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Abstract

Background. Risk-adjusted control charts have become popular for monitoring processes that involve the management
and treatment of patients in hospitals or other healthcare institutions. However, to date, the effect of estimation error on
risk-adjusted control charts has not been studied.

Methods. We studied the effect of estimation error on risk-adjusted binary cumulative sum (CUSUM) performance using
actual and simulated data on patients undergoing coronary artery bypass surgery and assessed for mortality up to 30 days
post-surgery. The effect of estimation error was indicated by the variability of the ‘true’ average run lengths (ARLs) obtained
using repeated sampling of the observed data under various realistic scenarios.

Results. Results showed that estimation error can have a substantial effect on risk-adjusted CUSUM chart performance in
terms of variation of true ARLs. Moreover, the performance was highly dependent on the number of events used to derive
the control chart parameters and the specified ARL for an in-control process (ARL0). However, the results suggest that it is
the uncertainty in the overall adverse event rate that is the main component of estimation error.

Conclusions. When designing a control chart, the effect of estimation error could be taken into account by generating a
number of bootstrap samples of the available Phase I data and then determining the control limit needed to obtain an ARL0

of a pre-specified level 95% of the time. If limited Phase I data are available, it may be advisable to continue to update model
parameters even after prospective patient monitoring is implemented.
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Introduction

Control charts have been used for quality monitoring of
industrial processes for many years. At the design stage,
typically a stable (in-control) process is sampled over a
period of time and the observed data are used to estimate
parameters so that the distribution of the stable process
can be determined. This stage of the monitoring process
is called ‘Phase I’ data collection [1]. This estimated distri-
bution is used to design a control chart to monitor the
process to ensure it remains in control or conversely to
provide a timely signal when it goes out of control. An
obvious symptom of an out-of-control process is a change
in the mean and/or variation. Clearly, the performance of
the control chart will be influenced by the precision of
the parameter estimates used to design the chart. In this
(industrial) context, there have been a number of studies
that have assessed the effect of parameter estimation on
control chart performance. For a review of these studies,
see ref. [2].

In recent years, control charts have become popular for
monitoring processes that involve the management and treat-
ment of patients in hospitals or other healthcare institutions.
Unlike most industrial processes where each unit of observa-
tion is intended to be the same, patients are heterogeneous
and this needs to be considered when designing control
charts. This can be achieved by estimating and taking into
account individual patient risks in the monitoring process.
Control charts that implement this procedure are often re-
ferred to as risk-adjusted control charts. Steiner et al. [3]
developed a risk-adjusted cumulative sum (CUSUM) control
chart appropriate for binary (adverse) events, which are the
type of events (along with counts and rates) most commonly
encountered in the health context. The risk adjustment is
achieved by estimating each patient’s risk of an adverse event,
e.g. using a logistic regression model and updating the
CUSUM chart with a likelihood-based scoring method.
These scores are used, in conjunction with actual patient out-
comes, to produce weights for inclusion in a CUSUM
control chart. As in the industrial context, the performance
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of risk-adjusted control charts will be influenced by the pre-
cision of the estimated parameters used to derive the patient
risk scores. Moreover, the added complexity of risk adjust-
ment means that the previous studies of the effect of param-
eter estimation on control chart performance may not be
relevant.

In this healthcare context, estimation error is the error
associated with estimating the risk of an adverse event for
each patient as well as estimating the proportion of patients
in each risk group (the patient mix). In a simplified version
of the real example, we use later in this study, there could be
three risk groups in a population of around 7000 patients
undergoing coronary artery bypass surgery: low, medium and
high, with risk of 30-day mortality of 3, 9 and 21%, respect-
ively. In addition, suppose the proportion of patients in each
risk group is 62, 25 and 13%, respectively. Estimation error
occurs because population parameters are estimated using a
sample which is subject to sampling error due to random
variation.

In this article, we assess the effect of estimation error on
the performance of risk-adjusted CUSUM control charts. In
addition, the effect of important variables such as adverse
event rate, patient variability and desired average run length
for an in-control process (ARL0) on estimation error is
investigated. In one scenario, we assume patients having a
uniform adverse event risk, i.e. no risk adjustment is
required. While Steiner et al. [3] reported on a small simula-
tion study showing the sensitivity of their risk-adjusted
CUSUM procedure to the initial estimate of patient mix and
regression parameters, to our knowledge this is the first time
the effect of estimation error has been systematically studied
in the case of a simple binary CUSUM. We assume that the
risk-adjustment model is correct, i.e. there is no confounding
bias and important explanatory variables are not missing
from the model. Assessing the performance of risk-adjusted
control charts with modeling error is beyond the scope of
this study.

Methods

To set up risk-adjusted control charts, we need estimates of:
(i) the patient mix, i.e. the ( joint) distribution of the cov-

ariates and
(ii) the risk-adjustment model, e.g. a logistic regression

model fit for a binary outcome.
We assume a single continuous covariate, e.g. Parsonnet
score (predictive score for acquired adult heart surgery) [4],
denoted by z. The patient mix (distribution of z) is denoted
by f(z) and the risk-adjustment model:

Logit (y) ¼ b0 þ b1z : ð1Þ

The risk-adjusted CUSUM procedure [3] involves sequentially
monitoring:

Xt ¼ max (0;Xt�1 þWt ); t ¼ 1; 2; 3; . . . ; ð2Þ

where X0¼0 and Wt is the score for the tth patient, which is
defined as

log
ð1� pt þ R0ptÞRA

ð1� pt þ RApt ÞR0

� �
if yt ¼ 1;

or

log
ð1� pt þ R0ptÞ
ð1� pt þ RAptÞ

� �
if yt ¼ 0;

where yt is the outcome of interest for patient t, with 1 indicat-
ing the outcome occurred and 0 indicating it did not occur; pt

is the estimated (prior) risk of having the outcome for patient
t; R0 is the odds ratio under the null hypothesis (often
R0¼1.0) and RA is the odds ratio under the alternative hy-
pothesis of a pre-specified clinically important increase (or de-
crease) in the outcome of interest. The CUSUM signals when
Xt �h where h is the pre-specified control limit. For the
risk-adjustment model in Equation (1): pt¼1/[1 þ exp(b0 þ
b1z)].

We assume that there are a discrete number of possible
patient types, e.g. Parsonnet scores are integers, so f(z) gives
the multinomial probabilities of the various possible values
for z and Y is a discrete outcome like 30-day mortality (yes
or no). Let us then assume that the true patient mix and risk
adjustment are given. Then, when we plan to implement a
control chart we would collect some Phase I data and use
these data to estimate both the patient mix (based on the
observed distribution of Parsonnet scores) and the
risk-adjustment model. We will assume here that there are no
errors in the measurement of the covariates and that we use
the correct covariates in building the risk-adjustment model.

To determine the effect of estimation error, we repeat the
following:
(i) Generate some sample Phase I data (zi,yi) where i¼1,

2,. . . ,n, using the (assumed) true patient mix and
risk-adjustment model.

(ii) Use the data to estimate the patient mix and the para-
meters of the risk-adjustment model.

(iii) Use the estimated patient mix and risk-adjustment
model to set up a CUSUM chart (i.e. determine the
control limit, h) that will yield some desired value for
the in-control ARL0. The appropriate control limit
can be determined by repeatedly using the Markov
chain approximation [5] with different values of the
threshold (control limit) until an appropriate threshold
is found (see the Appendix for details).

(iv) Given the selected threshold and the true patient mix
and risk-adjustment model, determine the actual
in-control ARL0 and out-of-control ARL1 (for a real-
istic and clinically important increase in the true
adverse event rate) that would be obtained. ARL1 is
approximated in the same way as ARL0 but with the
adverse event rate increased by the pre-specified clin-
ically important amount, as defined by an odds ratio.

Repeating steps 1–4 many times gives the distribution for
the actual ARL0 and ARL1. The effect of the estimation
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error will be indicated by the variability of the ARLs. To
illustrate, let us consider the simplified example from the
introduction with three risk groups of patients in a popula-
tion of around 7000 patients and further assume that a
control limit of 3.0 equates to an ARL0 of 1000. First, we
take a random sample of 1000 patients from the population
and fit a logistic model to the sample data. Let’s say we
observe that 55% of our sample patients are at low risk,
30% at medium risk and 15% at high risk. The logistic
model fit to these data suggests low-risk patients having 4%
risk of infection, medium-risk patients of 10% and high-risk
patients a 25% risk of infection. Based on the sample data,
we estimate that a control limit of 3.2 is required for an
ARL0 of 1000. Given this control limit of 3.2, the true
ARL0 is actually 1200 for the population of 7000. Therefore,
in this simplified example, we can see that the effect of esti-
mation error has resulted in a control limit that is higher
than what is required, an ARL0 higher than what is assumed,
and consequently the ARL1 will be longer than expected,
thus it will take longer to detect a clinically important in-
crease in the 30-day mortality rate than expected.

We used both actual data and simulated data to assess the
effect of estimation error. The actual data have been used
previously [3] and these are data on a cohort of 6994
patients from the UK who underwent coronary bypass graft
surgery (CABG) between 1 January 1992 and 31 December
1998. The adverse event of primary interest was 30-day mor-
tality, which occurred in 6.6% of patients. Previous analysis
determined that a strong predictor of 30-day mortality was
Parsonnet score, which ranged in this cohort from 0 to 71.
The fitted risk-adjustment model logit(y)¼3.6320.074z pre-
dicts a 2.5% risk of death at 30 days for patients with
Parsonnet¼0 and an 84% risk of death at 30 days for
patients with Parsonnet¼71. The area under the receiver
operator characteristic curve (AUC) is a commonly reported
measure of goodness of fit for a logistic regression model
[6]. The AUC for this model is 0.76, indicating typical dis-
crimination between higher and lower risk patients for a pre-
dictive model in the medical literature. For the purposes of
this study, we assume that the patient mix of the 6994
patients and the logistic model that describes the relationship
between Parsonnet score and 30-day mortality are correct
and not subject to error. Based on this cohort, a control
limit¼2.71 equates to ARL0 �1000 patients and an ARL1

�110 patients assuming a doubling of the odds of 30-day
mortality. In this example, we have assumed that a doubling
of the odds of mortality is a clinically meaningful increase;
however, we could have assumed a 50% increase of the odds
or a tripling of the odds. The magnitude of the pre-specified
increase will impact the control chart performance such that
the performance is optimal at a true increase that is the same
as the pre-specified increase and larger increases will be
detected in a more timely fashion than smaller increases.

To determine the effect of estimation error on the variabil-
ity of ARL, we randomly selected samples with replacement
from the 6994 patients in the cohort. The samples were of
sizes 760, 1520, 2280, 3040 and 3800 patients resulting in
expected number of deaths equal to 50, 100, 150, 200 and

250, respectively (assuming 6.6% mortality). In total, 1000
samples of each sample size were taken. The procedure given
above (steps 1–4) was used with specified ARL0 �1000
patients. In addition, the variance of the ‘true’ in-control run
length and the ‘true’ ARL1 based on a doubling of the odds
of 30-day mortality were calculated. This procedure was
repeated for ARL0 �500 and 1500 using a sample size of
1520 patients to investigate the effect of the specified ARL0

on estimation error.
In additional analyses, we varied the adverse event rate

and the variation in patient mix to determine how these im-
portant variables affect estimation error. To investigate the
effect of the adverse event rate, we modified the logistic
model by changing the size of the intercept term to manipu-
late the average adverse event rate to 3.5% and also to
12.2%. The model equations specified were logit
(y)¼4.3620.074z and logit (y)¼2.8820.074z, respectively.
The variability of the patient mix in the CABG cohort was
large (i.e. risks of adverse events in individuals ranged from
very small to very large) and hence we lowered variation by
restricting sampling to the lower end of the actual Parsonnet
distribution (i.e. patients with Parsonnet scores of �20).
This could occur in practice, for example, if only low-risk
patients were accepted for the procedure. The model equa-
tion for this scenario was logit(y)¼4.0220.114z. For these
additional analyses, we bootstrap [7] sampled the Parsonnet
scores from the actual CABG cohort and used the modified
logistic model to derive patient mortality risks. We then used
these estimated risks to generate a random Bernoulli
outcome (adverse event¼yes or no) with P (adverse event)¼
risk probability using the RAND (‘Bernoulli’, risk) function
in SAS. In the case where we restricted sampling to patients
with Parsonnet scores of �20 we assumed that the restricted
data set was the true patient mix and the fitted logistic model
was the correct risk-adjustment model. In a final scenario, we
assumed completely homogeneous patients where the
adverse event risk was the same for each patient. The model
equation in this case was logit (y)¼2.65 giving a uniform
risk of 6.6% for each patient.

As recommended by Burton et al. [8], we wrote a protocol
prior to conducting the simulation procedure described
above. SAS, version 9.2 for Windows (SAS Institute, Cary,
NC) was used for the analysis. PROC SURVEYSELECT
was used to select the samples with the starting seeds gener-
ated using the system clock. All the estimates obtained from
the samples (including control limits and ARLs) are stored in
Microsoft Office Excel version 97-2003 worksheets. We
chose 1000 samples for each scenario so that we could esti-
mate the variance of the ARL with standard deviation (SD)
of ,5% of the variance. Each simulation took between 5
and 10 min and hence time was also a factor in deciding
how many simulations to run.

Results

Table 1 shows the results of the 1000 samples taken for each
of 5 sample sizes. The first row of data is for a sample size
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of 760 patients and specified ARL0 �1000. Although a
control limit of 2.71 is required for ARL0 �1000, due to
sampling error the actual threshold values for the 1000
samples ranged between 2.25 and 3.01 (with mean of 2.71
and SD of 0.11). This variation in control limit was sufficient
to vary the true ARL0 from 564 to 1420 (with mean of 1008
and SD of 131.5). The variability in the true ARLs and SD
of the true in-control run length (SDRL0) unsurprisingly
decrease as the sample size increases. However, on closer
inspection, it can be seen that as sample size doubles, the
variation halves and hence the SD decreases by a factor ofp

2. If sampling variation is taken into consideration
(Table 2), then the observed data are consistent with an exact
reciprocal relationship between sample size and variability.

The effect of specifying a different ARL0 on the estima-
tion error is shown in Table 3 (and Table 2). The data show
a relationship between specified ARL0 and SD of the true
ARL0 where SD doubles as specified ARL0 doubles. This
relationship is also apparent for SDRL0 but not for ARL1,
where the SD of true ARL1 is only moderately increased for
specified ARL0¼1000 compared with specified ARL0¼500
but virtually unchanged for specified ARL0¼1500 compared
with specified ARL0¼1000.

Table 4 (and Table 2) show a relationship between adverse
event rate and estimation error similar to that observed for

sample size. As the event rate (approximately) doubles, the
variation in the true ARL and the true SD of run length
(approximately) halves. Hence, the SD decreases by a factor
of

p
2. However, this relationship does not hold for ARL1

where there is a reciprocal association between event rate and
SD of the true ARL1. In other words, the effect of event
rate on the estimation error effect is more pronounced for
ARL1 compared with ARL0.

In another analysis, the effect of lower variation in patient
mix was investigated. A Parsonnet score of 20 is associated
with a 30-day mortality risk of 10% and hence by restricting
procedures to patients with Parsonnet scores �20 we are in
effect restricting CABG procedures to patients with a 30-day
mortality risk of no .10%. This restriction resulted in
removing 11% of the total cohort leaving 6211 patients for
the analysis with 4.6% of patients dying within 30 days. The
results are similar to what would have been expected using
all 6994 patients and 69 expected deaths and hence it
appears, in this case, a more homogeneous group of patients
has had little effect on the effects of estimation error
(Table 5). If completely homogeneous patients are assumed,
where no risk adjustment is necessary, estimation error is
reduced but remains high (Table 5).

Discussion

In this study, we have shown that estimation error can have a
substantial effect on risk-adjusted CUSUM chart perform-
ance. If we assume that Phase I data include 50 adverse
events, a specified ARL0 of 1000 and a typical
risk-adjustment model then the true ARL0 could be as low
as 564 or as high as 1420 based on our 1000 simulations.
Therefore, although one false alarm is assumed for every
1000 patients, in fact it could be as high as one in every 564
patients or as low as one in every 1420 patients. In terms of
ARL1, the assumed value is 110 but in fact the true value
could be as low as 86 or as high as 125. This difference in
ARL1 between these two extreme scenarios is equivalent to a
difference of three additional adverse events, assuming an
in-control adverse event rate of 6.6% and a doubling of the
odds of adverse event under the alternative hypothesis.

When considering whether to delay Phase II monitoring
until a substantial number of events have been included in
Phase I data collection (to minimize potential estimation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 95% confidence intervals (CIs) based on 50
bootstrap samples for SD of true ARL0 by sample size,
event rate and specified ARL0

Sample
size
(patients)

Average
% event
rate

Specified
ARL0

SD
(true
ARL0)

95% CI of SD
(true ARL0)

760 6.6 1000 131.5 125.7–137.2
1520a 6.6 1000 89.2 86.1–92.3
2280 6.6 1000 73.6 70.3–76.9
3040 6.6 1000 64.4 61.6–67.1
3800 6.6 1000 56.8 54.4–59.3
1520 6.6 500 43.2 41.4–45.0
1520 6.6 1500 129.9 125.7–134.1
1520 3.5 1000 125.9 120.5–131.3
1520 12.2 1000 60.5 58.6–62.4

aThis is the same reference scenario in each of the five tables.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Mean (SD) of estimated parameters based on 1000 samples taken for each of the five sample sizes

Sample size (patients) Number of deaths Estimated control limit True ARL0 True SDRL0 True ARL1

760 50.1 (7.2) 2.71 (0.11) 1008 (131.5) 1398 (184) 110 (5.7)
1520a 100.0 (9.6) 2.72 (0.074) 1011 (89.2) 1402 (125) 110 (3.8)
2280 150.8 (12.2) 2.72 (0.061) 1016 (73.6) 1408 (103) 110 (3.1)
3040 200.8 (13.7) 2.72 (0.053) 1015 (64.4) 1408 (90) 110 (2.7)
3800 249.9 (14.8) 2.72 (0.047) 1014 (56.8) 1407 (79) 110 (2.4)

aThis is the same reference scenario in each of the five tables.
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error), it might be better to avoid delay and move to an
initial Phase II stage where model parameters continue to be
updated but patient monitoring is also implemented pro-
spectively. However, care is needed to ensure that model
parameters are updated using only in-control observations
and avoiding observations from periods where the system is
out of control. In addition, the effect of estimation error
when designing a control chart could be taken into account.
This could be done by generating a number of bootstrap
samples of the available phase I data and then, for each
sample, determining the control limit needed to obtain an
ARL0 of a pre-specified level. To determine the ultimate
control limit to implement, a value that maintains an ARL0

of at least the pre-specified level in (say) 95% of the samples
could be chosen. For example, in our scenario of 100
adverse events and a specified ARL0 of 1000, a control limit
of 2.84 maintains an ARL0 of at least 1000 in 95% of the
samples. This contrasts with an average control limit of 2.71
if we simply aim for an ARL0 of 1000. However, this is a
conservative strategy with the trade-off that the control chart
will be slower to detect a clinically important deterioration in
the adverse event rate.

Variables thought to potentially influence estimation error
considered in this research included Phase I sample size,
number of adverse events, specified ARL0 and patient vari-
ability. The two most important variables were unsurprisingly

the number of events and the specified ARL0. In terms of
the number of adverse events, as the number of events
doubles, the variance of the true ARL0 halves. However,
interestingly the effect on true ARL1 is even more pro-
nounced where it is the SD that halves. In the case of speci-
fied ARL0, the effect of estimation error decreases as the
specified ARL0 decreases. This relationship was strong for
true ARL0 where the SD halved when the specified ARL0

was halved; however, the relationship was weak for true
ARL1 where the SD only decreased slightly when the speci-
fied ARL0 was reduced by a factor of 3. A third variable,
patient risk variability, appeared to have little effect on the es-
timation error. In the case of homogeneous patients where
adverse event risk was assumed to be constant at 6.6%, the
estimated level of estimation error: SD (ARL0)¼79.7 was
less than the equivalent risk-adjusted scenario where SD
(ARL0)¼89.2 but only by around 10%. This result suggests
that it is the uncertainty in the overall adverse event rate that
is the main component of estimation error. The uncertainties
of the patient mix and risk-adjustment model, whilst not ig-
norable, only appear to account for a modest proportion of
the total estimation error.

There are a number of important limitations of this study.
First of all, we only used one example data set; therefore,
our results may not generalize to all relevant situations where
risk-adjusted control charts are implemented. In addition, we

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Mean (SD) of estimated parameters based on 1520 patients for each of three adverse event rates

Adverse event rate (%) Number of deaths Estimated control limit True ARL0 True SDRL0 True ARL1

3.5 53.8 (7.5) 2.27 (0.10) 989 (125.9) 1367 (175) 148 (8.5)
6.6a 100.0 (9.6) 2.72 (0.074) 1011 (89.2) 1402 (125) 110 (3.8)
12.2 185.2 (12.9) 3.15 (0.054) 1001 (60.5) 1392 (85) 81 (1.7)

aThis is the same reference scenario in each of the five tables.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Mean (SD) of estimated parameters based on 1520 patients for each of three levels of patient variability

Patient variability Number of deaths Estimated control limit True ARL0 True SDRL0 True ARL1

Higha 100.0 (9.6) 2.72 (0.074) 1011 (89.2) 1402 (125) 110 (3.8)
Low 69.5 (7.9) 2.54 (0.085) 1003 (103.4) 1390 (144) 123 (5.3)

None 100.4 (9.5) 2.85 (0.069) 999 (79.7) 1389 (112) 98 (3.0)

aThis is the same reference scenario in each of the five tables.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Mean (SD) of estimated parameters based on 1520 patients for each of three specified ARL0

Specified ARL0 Number of deaths Estimated control limit True ARL0 True SDRL0 True ARL1

500 100.4 (9.5) 2.16 (0.066) 504 (43.2) 695 (60) 82 (3.2)
1000a 100.0 (9.6) 2.72 (0.074) 1011 (89.2) 1402 (125) 110 (3.8)
1500 100.6 (9.5) 3.07 (0.075) 1526 (129.9) 2123 (182) 128 (3.9)

aThis is the same reference scenario in each of the five tables.
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only considered risk-adjusted CUSUM charts where risk ad-
justment was done by the method of Steiner et al. [3].
However, we did use a more general set of simulated patients
in the analyses that investigated the effects of event rate and
patient variability on estimation error. We also varied a
number of important variables such as sample size and spe-
cified ARL0 to make our results more generalizable. Another
limitation is that we used an approximate method for deter-
mining the ARLs. The Markov chain method is associated
with some error due to the state space being divided into a
discrete number of states. However, we minimized this error
by including a large number of states in the transition matri-
ces: between 1000 and 1500 in most cases. With these large
matrices, each simulation took around 5–10 min to run. A
further limitation was our use of simulations to investigate
the relationship between estimation error and control chart
performance. Therefore, our results are not exact; however,
we included 1000 simulations for each scenario investigated
and, therefore, the 95% confidence intervals for estimated
SDs of the true ARLs were relatively narrow. These confi-
dence intervals were sufficiently tight to allow us to deter-
mine the exact relationships between important variables
such as number of events and the magnitude of estimation
error. A final limitation is that we have assumed that the
risk-adjustment model is correct and not subject to con-
founding bias. If a risk-adjustment model is not correct, then
the results of this study would not be applicable.
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Appendix

Markov chain approximation for estimating average and variance of
run lengths

Average and variance of run lengths were estimated using a
Markov chain approximation developed by Brook and Evans
[5]. This methodology is approximate because the state space
is divided into a discrete number of states with the last state
being the out-of-control condition. By using a large number
of states as we have done, the approximation is very accurate.
CUSUM control charts are based on a Markov process where
the current value of the control chart depends only on the
previous value. The transition from the current value to the
next value can be described completely by the possible future
values and the probabilities that these values will occur.
Therefore, the process can be represented by a transition
matrix. Each row of the matrix represents the current value
and the columns contain the probabilities of moving to each
and every one of the possible values of the control chart. In
cases where the transition from the current value to a particu-
lar future value is impossible, the transition probability is zero.
The final row and column of the transition matrix represents
the absorbing state which occurs when a control chart value is
obtained that is greater than the control limit. Hence, the last
row and column represents a range of possible control chart
values bounded below by the control limit. The size of the
transition matrix is therefore (n þ 1) by (n þ 1), where n
represents the n possible values that the control chart can take
prior to exceeding the control limit. If the last row and
column is deleted from the transition matrix, then ARL and
variance of the run length are given by

EðgÞ ¼
X1
t¼1

t Prðg ¼ tÞ
X1
t¼1

R01 ¼ ðI � RÞ�1
1:

varðgÞ ¼ 2RðI � RÞ�2
1:

where g is the run length; t the time; R the transition matrix
after last row and column have been deleted; 1 the column
vector of ones and I the identity matrix (see the Appendix of
Steiner [9] for more details).
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