫ Q1 Q2 ARL Q3 Max ARL > � ARL < � P�

� D 1

1.0 0.050 9600 9600 9487 9600 9600 9487 NA 0.000
1.5 1.000 1720 2035 2080 2409 4433 2080 NA 0.000
2.0 1.000 926 1052 1076 1202 1853 1076 NA 0.000

� D 3000

1.5 1.000 4565 5025 5094 5552 8553 5094 NA 0.000
2.0 1.000 3850 4068 4081 4302 5346 4081 NA 0.000

� D 6000

1.5 0.945 7473 8070 8076 8684 9600 8088 5238 0.004
2.0 1.000 6768 7037 7056 7355 8660 7073 5149 0.009

� D 9000

1.5 0.077 9600 9600 9487 9600 9600 9591 6948 0.039
2.0 0.184 9600 9600 9484 9600 9600 9568 7269 0.037
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Table V. Simulated type I error, quartiles Q1;Q2, and Q3, maximum and average of the run lengths of
Test 3 with truncation point n D 9600 and ˛ D 0:05 for detecting real changes in odds ratio R at times
� D 1; 3000; 6000; 9000. ARL> � , ARL< � , and P� are average run lengths (ARLs) for runs stopping on
or after � and those stopping before � , and probability of stopping before � , respectively.

R Ǫ Q1 Q2 ARL Q3 Max ARL > � ARL < � P�

� D 1

1.0 0.060 9600 9600 9451 9600 9600 9451 NA 0.000
1.5 1.000 1467 1760 1807 2088 4034 1807 NA 0.000
2.0 1.000 809 931 953 1084 1828 953 NA 0.000

� D 3000

1.5 1.000 4318 4787 4824 5262 7510 4827 2791 0.002
2.0 1.000 3711 3933 3952 4179 5239 3953 2821 0.001

� D 6000

1.5 0.966 7250 7793 7805 8392 9600 7871 4659 0.021
2.0 1.000 6652 6935 6933 7220 8555 6966 4734 0.015

� D 9000

1.5 0.120 9600 9600 9447 9600 9600 9583 6803 0.049
2.0 0.257 9581 9600 9380 9600 9600 9552 6128 0.050

Table VI. Simulated type I error, quartiles Q1;Q2, and Q3, maximum and average of the run lengths of
Test 4 with truncation point n D 9600 and ˛ D 0:05 for detecting real changes in odds ratio R at times
� D 1; 3000; 6000; 9000. ARL> � , ARL< � , and P� are average run lengths (ARLs) for runs stopping on
or after � and those stopping before � , and probability of stopping before � , respectively.

R Ǫ Q1 Q2 ARL Q3 Max ARL > � ARL < � P�

� D 1

1.0 0.028 9600 9600 9555 9600 9600 9555 NA 0.000
1.5 1.000 1820 2112 2176 2483 4615 2176 NA 0.000
2.0 1.000 988 1122 1144 1283 2152 1144 NA 0.000

� D 3000

1.5 1.000 4447 4780 4821 5163 7303 4821 NA 0.000
2.0 1.000 3776 3936 3946 4113 4899 3946 NA 0.000

� D 6000

1.5 1.000 7251 7648 7638 8067 9600 7651 4934 0.005
2.0 1.000 6630 6848 6830 7059 7791 6847 5395 0.011

� D 9000

1.5 0.120 9600 9600 9499 9600 9600 9589 6920 0.034
2.0 0.311 9563 9600 9476 9600 9600 9549 6896 0.027

From Figures 1 and 2, we can see that the probability of a false alarm with the RA-CUSUM increases,
whereas its conditional power decreases as the time of change, � , increases.

3.2. Application to real data

We illustrate the methodologies by using data collected at a UK center for cardiac surgery. The data
consist of patients’ pre-operative covariate information such as age, gender, history of hypertension,
which were summarized as patient Parsonnet scores, as well as surgery date and identification numbers
for the surgeons. In this application, the outcome of interest is the 30-day post-operative mortality rate.
The data relating to the period between 1992 and 1994 were used to build a baseline logistic regression

model of the form log
�

pt
1�pt

	
D �3:68C 0:077xt . We then monitored mortality rates of patients oper-

ated by seven of the surgeons during the period 1994–1998. The monitoring process using RA-CUSUM
was reported graphically in [16]; therefore, here we only report the monitoring processes of the new
procedures, Tests 1–4 (see Figures 3–6). The monitoring horizon was taken to be n D 9600, which is
the empirical in-control ARL of the RA-CUSUM, and the significance level was set to ˛ D 0:05, thus
obtaining h1 D h1.n; ˛/ D h.9600; 0:05/ D 3:26 from formula (9) and h2 D 2:24; h3 D ˙1:96 from
Table I. It seems that Tests 2–4 are consistent with the results of [16], whereas Test 1 signals a change
for surgeons 1 and 2.
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Figure 3. Monitoring of the seven surgeons by using Test 1, h1.9600; 0:05/D 3:26, and data between 1994 and
1998.
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Figure 4. Monitoring of the seven surgeons by using Test 2, h2.0:05/D 2:24, and data between 1994 and 1998.

4. Discussion

The various tests presented in this paper have different early stopping and error probability characteris-
tics. RA-CUSUM stops the fastest if the change point has been passed, but because of frequent erroneous
stops before the change, the user cannot tell if the signal indicates a real change or not. The new tests,
Tests 1–4, have roughly fixed type I error rates as in the classical statistical testing theory. This makes
the alarms more reliable signals of genuine change. The price for this is an increased delay in detec-
tion. Hence, in these sequential methods, the two important properties of fast stopping and error rate
have to be considered when choosing a monitoring process for a given application. Among the new tests
proposed here, Test 1 stops the fastest for large changes, but Tests 2 and 3 have more power when the
magnitude of the change is small. Test 4 is best if late changes in the monitoring horizon are of concern.
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Figure 5. Monitoring of the seven surgeons by using Test 3, h3.0:05/ D ˙1:96, and data between 1994 and
1998.
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Figure 6. Monitoring of the seven surgeons by using Test 4, h2.0:05/D 2:24, and data between 1994 and 1998.
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