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Assessing a Binary Measurement System
With Varying Misclassification Rates When
a Gold Standard Is Available

Oana DANILA, Stefan H. STEINER, and R. Jock MACKAY

Business and Industrial Statistics Research Group (BISRG)
Department of Statistics and Actuarial Science

University of Waterloo
Waterloo N2L 3G1, Canada

(omdanila@uwaterloo.ca; shsteiner@uwaterloo.ca; rjmackay@uwaterloo.ca)

In manufacturing, we often use a binary measurement system (BMS) for 100% inspection to protect
customers from receiving nonconforming product. We can assess the performance of a BMS by estimating
the consumer’s and producer’s risks, the two misclassification rates. Here, we consider assessment plans and
their analysis when a gold standard system (GSS) is available for the assessment study but is too expensive
for everyday use. We propose a random-effects model to allow for variation in the misclassification
rates within the populations of conforming and nonconforming parts. One possibility, here denoted the
standard plan, is to randomly sample n parts and measure them once with the GSS and r times with
the inspection system. We provide a simple analysis and planning advice for standard plans. In practice,
the misclassification rates are often low and the underlying process has high capability. This combination
of conditions makes the assessment of the BMS challenging. We show that we need a very large number
of measurements with the standard plan in order to get precise estimators of the average misclassification
rates and the true process performance. We consider an alternate design, here denoted the conditional
assessment plan, where we select random samples from the sets of previously passed and failed parts. The
sampled parts are measured once with the GSS and r times with the inspection system. When we augment
the data from the conditional plans with available baseline information on the overall pass rate, we show
that we can precisely estimate the parameters of interest with many fewer measurements. In the online
supplementary materials, we provide R code to find maximum likelihood estimates and corresponding
approximate standard errors, and to find the asymptotic standard deviation of the estimators with a selected
plan size and assumed parameter values for both the standard and the conditional sampling plans.

KEY WORDS: Binary measurement systems; Gold standard measurement system; Likelihood methods;
Random effects.

1. INTRODUCTION

Binary measurement systems (BMS) are commonly used as
diagnostic tools in medicine and inspection systems in industry.
Understanding their properties is essential to making correct de-
cisions with these systems. Here, we adopt industrial language.
Each part is conforming or not as indicated by the value of the
random variable X, where

X =
{

1 if the part is conforming
0 if the part is nonconforming

.

We can determine the value of X if we have an available gold
standard system (GSS), a system with no measurement error.

If the part is measured by the BMS under study, we use the
random variable Y to indicate the result of that inspection, where

Y =
{

1 if the part passes inspection
0 if the part fails inspection

.

The characteristics of the process and the measurement system
are then given by

α = P (Y = 1|X = 0),

β = P (Y = 0|X = 1),

πC = P (X = 1).

Here, α represents the customer’s risk, the proportion of non-
conforming parts that pass the inspection and are presumably
shipped to the customer. The parameter β represents the pro-
ducer’s risk, the proportion of conforming parts that fail the
inspection and lead to unnecessary rework or scrap. We can also
interpret α as the long-run proportion of times that a single non-
conforming part passes repeated inspection by the BMS (and
similarly for β). The parameter πC is the proportion of parts
that are conforming when measured by the GSS and depends
on the underlying process and the GSS, not on the BMS. In the
manufacturing context, we expect πC to be large and α and β to
be small. We focus on these conditions throughout the article.
One consequence of this assumption is that we require the bias
and standard deviation of any estimator to be small. We define,
somewhat arbitrarily, an estimator to be useful if the relative bias
is less than 0.1 and the relative standard deviation is less than 0.5.

Many other performance metrics describing both the BMS
and the process are functions of the parameters α, β, and πC .

© 2013 American Statistical Association and
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For example, the proportion of passed parts is

πP = Pr(Y = 1) = α(1 − πC) + (1 − β)πC.

We can assess the BMS by measuring a randomly selected
sample of n parts once each with the gold standard and r ≥
1 times with the BMS. We call this the standard plan. These
plans with r = 1 have been studied by Danila, Steiner, and
MacKay (2008), Farnum (1994), and Burke et al. (1995) in an
industrial setting and by Pepe (2003) in the medical context.

To model the data from a standard plan, the simplest approach
is to make the following assumptions:

• the misclassification rate α is the same for each noncon-
forming part (and similarly for β);

• measurements made on different parts are independent;
• given the value of X, repeated measurements on the same

part are (conditionally) independent. That is, if we make r
measurements on the same part modeled by Y1, Y2, . . . , Yr ,
we have

P (Y1 =y1, . . . , Yr = yr |X = x) =
r∏

j=1

P (Yj = yj |X = x).

When we have a GSS, we know X = x, and so, for each part
in the study

P (Y1 = y1, . . . , Yr = yr,X = x)

= [αs(1 − α)r−sπc]1−x[(1 − β)sβr−s(1 − πc)]x, (1)

where s = ∑r
j=1 yj is the number of times the part passes in-

spection. We refer to (1) and the corresponding assumptions as
the fixed-effects model.

The assumptions underlying this model have been widely
criticized. See, for instance, De Mast, Erdmann, and van
Wierigen (2011), who discussed these issues in the situation
when no GSS is available. In many cases, it may be unrea-
sonable to assume that α and β are constant over all noncon-
forming and conforming parts, respectively. Some conforming
(nonconforming) parts may be harder to classify correctly than
others.

Suppose there is a vector of characteristics Z so that the
probability that the BMS passes a part depends on the value
of Z = z as well as on X = x. If we measure Z for any
part and assume that repeated measurements on the part are
independent given X = x and Z = z, then we can model
P (S = s|X = x,Z = z) using logistic regression, for example.
The manual from AIAG (2010, p. 135) suggests a less formal
approach. Now suppose that one or more of the components
of Z are unidentified or not measurable. Each part has its own
misclassification rate dependent on the unobserved Z. To better
handle such situations, we make the following assumptions to
model the data from a standard plan:

• the misclassification rate for part i is αi if Xi = 0 and βi if
Xi = 1;

• measurements made on different parts are independent;

• given Xi = 0 and αi , repeated measurements
Yi1, . . . , Yir on part i are (conditionally) independent, so

P (Yi1 = y1, . . . ., Yir = yr |Xi = 0, αi)

=
r∏

j=1

P (Yij = yj |Xi = 0, αi);

and similarly given Xi = 1 and βi .

• for each part i in the study, we have

P (Yi1 = yi1, . . . , Yir = yir , Xi = x|αi, βi)

= [
αs

i (1 − αi)
r−s (1 − πc)

]1−x [
(1 − βi)

sβr−s
i πc

]x
,

si =
∑r

j=1
yij ;

• to model the variation of the misclassification rates in the
populations of conforming and nonconforming parts, we
specify the distributions of the αi’s and βi’s up to unknown
parameters θ0 and θ1.

For any part, we can determine the joint distribution of
(Y1, . . . , Yr , X) with parameters (θ0, θ1, πC) using the condi-
tional distributions and assumptions given above. Note that
θ0 and θ1 may each represent a vector of parameters. In this
model, Y1, . . . , Yr are not independent given X = x. We call this
distribution and the accompanying assumptions the random-
effects model. The random-effects model explicitly allows for
the variation in the misclassification rates within the sets of con-
forming and nonconforming parts. In a sense, the distributions
of the αi’s and βi’s capture the effects of all unknown or unmea-
sured variables on the properties of the BMS, given the value of
X. The parameters α and β, the average misclassification rates,
are functions of the parameters θ0 and θ1 in this model. That is,

α = P
(
Yij = 1|Xi = 0

) = Eθ0

[
P

(
Yij = 1|Xi = 0, αi

)]
= Eθ0 [αi]

and

β = P
(
Yij = 0|Xi = 1

) = Eθ1

[
P

(
Yij = 0|Xi = 1, βi

)]
= Eθ1 [βi] .

As noted earlier, we expect πC to be large and α and β to be
small. We focus on the ranges πC ≥ 0.8, 0 < α, β ≤ 0.10. The
article is organized as follows. We first consider the standard
plan and investigate the properties of the maximum likelihood
estimates (MLEs) from the fixed-effects model and the random-
effects model, where we assume the αi’s and βi’s follow a beta
distribution. We find that even when the misclassification rates
vary, the estimators of α, β, and πC from the fixed-effects
model perform relatively well. Next, we consider planning
such an assessment by examining the effects of changing n and
r on the properties of the estimators. We conclude that for the
parameter ranges under investigation, we need a large sample of
parts to get useful estimators of the primary parameters, espe-
cially α. This is not surprising because with πC large, we need
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a large sample to find a sufficient number of nonconforming
parts.

In most inspection systems, parts are segregated into passes
and fails and the pass rate is recorded over time. To deal with
the issue of the large number of measurements required when
πC is large and α and β are small, we recommend a conditional
assessment plan where we choose a random sample from the
previously failed parts and measure each selected part once with
the GSS and r ≥ 0 times using the BMS. Additionally, we in-
corporate the recent recorded pass rate into the analysis. Danila,
Steiner, and MacKay (2008) considered the case with r = 0 for
the fixed-effects model. We use simulation to determine when
the likelihood-based asymptotic approximations can be used.
We show the marked improvement in the precision of the esti-
mators corresponding to the MLEs using the conditional plan
rather than the standard plan, and demonstrate that it is possi-
ble to assess the properties of the BMS with relatively small
numbers of parts and repeated measurements.

We also investigate the sensitivity of the estimators corre-
sponding to the MLEs based on a conditional plan if the GSS
occasionally misclassifies parts; that is, it is really not a GSS.
In this case, we show that the estimators based on the random-
effects model can be severely biased. We offer an adhoc change
to the estimation procedure that largely deals with the issue. We
finish the article with a summary and some discussion.

2. STANDARD PLANS

For convenience, we assume that the αi’s for nonconforming
parts (X = 0) and the βi’s for conforming parts (X = 1) follow
beta distributions with densities

α
g0−1
i (1 − αi)h0−1

Beta(g0, h0)
, 0 < αi < 1, and

β
g1−1
i (1 − βi)h1−1

Beta(g1, h1)
, 0 < βi < 1,

respectively, where Beta(g, h) is the beta function. Other distri-
butional assumptions are possible, but the beta distribution is a
natural choice as it is flexible and mathematically convenient.
We reparameterize the distributions in terms of the means α,
β, and measures of the variability γ0, γ1, where the subscript
indicates if the part is conforming (subscript 1) or not (subscript
0). We have

α = g0

g0 + h0
, γ0 = 1

g0 + h0
and

β = g1

g1 + h1
, γ1 = 1

g1 + h1

so that the variances are σ 2
0 = (γ0/(1 + γ0))α(1 − α) and σ 2

1 =
(γ1/(1 + γ1)) β(1 − β). In this model, α and β represent the
consumer’s and producer’s risk, respectively, as in the fixed-
effects model. Also, as γ0 and γ1 approach zero, we recover the
fixed-effects model.

Suppose we select a random sample of n parts from the pro-
cess and measure each part r ≥ 2 times with the BMS and once
with the GSS. The likelihood contribution (ignoring multiplica-

tive constants) of any nonconforming part is

(1 − πC)
∫ 1

α=0
αs(1 − α)r−s αg0−1(1 − α)h0−1

Beta(g0, h0)
dα

= Beta(g0 + s, h0 + r − s)

Beta(g0, h0)
(1 − πC) (2)

and, for any conforming part, is

πC

∫ 1

β=0
(1 − β)sβr−s βg1−1(1 − β)h1−1

Beta(g1, h1)
dβ

= Beta(g1 + r − s, h1 + s)

Beta(g1, h1)
πC, (3)

where s is the number of times the part passes inspection. These
are beta binomial models as described by Griffiths (1973). If r =
1, we can simplify these contributions to αs(1 − α)1−sπC and
β1−s(1 − β)s(1 − πC) that do not depend on γ0 and γ1 and
are, in fact, the likelihood contributions from the corresponding
fixed-effects model. Thus, when r = 1, we cannot distinguish
between the random- and fixed-effects models and hence we
consider only standard assessment plans with r ≥ 2.

Using (2) and (3), if there are t conforming parts and n − t

nonconforming parts in the random sample of parts selected
for the measurement assessment study, we can write the log-
likelihood up to an additive constant as the sum

l(α, γ0, β, γ1, πC) = lr0(α, γ0) + lr1(β, γ1) + t log(πC)

+ (n − t) log(1 − πC), (4)

where lr0(α, γ0)and lr1(β, γ1) are the beta binomial log-
likelihoods corresponding to the nonconforming and con-
forming parts in the random sample, respectively. Note that
lr0(α, γ0) is the sum over all nonconforming parts of the log
of the terms involving a ratio of Beta functions given by (2),
and lr1(β, γ1) is similarly defined based on (3). We then have
π̂C = t /n, and we can maximize lr0(α, γ0) and lr1(β, γ1) sep-
arately using the simplification provided by Griffiths (1973).
This simplification also provides a route to the observed and
expected information by first conditioning on T = t . See the
Appendix for details. We maximize the likelihood numerically
with R (R Core Team 2012) using the algorithm of Nelder and
Mead (1965) that makes no use of the derivatives but conducts
an organized search for the maximum over the parameter space.
We denote the MLEs from the random-effects model by α̂re and
β̂re. We also provide approximate standard errors for the MLEs
based on substitution of the estimates into the inverse of the
expected information matrix.

If we fit the fixed-effects model (1) to these data instead, then
the corresponding MLEs are

α̂fe =
∑

nonconforming si

r(n − t)
=

∑
nonconforming α̂i

n − t
, t �= n,

β̂fe =
∑

conforming si

rt
=

∑
conforming β̂i

t
, t �= 0,

π̂c = t

n
, (5)

where si is the number of times part i passes inspection, and
α̂i and β̂i are the corresponding proportions of times part i is
misclassified. The corresponding estimators are unbiased re-
gardless of the distributions for the α’s and β’s. Furthermore,
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suitably standardized, the sample variances of the α̂i and β̂i are
unbiased estimators of the variances of these simple estimators.

2.1 Example

The context is real; the data are not. A functional test stand
is used for 100% inspection of a component of an electronic
device. The test stand examines a number of features and char-
acteristics of the device. With many of these features we believe
there are underlying latent variables that differentiate the de-
vices, so we expect the misclassification rates to vary from de-
vice to device. To assess the performance of the stand, a sample
of 100 parts was selected haphazardly from one shift’s produc-
tion and measured five times with the inspection system and then
offline with a GSS. The GSS is an expensive exhaustive exami-
nation of the device by a human operator. The sample contained
t = 78 conforming devices. We give the data in Table 1.

The fixed-effects model estimates from (5) and their stan-
dard errors (within parentheses) are π̂C = 0.78 (0.041), α̂fe =
0.127 (0.038), and β̂fe = 0.087 (0.015). The MLEs π̂C , α̂re, and
β̂re from the random-effects model log-likelihood (4) and their
corresponding standard errors based on the asymptotic approx-
imation are the same (to three decimal places). We also have
γ̂0 = 0.131 (0.135) and γ̂1 = 0.035 (0.047). Even with 500 mea-
surements, we have relatively poor precision for estimating α, β,
and especially γ0 and γ1. For these latter parameters, we do not
expect the asymptotic normal approximations to work because
of the boundary issues, that is, the possibility that γ0 = 0 and/or
γ1 = 0. To test the hypothesis that γ0 = 0 and/or γ1 = 0, we
followed the suggestions of Self and Liang (1987) to adjust
the distribution of the likelihood ratio statistic to deal with the
boundary issue. Through simulation, we found that the distribu-
tion of the test statistic under the null hypothesis was far from
the equal mixture of a discrete random variable with probabil-
ity 1 at the origin and a χ2

1 random variable suggested by the
asymptotic results, especially in the tail. A simpler approach is
to test the fit of the observed si to a binomial distribution. In the
example, there is no evidence against the fit of the two binomial
models corresponding to γ0 = γ1 = 0.

2.2 Performance of the Estimators in the Standard Plan

Here, we examine the properties of the estimators defined
above. Because of the way the parameters separate in the log-
likelihood (4), the Hessian matrix is block diagonal and we can
investigate the asymptotic behavior of (α̂re, γ̂0), (β̂re, γ̂1) and
π̂C separately. Since the asymptotic results for π̂C are driven
by the binomial distribution of T that depends solely on n and
πC , we do not consider its properties further. We focus on the
estimators α̂re and γ̂0 since, with πC large, we expect fewer
nonconforming than conforming parts in the sample. Thus, in

Table 1. Standard plan assessment data

s = 5 s = 4 s = 3 s = 2 s = 1 s = 0 Total

x = 1 51 21 5 1 0 0 78
x = 0 0 0 1 3 5 13 22

Figure 1. Plot of α̂fe versus α̂re for varying design and model pa-
rameters.

this case, the performance of the estimators α̂re and γ̂0 will be
worse than that of β̂re and γ̂1.

We start by numerically comparing the estimators α̂fe and
α̂re over a wide range of design and model parameters. For each
combination of n = 100, 200, 500, 1000; r = 2, 5, 10; α, β =
0.02, 0.05, 0.10; γ0, γ1 = 0.02, 0.10, 0.20; and πC = 0.8, 0.9,

0.95, we generated one sample and calculated α̂fe and α̂re. We
see in Figure 1 that the two estimates are almost always nearly
equal. The most divergent cases correspond to n and r small with
πC large. In these cases, neither estimator is precise because
there are few nonconforming parts in the sample. Based on the
plot, we assume that we can assess the properties of estimator
α̂re using the properties of simple estimator α̂fe.

Conditioning on T = t , we can easily show, for any distribu-
tion of the random effects, that

var[α̂fe] = 1

n − t

[
α(1 − α)

r
+ σ 2

0
r − 1

r

]
,

where σ 2
0 is the variance of the αi’s in the population of non-

conforming parts. And so, for n large, we have

var[α̂fe] ≈ α(1 − α) + σ 2
0 (r − 1)

nr(1 − πC)
. (6)

If πC = 0.95, we see that the standard deviation of the es-
timator α̂fe is relatively large unless n is extreme. For ex-
ample, with n = 1000, r = 5, α = 0.05, γ0 = 0.1, we have
σ0 = 0.065 and the standard deviation of α̂fe is 0.017, about
one-third of α. An estimator with such small relative precision
may not be useful, even though the study involved 5000 mea-
surements with the inspection system.

To assess the properties of the MLE for γ0, we carried out
a simulation where we varied the design specifications n, r
over the ranges 100 ≤ n ≤ 1000, r = 2, 5, 10 and the parame-
ter values over the ranges 0.02 ≤ α ≤ 0.10, 0 < γ0 ≤ 0.20, and
0.8 ≤ πC ≤ 0.95. The number of conforming parts t varies from
run to run. We used 10,000 simulation runs for each combina-
tion of the parameters. We found that γ̂0 performed poorly over
most of the range. For example, with n = 1000, r = 5, α =
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ASSESSING A BMS WITH RANDOM EFFECTS MODEL 339

0.05, γ0 = 0.1 and πC = 0.95, the bias and the standard de-
viation of γ̂0 are 0.007 and 0.111, respectively. The standard
deviation is so large that the estimator is not useful.

In summary, we draw the following conclusions for standard
plans:

• We can safely use the fixed-effects estimates of α, β, and
πC even if we suspect that the misclassification probabili-
ties vary within the sets of conforming and nonconforming
parts. We get standard errors, for example, by substituting
σ̂ 2

0 , the sample standard deviation of the α̂i’s, and α̂fe (for
α) into (6).

• If πC is close to 1 (i.e., a high-quality process), then we
need large n and moderately large r for the estimator α̂fe to
have small relative precision.

• The MLEs γ̂0 and γ̂1 are badly behaved unless n is ex-
tremely large.

• As r increases, the standard deviations of α̂fe and β̂fe do
not approach zero.

3. CONDITIONAL SAMPLING PLANS

In many inspection processes, passed and failed parts are
segregated after an initial measurement by the BMS. Let Y0 =
y0 indicate this measurement for any inspected part. As well,
the pass rate is recorded by hour, shift, or some other fixed time
period. Here, we use the idea of Danila, Steiner, and MacKay
(2008, 2010) to select the parts for the assessment by separately
sampling randomly from the previously passed and failed parts.
We call this the conditional sampling approach, and when πC is
large, we expect to increase the number of nonconforming parts
in the sample by oversampling the failed parts. We also propose
to include the pass rate data from a recent fixed time period in
the likelihood. Both of these measures help to reduce the large
sample sizes required by the standard plan to produce useful
estimators.

For the measurement system assessment study, we sample
n0 and n1 parts at random from the previously failed and passed
parts. Then, we measure each selected part once with the GSS
and r times with the BMS. With the conditional sampling plan,
it is not possible to use the simple average misclassification rate
estimates given by (5) because they do not take into account
the conditional sampling nor can we easily add the additional
information given by the baseline data. Instead, we resort to
maximum likelihood estimation. The contribution to the likeli-
hood of any part that passes s times in the assessment study is

P (S = s, X = x|Y0 = y0)

= P (Y0 = y0, S = s|X = x)P (X = x)/P (Y0 = y0).

We evaluate the first factor on the right using the appro-
priate beta distribution to model the random effects. For any
nonconforming part, the contribution to the likelihood is

P (S = s,X = 0|Y0 = y0)

= P (Y0 = y0, S = s|X = 0)P (X = 0)/P (Y0 = y0)

=
(

r

s

)∫ 1

0

αs+y0αr−s+1−y0αg0−1(1 − α)h0−1

Beta(g0, h0)
dα

P (X = 0)

P (Y0 = y0)

=
(

r

s

)
Beta(g0 + s + y0, h0 + r − s + 1 − y0)

Beta(g0, h0)

× (1 − πC)

π
y0
P (1 − πP )1−y0

, (7)

and for any conforming part, is

P (S = s,X = 1|Y0 = y0)

= P (Y0 = y0, S = s|X = 1)P (X = 1)/P (Y0 = y0)

=
(

r

s

)∫ 1

0

(1 − β)s+y0βr−s+1−y0βg1−1(1 − β)h1−1

Beta(g1, h1)

× dα
P (X = 1)

P (Y0 = y0)

=
(

r

s

)
Beta(g1 + r − s + 1 − y0, h1 + s + y0)

Beta(g1, h1)

× πC

π
y0
P (1 − πP )1−y0

. (8)

Other than the additional divisor, (7) and (8) correspond to
(2) and (3) with r replaced by r + 1 and s replaced by s + y0.
We can again use Griffith’s (1973) simplification to evaluate the
likelihood.

As noted above, most inspection systems record the pass rate
over some fixed time period. Suppose the baseline data showed
that u of the last m parts were passed by the BMS. Under the
random-effects model, these data contribute the additional term
u log(πP ) + (m − u) log(1 − πP ) to the log-likelihood. So for
the conditional sampling plan, the log-likelihood is given by

lc0(α, γ0) + lc1(β, γ1) + t log(πC) + (n − t) log(1 − πC)

+ (u − n1) log(πP ) + (m − u − n0) log(1 − πP ). (9)

Here t is the total number of conforming parts in the two
samples. The terms lc0(α, γ0) and lc1(β, γ1) are based on the
log-ratio of the Beta functions on the right sides of (7) and
(8), respectively, and each is the sum of two terms (y0 = 0, 1)
determined by the frequencies of the numbers of passes in the r
inspections.

We maximize the overall conditional sampling likelihood us-
ing the Nelder–Mead algorithm. Since πP depends on α, β,
and πC , the information matrix is no longer block diagonal, as
it was with the standard plan. With conditional sampling, the
fixed-effects estimators are severely biased (see below), and so
for convenience, we drop the subscript “fe” and “re” in the no-
tation for the MLEs of α and β as we only look in detail at the
properties of the random-effects model-based estimators.

3.1 Example

For the functional test stand described earlier, in the previous
three shifts before the assessment, there were 960 units passed
in 1243 inspections. Over time, failed parts were set aside until
there were 100 available for the assessment study. Each previ-
ously failed part was remeasured five times with the BMS and
once with the GSS. The results are given in Table 2.

The MLEs from (9) and their approximate standard errors
(within parentheses) are

α̂ = 0.134 (0.029), β̂ = 0.086 (0.013), γ̂0 = 0.141 (0.098),

γ̂1 = 0.020 (0.030), π̂C = 0.82 (.016).
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Table 2. Conditional sampling plan assessment data

s = 5 s = 4 s = 3 s = 2 s = 1 s = 0 Total

x = 1 22 5 5 0 0 0 32
x = 0 0 0 4 5 18 41 68

Note the improved precision from the earlier example due to
the greater number of conforming parts in the sample and the
additional information from the baseline. We show below that
the asymptotic approximations for the standard deviations of the
estimators for α, β, and πC work well for this design with the se-
lected range of parameter values. However, both γ̂0 and γ̂1 have
significant positive bias, and asymptotic approximations badly
underestimate standard deviations evaluated by simulation. We
must increase the number of parts in the sample to get good
estimators of γ0 and γ1. As with the standard plan, we can test
the hypothesis(is) γ0 = 0 and/or γ1 = 0 using a goodness-of-fit
test on the appropriate distributions of the rows of Table 2.

3.2 Performance of the Asymptotic Standard Deviation
Approximations for the MLEs

In this section, we assessed how well the asymptotic stan-
dard deviation approximations for the conditional sampling plan
match the standard errors of the MLEs using simulation. We
focus on the case n1 = 0 and n0 = n, where we sample only
failed parts. If πC is large, as expected, then sampling failed
parts increases the number of nonconforming parts in the study.
In practice, it is convenient to use failed parts in the assess-
ment study as these are not shipped to customers and typically
set aside as scrap or for rework. Depending on the parameter
values, we may end up with more than half the parts being
nonconforming, which suggests that β and γ1 would become
the more difficult parameters to estimate. However, the baseline
data provide significantly more information about β than about
α. We discuss why this is true at the end of Section 4. As noted
above, the information matrix for a plan augmented by baseline
data is not block diagonal. Hence, we expect the properties of
the estimator of any one of the parameters to depend on all of
the others. Accordingly, we report the results for all of α, β, γ0,
γ1, and πC .

We start with a small plan n0 = n = 100, n1 = 0; that is,
we sample 100 parts from the population of previously failed
parts, r = 5 repeated measurements on each part with the
BMS, and m = 1000 baseline observations. We expect that in-
creasing any of the design characteristics n, r, or m will im-
prove the performance of the estimators and the asymptotic
approximations. We selected two levels for each of the model
parameters α = 0.02, 0.10, β = 0.02, 0.10, γ0 = 0.05, 0.20,
γ1 = 0.05, 0.20, and πC = 0.90, 0.95. For each of the 32 com-
binations, we estimate the bias and standard deviation of the
estimator for each parameter based on the results of the 5000
simulation runs. We also calculate the ratio of this standard
deviation to the asymptotic approximation based on the Fisher
information at the known parameter values. The results are sum-
marized in Table 3.

Table 3. Bias, standard deviation, and ratio for the conditional
sampling plan: minimum and maximum values over the 32

combinations given in parenthesis with
n0 = 100, n1 = 0, r = 5, m = 1000

Estimator Bias Standard deviation Ratio

α̂ (0.000, 0.004) (0.008, 0.049) (0.973, 1.089)
γ̂0 (0.004, 0.108) (0.055, 0.377) (0.951, 2.048)
β̂ (0.000, 0.004) (0.004, 0.012) (0.981, 1.034)
γ̂1 (−0.000, 0.004) (0.026, 0.086) (0.990, 1.081)
π̂C (−0.000, 0.000) (0.007, 0.012) (0.988, 1.028)

There is negligible bias in all of the estimators except γ̂0.
There is very little information about γ0 available using the
plan. We found through further simulation that to estimate
γ0 without bias and reasonable standard deviation, we need
n ≥ 200, r ≥ 5, with even larger samples required as πC gets
closer to 1. The standard deviations of the estimators are
sensitive to the underlying parameter values. The standard
deviation of α̂ increases as α, β, and γ0 increase with no
indication of two-factor interactions. The standard deviation
of β̂ increases as β increases. The standard deviation of γ̂1 in-
creases as γ1 increases, and decreases as β and πC increase.
Finally, the standard deviation of π̂C increases as β increases,
and decreases as πC increases. With the exception of γ̂0, the
asymptotic approximations are close to the standard deviations
over the whole range of parameter values that we investigated.
We can then safely compare various plans as large as or larger
than the plan n0 = 100, n1 = 0, r = 5, m = 1000 using
the asymptotic approximations. The standard deviations of
the estimators of the key parameters α, β, and πC (especially
α) are just small enough so that this plan provides useful
information.

In the above experiment, we also examined the MLEs for
α and β assuming the fixed-effects model. Unlike the situation
under the standard plan, the estimators from the fixed-effects
likelihood that take into account the conditional sampling and
baseline are severely biased. The bias ranges between (–0.017,
–0.001) and (0.004, 0.042) for the estimators of α and β, re-
spectively, and between (–0.005, 0.010) for the fixed-effects
estimator of πC .

In summary, we conclude:

• When πC > 0.9, with conditional sampling and a reason-
able size baseline (m > 1000), we need a sample with at
least n = 100, r = 5 to estimate α and β with useful pre-
cision. We also find the smaller α and β are, the larger is
the sample size that is required. We cannot estimate γ0 well
unless we have a much larger plan.

• We can substitute the estimates into the approximate
asymptotic standard deviations to get standard errors that
are close to correct.

• If the misclassifications error rates vary, we cannot use
the fixed-effects model with the conditional sampling plan
without the risk of large bias in the estimators of α

and β.
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Figure 2. Effect of increasing m on the asymptotic standard deviations of α̂, β̂, γ̂1, and π̂C for r = 2, 5, 10, n = 100 (solid lines), n =
200 (dotted lines), n = 500 (dot-dashed lines), πC = 0.95, α = β = 0.05, and γ0 = γ1 = 0.10. Note that lower lines of the same type correspond
to increasing values of r.

3.3 Effect of Changing the Design Characteristics

With conditional sampling and baseline data, the investigator
can choose the four design characteristics n0, n1, r, and m. Here,
we consider only the case n1 = 0 since we are assuming πC is
large. We investigate the effects of changing n0 = n, r , and m
using the asymptotic standard deviations of the MLEs as the
basis of comparison. We present the results in Figures 2, 3, and
4, with πC = 0.95, α = β = 0.05, and γ0 = γ1 = 0.10. In each
plot, we show how the asymptotic standard deviations for α̂, β̂,
γ̂1, and π̂C change. We do not show the plots for γ̂0 because, for
the smaller sample sizes, the estimator is badly biased and the
asymptotic approximations perform poorly.

Note that the horizontal axis in Figure 2 is on a log scale and
the scale of the vertical axis varies from plot to plot. To create the
plots, we considered a wide range of values of m for each of the
nine combinations of r = 2, 5, 10 and n = 100, 200, 500. We
see that increasing the baseline size has no effect on the asymp-
totic standard deviations of α̂, a small positive effect on the
standard deviation of γ̂1, and a dramatic effect on the standard
deviations of β̂ and π̂C for all values of n and r, with reduc-
tions in the standard deviation of more than 80% possible. As
the baseline size m goes to infinity, the standard deviations ap-
proach a positive limit corresponding to the situation when the
pass rate πP is known. We see similar results for other values of
the parameters. Since the baseline data are freely available, we
strongly recommend their inclusion in the analysis.

In Figure 3, we examine the effects of increasing n, the
number of parts, on the asymptotic standard deviations with

m = 100, 1000, 10000 and r = 2, 5, 10. We use a log scale
for the horizontal axis. For α̂, the standard deviations decrease
at a rate 1/

√
n and m has no effect. For β̂ and π̂C , when

m = 100, the effect of increasing n depends strongly on the
value of r. In the cases with the baseline size m ≥ 1000, the
standard deviations are weakly dependent on r and the effect of
increasing n is greater for π̂C . For γ̂1, increasing either n or m
substantially improves the precision, but baseline sizes larger
than 1000 provide little benefit.

In Figure 4, we see the effect of increasing r, the num-
ber of repeated measurements, on the asymptotic standard de-
viations of the estimators when we consider the cases m =
100, 1000, 10000 and n = 100, 200, 500. Increasing r has a
similar positive effect to increasing n on the standard deviation
of α̂. When m = 100, increasing r strongly reduces the standard
deviations of β̂ and π̂C . However, when m is much larger, we see
that increasing r has very little effect on the standard deviations.
For γ̂1, increasing r reduces the standard deviation, but most of
the gains have been achieved when r = 5 or 6; larger values are
only marginally better.

We see similar patterns for other values of the parameters.
In summary, we conclude that for α̂, the baseline data has little
impact on the precision of the estimator, which depends largely
on n and r. For β̂ and π̂C , even a small baseline sample can have
a large impact. Once the baseline reaches a size near 1000, there
is little value in increasing r in estimating the corresponding
parameters. In this case, increasing n, the number of parts, has
diminishing returns, with the asymptotic standard deviations
decreasing more slowly than the usual 1/

√
n rate.
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Figure 3. Effect of increasing n on the asymptotic standard deviations of α̂, β̂, γ̂1, and π̂C for m = 100, 1000, 10,000, r = 2 (solid lines), r =
5 (dotted lines), r = 10 (dot-dashed lines), πC = 0.95, α = β = 0.05, and γ0 = γ1 = 0.10. Note that lower lines of the same type correspond
to increasing values of m.
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Figure 4. Effect of increasing r on the asymptotic standard deviations of α̂, β̂, γ̂1, and π̂C for m = 100, 1000, 10,000, n =
100 (solid lines), n = 200 (dotted lines), n = 500 (dot-dashed lines), πC = 0.95, α = β = 0.05, and γ0 = γ1 = 0.10. Note that lower lines of
the same type correspond to increasing values of m.
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3.4 Errors in the GSS

A referee raised the valid point that a gold standard is an
idealization and, in practice, unlikely to be error free. In our
example, we have no evidence that if the same or different in-
spector tore down the same device, that the same result (i.e.,
value of X) would occur. When we calibrate a continuous mea-
surement system, we are faced with a similar problem in that the
standards are to some extent inaccurate. Note that if the GSS is
perfectly repeatable (i.e., even if in error, it consistently makes
the same error), then we can redefine “conforming” using the
gold standard and the properties of the inspection system are
defined relative to the gold standard.

However, another possibility is that the GSS results are un-
certain. For the conditional plan, we investigated by simula-
tion the effect of a GSS that occasionally misclassifies parts at
a rate of one-fifth of α and β (as given by the properties of
the BMS). For the cases we considered, only the properties of
α̂ are materially affected. For example, if α = β = 0.10, γ0 =
γ1 = 0.10, πC = 0.95, the bias in estimating α is 0.064 when
n = 100, r = 5, m = 1000 and the standard deviation is in-
flated by a factor of 1.76 relative to the results with a true GSS.
For a larger design, the effect of the misclassifications with the
assumed GSS is even greater. With the same parameter values
as given above but with n = 500, r = 5 and m = 1000, the cor-
responding bias and inflation factors are 0.071 and 2.34. We
see similar distortions for other designs and parameter values.
One immediate consequence of the above finding is that it is
essential to examine the data carefully, looking for anomalies.
For example, a table like Table 2 could be useful.

A few errors in the GSS have a surprisingly (to us) large
effect. We can suggest two possible remedies. If r is reasonably
large (r ≥ 3), we can examine the data and identify possible
discrepancies, for example, parts with s close to r and x = 0 or
s close to 0 and x = 1. These correspond to parts where the GSS
has likely made a mistake (since we assume α and β are small).
We propose to flip the value of x for these discrepant parts. In the
simulation described above, this adhoc procedure (with swaps
occurring for parts with either x = 0 and s ≥ r − 1 or x = 1 and
s ≤ 1) virtually eliminated the bias in the estimators of α but
produced estimated standard deviations that were deflated by a
factor of about 0.8. We did not search for the best swapping rule.
An alternative is to remeasure the discrepant parts with the GSS.

There are other possible remedies to an imperfect GSS. If
it is known that the GSS is imperfect, then at the cost of a
much larger sample size, we can use the latent class model
described by Danila, Steiner, and MacKay (2012) that does
not require GSS data to estimate the model parameters. Alter-
natively, if the GSS has known misclassification rates, we can
extend the methods of Boyles (2001) using a so-called anchored
model.

4. COMPARISON OF THE STANDARD AND
CONDITIONAL SAMPLING PLANS

In this section, we compare the performance of the conditional
plan with baseline data to the standard plan using the asymptotic
approximations to the standard deviations of the MLEs for α,

ra
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Figure 5. Ratios of the asymptotic standard deviations (standard
over conditional plan with baseline).

γ0, β, γ1, and πC . We used a factorial structure in the study
where we looked at all possible combinations of n = 100, 500,
r = 5, 10, α = 0.02, 0.10, β = 0.02, 0.10, γ0 = 0.05, 0.20,
γ1 = 0.05, 0.20, and πC = 0.9, 0.95. For conditional sampling,
we selected parts only from the population of previously failed
parts (i.e., n0 = n and n1 = 0) and we assumed 1000 baseline
measurements (i.e., m = 1000). We feel that with this setup,
the standard and conditional plans are equivalent in terms of
effort because we assume the baseline measurements are already
available from routine inspection. To summarize the results,
Figure 5 shows the ratio of the asymptotic standard deviation
for the standard plan over the conditional sampling plan with
baseline for all the 32 combinations of the model parameters for
each combination of n and r. As noted earlier, the asymptotic
results do not work well for γ̂0 when n is small for the standard
plan. We include results for γ̂0 in our conclusions because we
found that the standard deviations of γ̂0 in the simulation were
larger than the asymptotic approximations, so the conclusions
for γ̂0 are conservative.

In Figure 5, we see that all the ratios are greater than 1 except
for β̂ when n = 500. Based on the study, we draw the following
conclusions:

• The conditional sampling plans gives more precise estima-
tors of all the parameters except β. In many cases, the ratio
of standard deviations exceeds 2.

• As α increases from 0.02 to 0.10, the ratios decrease for α̂,
γ̂0, and π̂C and increase for γ̂1. For β̂, the ratios increase
slightly for n = 100 and are essentially unchanged when
n = 500.

• As β increases from 0.02 to 0.10, all the ratios decrease ex-
cept for π̂C , which decreases when n = 100 and increases
when n = 500.
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• As γ0 increases from 0.05 to 0.20, the ratios for α̂ and
γ̂0 decrease, for π̂C decrease slightly, and are unchanged
for β̂ and γ̂1.

• As γ1 increases from 0.05 to 0.20, the ratios for α̂ and γ̂0 are
unchanged, for β̂ and γ̂1 increase, and for π̂C decrease
slightly.

• As πC increases, all the ratios increase.
• Increasing r decreases the ratios for β̂ and γ̂1, leaving the

others the same.
• Increasing n decreases the ratios for β̂, γ̂1, and π̂C , leaving

the others the same.

When comparing the standard and conditional plans, we
expect to get more information about α and γ0 with condi-
tional sampling since we will likely select more nonconforming
parts. The increased precision for β and γ1 is perhaps sur-
prising. Here, it is the baseline measurements that help, as
shown in Figures 2 and 3. The baseline provides an estimate
of πP = α(1 − πC) + (1 − β)πC , a function of α, β, and πC .
Since we are considering situations where πC is large and α and
β are small, πP is strongly influenced by β and πC . For most
cases in the simulation, the additional information about β and
πC from the baseline outweighs the lost information due to fewer
conforming parts in the sample.

To summarize, in almost all cases, the conditional sam-
pling plan with the baseline data provides substantially greater
precision (for the same sample size) than the standard plan. The
only exception occurs when the number of parts n is large, where
the standard plan produces slightly smaller standard deviations
for β̂ (see Figure 5). In this case, however, β̂ is very well esti-
mated and so the loss is minor. Especially when πC is close to
1, as we might expect with high-quality processes, we strongly
recommend the conditional sampling plan.

5. DISCUSSION AND CONCLUSIONS

In this article, we consider the assessment of a BMS when a
GSS is available. We concentrate on the industrial context where
the BMS is used for inspection. In this case, it is likely that
the misclassification probabilities are small and the overall con-
forming rate is close to 1. We investigate a random-effects model
that relaxes the assumption that the misclassification probabili-
ties for all conforming (and separately all nonconforming) parts
are the same.

We apply the model to the standard assessment plan where
each part in a random sample of parts is measured a number
of times with the BMS and once with the GSS. We show that
to get reasonable precision for the estimators of the average
misclassification probabilities, we need a large sample of parts
and a large number of repeated measurements on each part.
Even with large samples, it is difficult to estimate the measures
of variation in the misclassification rates.

As an alternative, we recommend using a conditional sam-
pling plan where we sample at random from previously failed
parts. Then, each selected part is measured a number of times
using the BMS and once with the GSS. We augment the data
from the assessment study with baseline data available from the
inspection records of the BMS. With this plan, we show that
there are large gains in efficiency of estimation using the same

number of parts and repeated measurements. Or put differently,
we can use much smaller sample sizes with conditional sam-
pling and baseline data and get the same precision as with the
standard plan.

The MLEs of the parameters in the random-effects model
must be found numerically. We provide R code (R Core Team
2012) to produce the estimates and their approximate standard
errors for both the standard and the conditional assessment plans
in the online supplementary materials. We show that with the
standard plan, if the misclassification rates vary from part to part,
we can use the simpler estimates from the fixed-effects model
to estimate the average misclassification rates. However, with
conditional sampling plan, the fixed-effects model estimators
are not appropriate since they have significant bias.

To use conditional sampling, we need to choose n0, n1, and r
as we assume the baseline size m is given. We recommend n1 =
0, that is, sampling only from the failed parts, since this increases
the expected number of nonconforming parts in the study and
failed parts are usually readily available. Our results suggest that
even having more nonconforming than conforming parts results
in precise estimators for β since the baseline helps substantially.
To choose appropriate values for the number of parts n and the
number of repeated measurements r, we provide R code (R Core
Team 2012) that determines the asymptotic standard deviations
of all five parameters. This code can be used to meet any desired
precision goals so long as the numbers of parts is not very small
(say n > 100 for all parameters other than γ0). One constraint is
that there needs to be enough parts so that we get a reasonable
number of both conforming and nonconforming parts, otherwise
the asymptotic results are not valid.

APPENDIX

For the standard plan, the log-likelihood is∑
x,s

fx(s) log (P (S = s,X = x))

=
∑
x,s

fx(s) log (P (S =s|X=x))+
∑

x

nx log (P (X = x)),

where fx (s) is the number of parts in the sample with S =
s passes in the r repeated measurements, X = x, and nx is the
number of parts with X = x. Considering the case X = 1 (i.e., a
conforming part), then from the beta binomial model (Griffiths
1973), we have for s = 0

log P (S = 0|X = 1)

= log

(
r

0

)
+ log (Beta(g1, h1 + r)/Beta(g1, h1))

=
r−1∑
j=0

log(1 − β + γ1j ) −
r−1∑
j=0

log(1 + γ1j ),

and for 1 ≤ s ≤ r , the recursion

log

(
P (S = s|X = 1)

P (S = s − 1|X = 1)

)

= log

(
r − s + 1

s

)
+ log ((β + γ1(s − 1)))

− log (1 − β + γ1(r − s)) .
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Table A1. Probabilities for X = 1 for conditional sampling

y0 P (S = 0, y0|X = 1) P (S=s,y0|X=1)
P (S=s−1,y0|X=1) , 1 ≤ s ≤ r

0
∑r

j=0 log(β + jγ1) − ∑r
j=0 log(1 + jγ1) log( r−s+1

s
)+log((1−β+γ1(s − 1))) − log(β + γ1(r + 1 − s))

1 log(1 − β) + ∑r−1
j=0 log(β + jγ1) − ∑r

j=0 log(1 + jγ1) log( r−s+1
s

) + log((1 − β + γ1s)) − log(β + γ1(r − s))

Any series of the form
∑r

s=0 usvs can be rewritten as U0v0 +
U1(v1 − v0) + · · · + Ur (vr − vr−1), where Us = us + · · · + ur .
Applying this result to the first term in the log-likelihood with
us = f1 (s) and vs = log (P (S = s|X = 1)) and ignoring the
additive constants, the contribution for parts with X = 1 to the
log-likelihood is

F1(0)

⎛
⎝ r−1∑

j=0

log(1 − β + jγ1) − log(1 + jγ1)

⎞
⎠

+
r∑

j=1

F1(j )(log (β + (j − 1)γ1)

− log (1 − β + (r − j )γ1)) , (A.1)

where F1(j ) = f1(j ) + f1(j + 1) + · · · + f1(r) for j = 1, 2,

. . . , r . For parts with X = 0, we have a similar expression with
1 − β replaced by α, γ1 by γ0, and F1(j ) by F0(j ). Albeit
somewhat messy, it is easy to derive the first and second deriva-
tives of the log-likelihood. We used Maple 13 (2009) to obtain
the symbolic expressions. To calculate the expected informa-
tion, we see that the second derivatives of the log-likelihood
are linear in Fx(s) and nx , so we can evaluate E (Fx(s)), that
is, nP (X = x)

∑r
j=s P (S = j |X = x), using the recursions to

calculate the probabilities.
For conditional sampling, we proceed in a similar manner

except that the likelihoods (7) and (8) contain the additional
divisor P (Y0 = y0), and we need to consider four cases defined
by x = 0, 1 and y0 = 0, 1. Table A1 gives the expressions for
conforming parts (X = 1) selected from either the previously
passed or failed parts.

As with the standard plan, we can use the four expressions in
Table A1 to write down the log-likelihood ratio contribution for
parts with X = 1. With conditional sampling, there are now two
sets of F and f , where f1 (s, y0) is the number of parts in the
sample with S = s and Y0 = y0. For parts with X = 0, we have
the same expressions with 1 − β replaced by α, γ1 by γ0, and
F1(j, y0) by F0(j, y0). To determine the expected information
from the second derivatives, we need to determine the expected
value of fx (s, y0) in each of the four cases. These are easy to
derive from the results given in Table A1.

SUPPLEMENTARY MATERIALS

R code: A zip archive containing four R code files (R Core
Team 2012) listed below:

• The first two files provide code to find the random-effects
model MLEs and corresponding approximate standard er-
rors for the standard assessment plan and the conditional
sampling plan when we assume a gold standard measure-
ment is available. Each file provides an example of how to
specify the assessment study data:

◦ MLE se section2 SP.R - standard (random) sampling
plan

◦ MLE se section3 CS.R - conditional sampling plan
• The second set of two R files provide code to find the

asymptotic standard errors (from the Fisher information)
for all the random-effect model estimators given assumed
true values when we assume a gold standard measurement
is available:
◦ Asympt sd section2 SP.R - standard (random) sampling

plan
◦ Asympt sd section3 CS.R - conditional sampling plan
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