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When no gold standard measurement system is available, we can assess a binary measurement system
by making repeated measurements on a random sample of parts and then using a latent class model for
the analysis. However, there is widespread criticism of the model assumptions that, given the true state of
the part, the repeated measurements are independent and have the same misclassification probability. We
propose a latent class random e↵ects model that relaxes these assumptions by modeling the distribution
of the two misclassification rates with Beta distributions. We start by finding the likelihood, the maximum
likelihood estimates (MLEs) and their approximate standard deviations with the standard assessment plan
that selects parts at random from the process. However, to estimate the model parameters with reasonable
precision, the standard plan requires extremely large sample sizes in the common industrial situation where
the proportion of conforming parts is high and the misclassification probabilities are small. More realistic
sample sizes are possible when we instead sample randomly from the population of previously failed parts
and supplement the likelihood with baseline information on the overall pass rate. We show using simulation
that, for feasible designs, the asymptotic standard deviation based on the expected information provides a
reasonably close approximation to the simulated standard deviation. We then use these approximations to
investigate how the properties of the MLEs for the unknown parameters depend on the baseline size, the
number of parts in the sample, and the number of repeated measurements per part.

Key Words: Beta Binomial; Binary Measurement Systems; Latent Class Model; Misclassification Rates;
Random E↵ects.

Introduction

BINARY measurement systems (BMSs) are com-
monly used as diagnostic tools in medicine and
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inspection systems in industry. Understanding their
properties is essential to making correct decisions
with these systems. Here we adopt industrial lan-
guage. To establish the notation, each part is con-
forming or not, as indicated by the value of the ran-
dom variable X, where

X =
⇢

1 if the part is conforming
0 if the part is nonconforming.

If the part is measured once by the BMS under study,
we use the random variable Y to indicate the result
of that inspection, where

Y =
⇢

1 if the part passes inspection
0 if the part fails inspection.

The characteristics of the process and the measure-
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ment system can be given by

↵ = P (Y = 1 | X = 0)
� = P (Y = 0 | X = 1)

⇡C = P (X = 1). (1)

In this simple model, ↵ is the consumer’s risk,
the proportion of nonconforming parts that pass the
inspection and are presumably shipped to the cus-
tomer. The parameter � is the producer’s risk, the
proportion of conforming parts that fail the inspec-
tion and lead to unnecessary rework or scrap. The
parameter ⇡C is the proportion of conforming parts,
a property of the underlying process, not the BMS.
Many other metrics describing both the BMS and
the process can be constructed from this basic model.
For example, we have the proportion of passed parts,
⇡P , that is a function of both the measurement and
manufacturing processes, where

⇡P = P (Y = 1 | X = 0)P (X = 0)
+ P (Y = 1 | X = 1)P (X = 1)

= ↵(1� ⇡C) + (1� �)⇡C . (2)

In the typical industrial context we have ⇡C large
(>0.9) and ↵ and � small (<0.1), so that ⇡P is
close to one. The methods we present apply gener-
ally; however, our primary goal is to look for feasible
assessment plans that are e↵ective for this realistic
narrow range of parameter values.

We assess the measurement system by conducting
a study to estimate the parameters ↵ and �. There
are three distinct cases. In the gold standard case, we
suppose that there is an alternate measurement sys-
tem available that can classify parts as conforming
or not without error. In terms of the above notation,
using the gold standard measurement system, we can
determine for any part if X = 1 or X = 0. In this
context, the basic study design is to measure a ran-
domly selected sample of n parts once each with the
gold standard system and r � 1 times with the BMS.
These designs and their analyses have been studied
by Danila et al. (2008), Farnum (1994) and Burke et
al. (1995) in an industrial setting and Pepe (2003) in
the medical context. Boyles (2001) considers a sec-
ond case in which there is no gold standard but in-
stead there is a second BMS with known statistical
properties. Boyles calls this an anchored measure-
ment system and suggests study plans that involve
measuring a sample of parts repeatedly with each
system. In the third case, we assume no gold stan-
dard nor anchored measurement system is available.

In this context, the standard study plan is to mea-
sure a randomly selected sample of parts r � 3 times
with the BMS. See, for example, Danila et al. (2010),
Van Wieringen and De Mast (2008), Van Weiringen
and Van den Heuvel (2005), and Boyles (2001) in an
industrial context and Pepe (2003) and Walter and
Irwig (1988) in a medical setting.

In this paper, we consider only the third case.
To model the data from the BMS assessment study
in this context, the usual approach (Danila et al.
(2010)) makes the following assumptions:

• the misclassification rate for every conforming
(noconforming) part is the same, that is � (↵)
represents the misclassification rate for each
conforming (nonconforming) part,

• measurements made on di↵erent parts are in-
dependent, and

• given the value of X, repeated measurements
on the same part are (conditionally) indepen-
dent. That is, if we make r measurements on the
same part modeled by Y1, Y2, . . . , Yr, we have

P (Y1 = y1, . . . , Yr = yr | X = x)

=
rY

j=1

P (Yj = yj | X = x).

With no gold standard available, the value of X
is unknowable, and so making the above assump-
tions we have the so-called latent class model for r
repeated measurements on the same part:

P (Y1 = y1, . . . , Yr = yr)
= P (Y1 = y1, . . . , Yr = yr | X = 0)P (X = 0)

+ P (Y1 = y1, . . . , Yr = yr | X = 1)P (X = 1)
= ↵s(1� ↵)r�s(1� ⇡C) + (1� �)s�r�s⇡C ,

where s =
Pr

j=1 yj is the number of times the
part passes inspection. Note that with this model,
the random variables Y1, . . . , Yr are not indepen-
dent marginally. Van Wieringen and Van den Heuvel
(2005) show that we need to assume further that
↵ < 1�� and r � 3 for the parameters of the model
to be identifiable. For the standard plan, using the
assumption that measurements on di↵erent parts are
independent, we can then build the likelihood func-
tion and estimate the unknown parameters (Danila
et al. (2010)). Since we assume ↵ and � are constant,
we call this approach the fixed e↵ects model.

The assumptions underlying this model have been
widely criticized. See for instance De Mast et al.
(2011), Van Wieringen and De Mast (2008), Pepe
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(2003), Fujisawa and Izumi (2000), and Vacek (1983).
In many cases, it may be unreasonable to assume
that the misclassification rates are the same over all
nonconforming and conforming parts. Some conform-
ing (nonconforming) parts may be harder to classify
correctly than others. Nonconstant misclassification
probabilities may arise, for instance, if there is an-
other characteristic Z associated with each part so
that P (Y = 1 | X = x,Z = z) is not equal to
P (Y = 1 | X = x) for some z, i.e., when the prob-
ability of passing inspection depends on the value
of z as well as the true conforming/nonconforming
state, x. In this instance, note that if we assume that
repeated measurements on a single part are indepen-
dent, given both X = x and Z = z, it is easy to show
that the repeated measurements on the part, given
X = x, are now dependent, contrary to the basic
assumption.

We have organized the paper as follows. In the
next section we propose a random e↵ects model
where we assume that the misclassification rates vary
according to Beta distributions. We then show that
with the standard sampling plan, in order to get rea-
sonable estimates of the consumer’s and producer’s
risks, we need an unrealistically large number of parts
in the study. Next, we propose a conditional plan
that samples heavily from the population of pre-
viously failed parts. With the conditional sampling
plan, each of the n sampled parts is subsequently
measured r times. In the analysis of the conditional
plan, we supplement the resulting data using avail-
able baseline information on the pass rate. The con-
ditional plan/analysis provides good estimates with
feasible sample sizes. We use simulation to exam-
ine the performance of the Fisher information-based
asymptotic approximations for the standard devia-
tions of the estimates in the proposed plan. Then,
we demonstrate how the precision of the parameter
estimates changes as we vary the amount of baseline
data, the number of parts selected and the number
of repeated measurements on each part. We also ex-
amine the best choices for r and n when the total
number of measurements N = nr is fixed. Through-
out, we compare the performance of the analysis as-
suming a fixed e↵ects model, i.e., ↵ and � do not
vary across parts, when, in fact, the consumer’s and
producer’s risks vary from part to part. Similarly, we
also examine the performance of the analysis using
the random e↵ects model when ↵ and � do not vary.
Finally, we provide a brief discussion and a summary
of the results in the paper.

Modeling the Varying
Misclassification Rates

We adopt a random e↵ects model to relax the as-
sumption that ↵ and � are constant for all noncon-
forming and conforming parts, respectively. That is,
we suppose that for any randomly selected noncon-
forming part, the consumer’s risk ↵ has density f(↵),
0 < ↵ < 1. We also assume that, given X = 0 and ↵,
repeated measurements on the part are independent
so that

P (Y1 = y1, . . . , Yr = yr | X = 0,↵) = ↵s(1� ↵)r�s,

where s =
Pr

j=1 yj . Similarly, for any conforming
part, we assume that the producer’s risk � has den-
sity f(�), 0 < � < 1 and, given X = 1 and �, re-
peated measurements on the part are independent so
that

P (Y1 = y1, . . . , Yr = yr | X = 1,�) = (1� �)s�r�s.

For any part, we can then determine the joint dis-
tribution of the observable (Y1, . . . , Yr) using the con-
ditional distributions and assumptions given above.
In this model, Y1, . . . , Yr given X = x are not in-
dependent. The random e↵ects model explicitly al-
lows for variation in the producer’s and consumer’s
risks within the sets of conforming and nonconform-
ing parts.

As in Danila et al. (2011), who considered a simi-
lar model in the context of an available gold standard
measurement system, we propose Beta distributions
for ↵ and � (Johnson et al. (1994)). We select Beta
distributions for the convenience of the calculations
and because they are highly flexible in shape. As-
suming a Beta distribution, the probability density
function (pdf) of ↵ is

f(↵) =
↵gA�1(1� ↵)hA�1

Beta(gA, hA)
, 0 < ↵ < 1, (3)

where Beta(·) is the Beta function. With this param-
eterization, the mean and variance of ↵ are

E(↵) = µA =
gA

gA + hA
,

Var(↵) =
µA(1� µA)
gA + hA + 1

=
�A

�A + 1
µA(1� µA),

where �A = (gA + hA)�1. Similarly we model the
distribution of the �s, using a Beta distribution with
parameters µB and �B. Note that, with this model,
the consumer’s and producer’s risks are now P (Y =
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1 | X = 0) = µA and P (Y = 0 | X = 1) = µB, the
mean misclassification rates. These are the parame-
ters of primary interest in the BMS assessment.

Fujisawa and Izumi (2000) use a similar random
e↵ects model to address the issue of varying values
of ↵ and � over di↵erent units. However, in their
model, they specify a value of both ↵ and � for each
part and assume that the joint distribution is Dirich-
let. Their model is equivalent to ours with the ad-
ditional constraint that �A = �B. In a somewhat
more complex context where there are multiple mea-
surement systems (or multiple operators), Qu et al.
(1996) construct a random e↵ects model to specify
the joint distribution of Y1, . . . , Yr. Using our nota-
tion, given X = x and a latent variable Z ⇠ N(0, 1),
they assume Y1, . . . , Yr are conditionally independent
with P (Yj = 1 | X = x,Z = z) = �(ax + bxz)
for j = 1, . . . , r, where � is the distribution func-
tion of a standard normal random variable and ax

and bx are additional parameters that need to be
estimated. This formulation seems less direct than
what we propose because of the introduction of the
latent Z. Also, it is unclear how the normality as-
sumption can be assessed. Finally, Dendukuri and
Joseph (2001) use a fully Bayesian extension of the
fixed e↵ects model to deal with the case when r < 3,
while Beavers et al. (2011) and Quinino et al. (2005)
also use the Bayesian approach with the fixed e↵ects
model (i.e., when ↵ and � do not vary from part to
part).

The Beta distribution is flexible and allows a va-
riety of shapes. However, some are unreasonable in
this context. We eliminate u-shaped Beta pdfs where
there is a relatively high probability of parts with
misclassification probabilities close to 1. In terms of
the parameters, we assume hA < 1, hB < 1 or equiv-
alently µA + �A > 1, µB + �B > 1. We also as-
sume that the chance that the misclassification rate
for any conforming or nonconforming part is greater
than 0.5 is small. Without an available gold stan-
dard measurement, having many sampled parts with
misclassification rates greater than 0.5 will bias the
estimates of the underlying parameters.

The Standard Plan

Suppose we employ the standard assessment plan
in which we select a random sample of n parts from
the process and measure each part r times with the
BMS. Then, using the Beta pdfs as given in (3), for

any part with s passes in the r repeated measure-
ments, we have

P (Y1 = y1, . . . , Yr = yr)

= (1� ⇡C)
Z 1

↵=0

↵s+gA�1(1� ↵)r+hA�s�1

Beta(gA, hA)
d↵

+ ⇡C

Z 1

�=0

�r+gB�s�1(1� �)s+hB�1

Beta(gB, hB)
d�

= (1� ⇡C)
Beta(gA + s, hA + r � s)

Beta(gA, hB)

+ ⇡C
Beta(gB + r � s, hB + s)

Beta(gA, hB)
, (4)

where gA = µA/�A, hA = (1�µA)/�A, gB = µB/�B,
and hB = (1� µB)/�B.

Note that the random e↵ects model (4) depends
only on the number of passes s in the r repeated
measurements. There are r + 1 possible values for
s, and the associated probabilities must add to one.
The model has five parameters (µA, µB, �A, �B, ⇡C),
so to be identifiable we require r � 5. If r = 4, there
are an infinite number of parameter values that give
the same distribution for (Y1, Y2, Y3, Y4). From (4),
it is clear that for identifiability we need the fur-
ther constraint µA < 1� µB. That is, we reasonably
assume that the mean pass rate for nonconforming
parts is less than the mean pass rate for conform-
ing parts. This constraint is similar to the constraint
↵ < 1� � required for the fixed e↵ects model. Note
that if we hold µA and µB fixed and let �A and �B

approach zero, P (Y1 = y1, . . . , Yr = yr) in (4) ap-
proaches (1�⇡C)µs

A(1�µA)r�s +⇡C(1�µB)sµr�s
B ,

the fixed e↵ects model with ↵ = µA and � = µB.
That is, the fixed e↵ects model is a limiting case of
the random e↵ects model.

Combining the data across parts using the inde-
pendence assumption, we have the log-likelihood

l(µA, µB, �A, �B,⇡C)

=
nX

i=1

ln

"
(1� ⇡C)

Beta(gA + si, hA + r � si)
Beta(gA, hB)

+ ⇡C
Beta(gB + r � si, hB + si)

Beta(gA, hB)

#
.

(5)

We can estimate the five parameters by maximizing
(5) using a standard approach such as that used in
Nelder and Mead (1965) that does not require gradi-
ents.
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For high-quality processes with ⇡C close to 1, even
when n is large, it is possible that the maximum like-
lihood estimate of ⇡C is ⇡̂C = 1. That is, based on
the likelihood, it appears that all parts are conform-
ing. When this happens, the estimates of the five
parameters are not unique. There is no information
about µA and �A. Also, with the same data, we can
set ⇡̂C = 0 and then get the same maximum value
for the likelihood function by varying µA, �A and ig-
noring µB, �B. In any application, if the output of
the maximization routine is ⇡̂C = 1, we suggest using
the estimates ⇡̂C = 1, µ̂B, and �̂B and accept that
there is no information about µA and �A. The same
problem and suggested resolution apply to the fixed
e↵ects model.

We determined the Fisher (expected) informa-
tion matrix from the second derivatives of the log-
likelihood function (5) and used the square root of
the diagonal elements of the inverse of the informa-
tion matrix evaluated at the parameter estimates to
get the approximate standard deviations of the esti-
mates. We used Maple (2009) for the symbolic cal-
culations and Matlab (2008) for the numerical cal-
culations, and we will provide the Matlab code, on
request, to fit the random e↵ects model and to de-
termine the approximate standard deviations.

We demonstrate the poor performance of the stan-
dard plan when ⇡C is close to one through a simula-
tion study. We consider the plan parameters r = 10
and n = 500, 1000, 2000. We recognize that these
sample sizes are impractical but note that the perfor-
mance of smaller plans will be worse. For the model
parameters, we use a factorial structure with µA,
µB = 0.02, 0.1, �A, �B = 0.01, 0.1, and ⇡C = 0.8,
0.9, 0.95. Each simulation run consists of 5000 tri-
als. We exclude the estimates from any run in which
⇡̂C = 1 in the calculation of the simulated standard
deviations (this happens infrequently with the sam-
ple sizes and parameter values used in the simula-
tion). In each run, we estimate the parameters from
both the fixed and random e↵ects models.

The complete results (not shown) suggest that,
with the standard plan and large sample sizes, we
can estimate µB and ⇡C well and �B reasonably well,
with negligible bias and small standard deviations.
However, estimating µA, a key parameter, and �A is
problematic. Figure 1 shows the biases for µ̂A and ↵̂
(the estimate from the fixed e↵ects model) stratified
by the true values of µA, ⇡C , and n, while Figure 2
similarly shows the standard deviations. For µ̂A, we
see relatively large biases and standard deviations

FIGURE 1. Simulated Bias of µA from the Random Ef-
fects Model and ↵ from the Fixed E↵ects Model Across all
Simulation Runs with the Standard Plan.

compared to the true small values of µA, especially
with ⇡C large. The results for �̂A (not shown) are
much worse. We also see in Figure 1 very large bi-
ases in ↵̂, the consumer’s risk estimate from the fixed
e↵ects model. While not shown, there are also simi-
lar biases in the estimates of � and ⇡C with the fixed
e↵ects model.

We draw two conclusions if the misclassification
rates vary from part to part. First, for high-quality
processes with ⇡C close to one, the standard assess-
ment plan is not practical. We require huge sample
sizes to produce useful and reliable estimates of the
primary parameter µA. The problem occurs because
we need n very large in order to get su�cient non-

D

FIGURE 2. Simulated Standard Deviation of µA from the
Random E↵ects Model and ↵ from the Fixed E↵ects Model
Across all Simulation Runs with the Standard Plan.
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conforming parts in the sample. Second, we conclude
that using the fixed e↵ects model with the standard
plan can produce badly biased estimates of the con-
sumer’s and producer’s risks.

Conditional Sampling and
Baseline Data

To address the sample size issue, we explore con-
ditional sampling plans (Danila et al. (2008, 2010,
2011)) in which we sample parts randomly from the
populations of previously passed and/or failed parts.
We develop general results for sampling from both
the population of previously failed and the popula-
tion of previously passed parts. However, in our con-
text with ⇡C close to 1, it is best to sample only
from the population of previously failed parts. Con-
veniently, parts that fail inspection are often readily
available as they are segregated for scrap or rework.

In situations in which conditional sampling is fea-
sible, (i.e., when we have populations of previously
passed and failed parts) the pass rate is also usually
recorded by hour, shift, or some other fixed time pe-
riod. We assume that such pass rate baseline data are
available, and we include this data in the likelihood
and, thus, the analysis.

With the conditional sampling plan, we sample n0

and n1 parts at random from the previously failed
and passed parts, respectively, where n0 + n1 = n.
We let f denote the sampling proportion of previ-
ously passed parts, that is n1 = fn, so f = 0 implies
that we sample only from the previously failed parts.
Then we measure each selected part r times with the
BMS. Let Y0 = y0 indicate the (initial) measurement
for any inspected part. With conditional sampling,
the contribution to the likelihood of any part that
passes s times in the assessment study is

P (S = s | Y0 = y0)
= P (S = s, Y0 = y0)/P (Y0 = y0)

=

"
(1� ⇡C)

Z 1

↵=0

↵s+y0+gA�1(1� ↵)r+hA�s�y0�1

Beta(gA, hA)
d↵ + ⇡C

Z 1

�=0

�r+gB�s�y0�1(1� �)s+y0+hB�1

Beta(gA, hA)
d�

#

÷ P (Y0 � y0)

=

"
(1� ⇡C)

Beta(gA + s + y0, hA + r � s� y0)
Beta(gA, hA)

+ ⇡C
Beta(gB + r � s� y0, hB + s + y0)

Beta(gB, hB)

#

÷
�
⇡y0

P (1� ⇡P )1�y0
�

= W (s, y0)/
�
⇡y0

P (1� ⇡P )1�y0
�
, (6)

where W (s, y0) is the factor in the square brackets,
a function of r and the model parameters. With the
random e↵ects model, similar to (2), ⇡P = µA(1 �
⇡C) + (1� µB)⇡C is the marginal probability that a
randomly selected part passes inspection.

Since measurements on di↵erent parts are inde-
pendent, the log-likelihood for the measurements
made in the assessment study is the sum of the loga-
rithm of terms like (6) for each selected part. Suppose
we also have independent baseline data where in m
inspections, there are u passed parts. These data con-
tribute the additional term u log(⇡P )+(m�u) log(1�
⇡P ) to the log-likelihood, if we assume ⇡P is constant
over the time of the collection of the baseline data.
The overall log-likelihood for the conditional sam-
pling plan augmented with baseline data is thus

n0X
i=1

ln[W (si, 0)] +
n1X
i=1

ln[W (si, 1)]

+ (u� n1) ln[⇡P ] + (m� u� n0) ln[1� ⇡P ] (7)

where si is the number of passes out of r measure-
ments for the ith part sampled from either the popu-
lation of previously passed or failed parts. The max-
imum likelihood estimates of the parameters in (7)
must be found numerically. Again, we determine the
approximate standard errors using the Fisher infor-
mation matrix. Upon request we will provide Matlab
(2008) code to produce the estimates and their ap-
proximate standard errors for the conditional sam-
pling plan.

Example

The context is real; the data are not. An auto-
mated inspection system for credit card blanks re-
jects cards for many reasons, so we expect the mis-
classification rates to vary from blank to blank. Oner-
ous manual inspection provides a gold standard sys-
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TABLE 1. Number of Parts with s Passes in Sample

s 0 1 2 3 4 5 6 7 8 9 10

Frequency 37 26 3 3 2 1 6 14 11 42 55

tem. Here, to see how the proposed methodology
works and to avoid using the gold standard, n = 200
cards were selected haphazardly from the recent re-
jects and re-inspected r = 10 times each, with the
results given in Table 1. As well, u = 1734 of the last
m = 2000 cards checked passed the inspection.

Fitting the log-likelihood (7) gives the following
MLEs and corresponding asymptotic standard errors
(in parentheses): µ̂A = 0.069 (0.0125), �̂A = 0.033
(0.0337), µ̂B = 0.084 (0.0063), �̂B = 0.038 (0.0136),
and ⇡̂C = 0.95 (0.0056). Based on these estimates
we get ⇡̂P = 0.874, which closely matches the esti-
mate available from the baseline data (1734/2000).
Note that sampling only previously failed parts gives
a proportion of conforming parts in the sample equal
to P (X = 1 | Y = 0) = µB⇡C/(1� ⇡P ). Plugging in
the estimates µ̂B, ⇡̂C , and ⇡̂P , this proportion is esti-
mated as 0.63. This seems reasonable given the data
in Table 1 since, with small misclassification rates,
we expect that any part that yielded more than five
passes when measured 10 times is conforming and
the proportion of such parts in the sample is 0.645
(129/200).

More generally, to examine how well the condi-
tional sampling plan works, we conducted another
simulation study. We use r = 10 since this is the
number of repeated measurements recommended in
a subsequent section. We investigate large but feasi-
ble plans with n = 100, 250, and 500 parts sampled
from the set of failed parts, i.e., f = 0. We used a
baseline sample of m = 1000 parts. We varied the
model parameters in a factorial structure with µA,
µB = 0.02, 0.1, �A, �B = 0.01, 0.1, ⇡C = 0.9, 0.95.
Each simulation run consists of 5000 trials, and in
each run we estimate the parameters of the fixed and
random e↵ects models. To fit the fixed e↵ect model
we use the model and methods described in Danila
et al. (2010).

Figure 3 shows the bias of the estimates from both
the random and fixed e↵ects model using the condi-
tional sampling plan. The estimates from the fixed
e↵ects model are badly biased and should not be
used if there is a suspicion that the misclassification

rates vary. We found in another simulation (results
not shown) that if the data are generated from a
fixed e↵ects model, there is little loss of e�ciency
using the random e↵ects estimates for µA and µB.
We also see in Figure 3 that, with the random ef-
fects model, we get unbiased estimates for µB, ⇡C ,
and �B if the sample size is large. There are, how-
ever, relatively large biases in the estimates of µA

and, especially, �A. More detailed exploration of the
causes of the observed large biases for µA and �A re-
veals that for some runs of the simulation, �̂A was
surprisingly large. Recall that we imposed the con-
straint µA +�A < 1 to avoid u-shaped Beta distribu-
tions for the random e↵ects. To deal with the large
values of �̂A, we tried strengthening the constraint
to µA + �A  0.5 which reduces the probability of
getting a nonconforming part with a very large mis-
classification rate. However, we did not solve the bias
issue with this stronger constraint. We still had large
values for �̂A and in many runs the estimates fell on
the boundary µ̂A + �̂A = 0.5. We propose to han-
dle these cases by refitting the random e↵ects model
with the further constraint that �A = �B = �. The
result of this proposal is that, when needed, we bor-
row strength from the better performing estimate �̂B.
Using a model with a common � is similar to the so-
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FIGURE 3. Biases of the Estimates from the Random and
Fixed E↵ects Models with the Conditional Plan pic, picFE
(estimates of ⇡C from random and fixed e↵ects models,
respectively).
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FIGURE 4. Biases of the Ad Hoc Estimates from the
Random E↵ects Model.

called 2LCR1 model described by Qu et al. (1996)
and equivalent to the Direchlet model of Fujisawa
and Izumi (2000).

Figure 4 gives simulated bias results using the pro-
posed ad hoc method in which, if needed (i.e., when
the standard MLEs hit the constraint µ̂A+�̂A = 0.5),
we fit the random e↵ects model with �A = �B = �.
Comparing Figures 3 and 4 we see that, with the ad
hoc procedure, the biases are much smaller and bet-
ter centered on zero than are those of the standard
MLEs. In addition, unlike in Figure 3, we see clear
reductions in the biases as the sample size increases.
In Figure 5, we show the standard deviations for the
estimates from both the MLEs and the ad hoc proce-
dure (denoted by an additional 1 in their labels). We
see that the ad hoc procedure improves the precision

D
D D

D
D D

D D

D

FIGURE 5. Standard Deviations for the Estimates from
the Random E↵ects Model and Conditional Plan.

FIGURE 6. Standard Deviations of µ̂A with the Ad Hoc
Procedure.

of the estimates for µA and �A and has virtually no
e↵ect on the precision of the other three estimates.

It is interesting to note that, despite sampling only
from the population of previously failed parts, esti-
mating µA is still more di�cult than estimating µB,
even though for some combinations of the parame-
ters more nonconforming than conforming parts are
selected. This occurs because with large values of ⇡C

the baseline data provides much more information
about µB than µA.

With the common � as needed (i.e., ad hoc) ap-
proach and reasonable sample sizes, we can estimate
the primary parameters µA, µB, and ⇡C fairly well.
However, the biases and standard deviations for the
measures of variability in the misclassification rates,
i.e., �̂A and �̂B, are still too large for these estimates
to be reliable. Even with the conditional plan and the
ad hoc estimation procedure, we need larger sample
sizes to estimate these two parameters, especially �A.

Next, we focus further investigation on µ̂A, the
least precise estimate of the three primary parame-
ters. In Figure 6, we show that with the ad hoc proce-
dure the standard deviations for µ̂A are larger when
µB and, especially, when µA are larger. We need a
sample size of at least n = 250, so that the standard
deviation of µ̂A is less than half the actual parameter
value in the worst case.

We hope to use standard likelihood results to get
approximate standard deviations of the estimates as
derived from the expected (Fisher) information ma-
trix, both for analysis of a particular application and
for planning purposes. In Figure 7, we plot the ratio
of simulated over asymptotic approximate standard
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FIGURE 7. Ratios of Simulated over Asymptotic Stan-
dard Deviations with Conditional Sampling Plan and Base-
line.

deviation for both the standard MLEs and the ad hoc
maximum likelihood estimates. The ratios are close
to one for µB and ⇡C . There is, however, considerably
more variation for µA. The ratios are worst for small
µA and large µB. While there is not perfect agree-

ment between the asymptotic and simulated stan-
dard deviations, the asymptotic approximations can
be used to get approximate confidence intervals for
the parameters and to provide a guide to compare
plans.

Planning a Conditional Sampling
BMS Assessment Study

In this section, we consider planning an assess-
ment study. Since we are assuming ⇡C is large, we
look only at the case f = 0 (i.e., we sample only
from previously failed parts). To investigate the ef-
fects of changing n, r, and m, we consider the cases
m = 100, 1000, 10,000; r = 5, 10, 15; and n = 100,
250, 500 for a range of values of the model param-
eters. We present the results, based on asymptotic
standard deviations from the Fisher information cal-
culated from the log-likelihood (7), in Figures 8, 9,
and 10 with ⇡C = 0.95, µA = 0.05, µB = 0.05,
�A = 0.10, �B = 0.10. In each plot, we show how
the asymptotic standard deviations for µ̂A, µ̂B, �̂B,
and ⇡̂C change. We do not show the plots for �̂A

because for the smaller sample sizes the estimate

FIGURE 8. E↵ect of Increasing m on the Asymptotic Standard Deviations of µ̂A, µ̂B, �̂B, and ⇡̂C for r = 5, 10, 15; n =
100 (solid lines), n = 250 (dotted lines), n = 500 (dot-dashed lines); ⇡C = 0.95, µA = 0.05, µB = 0.05, �A = 0.10, �B =
0.10. Note that lower lines of fixed type correspond to increasing values of r.
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FIGURE 9. E↵ect of Increasing n on the Asymptotic Standard Deviations of µ̂A, µ̂B, �̂B, and ⇡̂C for m = 100, 1000, 10,000;
r = 5 (solid lines), r = 10 (dotted lines), r = 15 (dot-dashed lines); ⇡C = 0.95, µA = 0.05, µB = 0.05, �A = 0.10, �B =
0.10. Lower lines of the same type correspond to increasing values of m.

is somewhat biased, the standard deviations are
large, and the asymptotic approximation can be
poor. Note the log scale for the horizontal axis in
Figure 8 and that the scale of the vertical axis varies
from plot to plot. To create Figure 8, we consider a
wide range of values of m, for each of the nine com-
binations of the other two design parameters n and
r. We see that increasing the baseline size has no ef-
fect on the asymptotic standard deviations of µ̂A, a
small positive e↵ect on the standard deviation of �̂B,
and a dramatic positive e↵ect on the standard devi-
ations of µ̂B and ⇡̂C , for all values of n and r, with
reductions in standard deviation of more than 70%
possible. As the baseline size, m, goes to infinity, the
standard deviations approach a positive limit, corre-
sponding to the situation when the pass rate ⇡P is
known. We see similar results for other values of the
model parameters. Since the baseline data are freely
available, we strongly recommend their inclusion in
the plan and analysis of the BMS assessment study.

Figure 9 explores the e↵ect of increasing the sam-
ple size, n. Note that, while each part in the study

contributes the same information, the asymptotic
standard deviations are generally not simply 1/

p
n

times a function of r, due to the e↵ect of the base-
line data. However, for µ̂A and �̂A, the 1/

p
n rule

works as a close approximation since the baseline in-
formation has very little e↵ect on estimates for these
two parameters. However, for µ̂B and ⇡̂C , the stan-
dard deviations decrease only slowly with n; while,
for �̂B, increasing either n or m substantially im-
proves the precision, baseline sizes larger than 1000
provide little benefit.

Figure 10 shows the e↵ect of changing r, the num-
ber of repeated measurements on each selected part.
There are large gains in e�ciency available by in-
creasing r from its minimum value of five when es-
timating µA or �B, but not so much for µB or ⇡C .
Also note that, as r approaches infinity with n fixed,
unlike with the fixed e↵ects model (Danila et al.
(2010)), we do not get consistent estimates of µA and
µB (i.e., their standard errors do not go to zero) since
there is a finite number of parts in the investigation.

Next, we use the asymptotic results to look at the
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FIGURE 10. E↵ect of Increasing r on the Asymptotic Standard Deviations of µ̂A, µ̂B, �̂B, and ⇡̂C for m = 100, 1000,
10,000; n = 100 (solid lines), n = 250 (dotted lines), n = 500 (dot-dashed lines); ⇡C = 0.95, µA = 0.05, µB = 0.05, �A = 0.10,
�B = 0.10. Note that lower lines of fixed type correspond to increasing values of m.

relative importance of n and r for estimating µA and
µB if the total number of measurements N = nr is
fixed. Here we assume the baseline sample size m is
determined separately. We see in Table 2 that, when
N = 2500 (and m = 1000), there are significant gains
for estimating µA if we increase r at the expense of n,
especially when µB is large. However, for estimating
µB, usually the minimum number of repeated mea-
surements is optimal, except when µB is large and
�B is small; even in this case, r = 5 is close to opti-
mal. In general, since the parameters are unknown,
we recommend r = 10 as a reasonable choice. Ta-
ble 2 also includes columns showing the ratio of the
standard deviations for r = 10 and the optimal value
of r. Qualitatively, we see similar results to those in
Table 2 for other values of �A and ⇡C .

Discussion and Conclusions

In this paper, we consider the assessment of a bi-
nary measurement system when no gold standard
system is available. We concentrate on the industrial
context in which it is likely that the misclassification
probabilities are small and the overall conforming

rate is close to one. We investigate a random e↵ects
model that relaxes the assumption that the misclas-
sification probability is the same for all conforming
(nonconforming) parts. We make the important ob-
servation that, if the data are generated from the
random e↵ects model, the estimates of the (average)
misclassification probabilities obtained by fitting the
standard fixed e↵ects model can be seriously biased.
Furthermore, the loss of precision in fitting the ran-
dom e↵ects model to fixed e↵ects data is small.

We first apply the model to the standard assess-
ment plan, where each part in a random sample of
parts is measured a number of times. We show that
to estimate the average misclassification probabili-
ties with reasonable precision we need a sample of
parts that is so large as to be impractical. We also
need substantially more repeated measurements on
each part than required to make the model identi-
fiable (i.e., r > 5). To reduce the sample size, we
propose using conditional sampling from the pop-
ulation of previously failed parts, supplemented by
baseline data. For some samples for which the esti-
mates seem unreasonable, we adopt an ad hoc pro-
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TABLE 2. Optimal Value of r for Estimating µA and µB When N = nr = 2500, �A = 0.05, ⇡C = 0.95, m = 1000, f = 0

SD(µ̂A) at SD(µ̂B) at
Best r Best best r over Best r Best best r over

µA µB �B for µA SD(µ̂A) r = 10 for µB SD(µ̂B) r = 10

0.02 0.02 0.01 7 0.0042 0.9758 5 0.0028 0.9015
0.02 0.02 0.10 11 0.0047 0.9973 5 0.0029 0.9051
0.02 0.05 0.01 9 0.0051 0.9940 5 0.0054 0.9678
0.02 0.05 0.10 14 0.0060 0.9658 5 0.0055 0.9446
0.02 0.10 0.01 11 0.0066 0.9980 16 0.0076 0.9934
0.02 0.10 0.10 17 0.0079 0.8667 6 0.0083 0.9740
0.05 0.02 0.01 7 0.0066 0.9798 5 0.0028 0.9054
0.05 0.02 0.10 11 0.0074 0.9968 5 0.0029 0.9139
0.05 0.05 0.01 9 0.0082 0.9997 5 0.0054 0.9702
0.05 0.05 0.10 14 0.0095 0.9633 5 0.0056 0.9511
0.05 0.10 0.01 12 0.0105 0.9959 17 0.0076 0.9902
0.05 0.10 0.10 17 0.0128 0.8720 6 0.0084 0.9785
0.10 0.02 0.01 8 0.0094 0.9920 5 0.0029 0.9127
0.10 0.02 0.10 13 0.0108 0.9850 5 0.0030 0.9386
0.10 0.05 0.01 10 0.0118 1 5 0.0055 0.9748
0.10 0.05 0.10 16 0.0140 0.9345 6 0.0057 0.9671
0.10 0.10 0.01 13 0.0153 0.9720 17 0.0076 0.9850
0.10 0.10 0.10 21 0.0194 0.8250 7 0.0085 0.9888

cedure that assumes a common variance multiplier �
for both conforming and nonconforming parts. This
procedure reduces the number of parameters in the
model and borrows strength from the baseline data.
Conditional sampling and the corresponding analysis
provide reasonable parameter estimates with a mod-
erate sample size and a feasible number of repeated
measurements on each selected part.

We can think of several other ad hoc procedures
to deal with the di�culty of estimating µA and �A.
If the estimates are unreasonable, we can collect ad-
ditional data by sampling additional parts or by re-
measuring parts with observed pass rates close to
0.5. If a gold standard is available but expensive,
as in the credit card example, we can instead use
the gold standard to classify these problematic parts.
The likelihood (7) requires adjustment in this case.
We have not investigated either of these alternatives.

To use the conditional sampling assessment plan
we need to choose n, r, and f , as we assume the base-
line size, m, is given. We recommend f = 0 (i.e., sam-
pling only from the failed parts) since this increases
the expected number of nonconforming parts in the
study, and failed parts are usually readily available.

Our results suggest that it is desirable to have more
nonconforming than conforming parts in the sample.
We still get precise estimates for µB due to the base-
line information. To choose appropriate values for the
number of parts n and the number of repeated mea-
surements r, we provide Matlab (2008) code that de-
termines the asymptotic standard errors for the five
parameters, given initial guesses. This code can be
used to select a conditional plan to meet any desired
precision goals for all the estimates other than �̂A,
as long as the number of parts is not very small (say
n > 250) so that the asymptotic approximations are
applicable.

In the analysis, we suppose that both the BMS
and the underlying process are stable, that is, the
model parameters do not change during the measure-
ment system assessment study. This begs the ques-
tion “How much baseline data should we use?” More
is better for estimating µB and ⇡C , as shown in Fig-
ure 8, but we need to be careful. We do not want to
use baseline data from a time period in which any of
the parameters were substantially di↵erent. To pro-
tect against this we recommend examining the sta-
bility of the baseline data using statistical process
control techniques (Montgomery (1996)).
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