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Discussion of ‘‘The Statistical Evaluation of
Categorical Measurements: ‘Simple Scales,
but Treacherous Complexity Underneath’’’

Oana Danila,

R. Jock MacKay,

Stefan H. Steiner

Business and Industrial Statistics

Research Group, Department of

Statistics and Actuarial Science,

University of Waterloo,

Waterloo, Ontario, Canada

INTRODUCTION

The paper ‘‘The Statistical Evaluation of Categorical Measurements:

Simple Scales, but Treacherous Complexity Underneath’’ by Jeroen de Mast,

Thomas Akkerhuis, and Tashi Erdmann (2014), which we hereafter refer to

as de Mast’s paper, addresses the important and challenging task of asses-

sing the performance of categorical measurement systems in manufacturing

industry and diagnostic tests in medicine.

The paper raises awareness of the complexity that underlies the apparent

simplicity of a categorical=binary measurement system. It emphasizes

the fact that most of the past and current methods involve assumptions

that oversimplify the reality of the measured process. It gives an excellent

account of the use of the kappa statistic, commonly used in psychometrics,

medicine, and manufacturing as the measure of appraiser agreement and

discusses the serious issues related to its behavior and interpretation. The

authors also discuss the statistical modeling of binary measurement systems

and emphasize the effect of using overly simplified assumptions on

inference. They give relevant examples that are helpful in understanding

the issues discussed in the paper.

The authors also draw attention to another crucial aspect related to the

assessment of a categorical=binary measurement system. That is, aside

from the challenges related to statistical modeling, things are further

complicated by the realities of the contexts where these measurement

systems are used. For example, when a manufacturing process is high

quality and noncomforming products are rare, care has to be taken in

designing an assessment study so that enough nonconforming products

are included in the study sample. Also, it is common that a gold-standard

system is not available or is just partially available for the assessment

study, which adds another layer of complexity to the study design and

analysis.

In this discussion, we focus on the assessment of a single binary

measurement system in a specific context that is commonly found in

manufacturing industry. In Sections 4 and 5 of de Mast’s paper, the

authors address some of the issues encountered in this particular context
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and also propose a new method for analysis. Our

goal here is to further clarify some of the concepts

and statistical models commonly used in this con-

text, to give an alternative to the method proposed

in de Mast’s paper, and to contrast the two

methods.

We start by describing the context of interest and

the concepts and statistical models involved. Next,

we introduce our method and compare it to the

one proposed in de Mast’s paper. We close our dis-

cussion with some recommendations for the study

design tailored to the context of interest and give

general conclusions related to the assessment of a

binary measurement system.

CONTEXT OF INTEREST

Binary measurement systems (BMSs) are com-

monly found in manufacturing industry as well as

in medicine where they are known as diagnostic

or screening tests. Examples of BMSs include sys-

tems for visual inspection, go–no–go gauges, leak

tests, etc. One important feature of a BMS is that

the measurand or the true quality status X is binary

(i.e., a product is either conforming, X¼ 1, or non-

conforming, X¼ 0), although conformance might be

defined based on a (usually large) collection of pro-

duct characteristics, some of them continuous and

others categorical. Another very important aspect

of the measurand X is that it has to be clearly

defined based on some prespecified quality stan-

dards. For example, when the characteristics under-

lying the definition of X are continuous, a certain

threshold has to be clearly defined in order to clas-

sify a product as conforming or nonconforming. In

the case discussed in Section 5 in de Mast’s paper, a

product is defined as conforming when the width

and depth of any surface scratch are less than some

specified thresholds. Another example involves the

visual inspection of blank credit cards by a human

operator who checks the cards for various surface

imperfections such as scratches, color bleeding,

missing letters, etc. In this case, the quality standard

defines a card with any of these defects as noncon-

forming.

The true quality state X can be determined by a

definitive or error-free measurement system, known

as the gold standard. In practice, it is common that

the gold standard is not available for the BMS

assessment study because it might be too expensive

or destructive. In this discussion, we focus on

statistical models and study designs used when a

gold standard is not available for the assessment

study. However, we want to reemphasize here that

though information about the true state X might

not be available during the study, X still has to be

well defined in order to train the BMS for quality

inspection.

In the context that we focus on here, the BMS

is nondestructive, so repeated measurements on a

product are possible. In addition, the BMS is stable

during the time of the study and the manufacturing

process is under statistical control. The goal of

the assessment study is to estimate the two misclassi-

fication probabilities; the false acceptance prob-

ability a¼Pr(Y¼ 1 jX¼ 0), also known as the

customer’s risk; and the false rejection probability

b¼Pr(Y¼ 0 jX¼ 1), also known as the producer’s

risk, where Y is the result of the BMS inspection.

BASIC LATENT CLASS MODEL

In the case where information about the true

state X is not known, statistical models with latent

variables are commonly used. The simplest one,

called the conditional independence model in

Section 4 of de Mast’s paper, has been used for a

long time in medicine, psychology, and manufactur-

ing (Boyles 2001; Hui and Zhou 1998; Van

Wieringen and de Mast 2008) and is now con-

sidered overly simplistic by most researchers in

these fields (Qu et al. 1996; Torrance-Rynard and

Walter 1997; Vacek 1983).

The model, which we call here the basic latent

class, makes three main assumptions:

1. Homegeneity of misclassication rates: a and b are

constant within the populations of nonconform-

ing and conforming products, respectively.

2. Conditional independence: given the true state,

two or more repeated measurements on the same

product are independent:

PrðY 1¼y1;Y 2¼y2 jX ¼xÞ¼PrðY 1¼y1jX ¼xÞ
�PrðY 2¼y2 jX ¼xÞ:

3. Measurements on different products are inde-

pendent.
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As a consequence of these assumptions, two

measurements on the same product, Y1 and Y2, are

marginally dependent and the likelihood contri-

bution for a randomly selected product measured k

times is a mixture of two binomial distributions. In

order to identify all of the parameters of interest, a

minimum number (usually three) of repeated

measurements on the same product are required.

The homogeneity assumption is the most difficult

to justify in practice, although the conditional inde-

pendence receives the most criticism. Usually, as

mentioned in de Mast’s paper, when the definition

of the measurand X is based on a complex combi-

nation of product characteristics, some products are

more difficult to correctly classify than others. In the

example involving a visual inspection for scratches,

products with deeper or longer scratches are more

easily (with higher chance) classified as nonconform-

ing than those with barely visible scratches. In

addition, there are other product characteristics not

related to X, such as the color of the product, that

influence the chance of correct classification. There-

fore, in most cases, assuming that the misclassification

errors are constant represents an unrealistic simplifi-

cation, and models relying on this assumption lead

to serious bias in the estimators of a and b (Albert

and Dodd 2004; Danila et al. 2012; de Mast et al. 2011).

The conditional independence assumption as

defined above is more of a mathematical construct

and has nothing to do with the design of the assess-

ment study. As we can see in Section 4 in de Mast’s

paper and later in our discussion, conditional inde-

pendence has to be assumed at a certain level of con-

ditioning, no matter how complicated the model for

explaining the variation in misclassification rates is.

For example, in Section 4, the authors assume that,

when conditioning on the misalignment variable Z

and X, repeated measurements on the same product

are independent.

RANDOM EFFECTS MODELS

In practice, there might exist many characteristics,

Z¼ (Z1, . . . , Zp), that influence the chance that, for

example, a nonconforming product is accepted.

These characteristics might be related to the defi-

nition of the measurand X or not and, are not directly

measurable during the study and therefore are

considered latent. As a consequence, the chance of

accepting a nonconforming product varies from

product to product, and the same can be true about

the chance of rejecting a conforming product. In the

surface scratches example, the chance of accepting a

product with scratches depends on the length, width,

depth, and shape of the scratch and also on the color

of the product, lighting conditions, etc.

A general approach that deals with this situation

assumes explicitly or implicitly that the pass prob-

ability varies within the populations of conforming=

nonconforming products and that, conditioning on

all latent characteristics, including X, the repeated

measurements on one product are independent. As

a result, given only X, repeated measurements on a

product are not independent as assumed by the basic

latent class model.

Several statistical models have been proposed

under this approach. One class of models, including

the one proposed in Sections 4 and 5 in de Mast’s

paper (which we will call de Mast’s model), assumes

that the probability of accepting a product is defined

by a function of some identified product characteris-

tics related to the measurand X and some other

product or environmental variables. These character-

istics are not directly measured during the assess-

ment study (i.e., they are latent). Another class of

models assumes a composite effect of all of the latent

variables on the probability of accepting (rejecting) a

nonconforming (conforming) product, which is cap-

tured by linking ai (bi) to a random effect specific to

the product i (i¼ 1, . . . , n) (Albert and Dodd 2004;

Qu et al. 1996) or by directly considering ai and bi
as random effects (Albert and Dodd 2004; Danila

et al. 2012; Fujisawa and Izumi 2000).

The first class of models further assumes some

joint distribution for the latent variables Z and a cer-

tain characteristic function q(Z), whereas the second

class of models assumes a certain distribution for the

random effects. Then, given Z or the random effects,

repeated measurements on a product i are assumed

independent. Note that conditional independence

has to be assumed at one point in order to build a

statistical model for the repeated measurements, with

the Waterloo approach the level of conditioning is

deeper than with the basic latent class model.

The approach we proposed in Danila et al. (2012),

called here the Waterloo approach, assumes that the

random effects ai and bi are beta-distributed with

means la and lb, respectively, and also assumes
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conditional independence given the random effects.

Therefore, for a conforming product i, the prob-

ability of observing a total number of passes Si¼ s

out of k total number of measurements, given bi, is

PrðSi ¼ s j bi;Xi ¼ 1Þ ¼ k
s

� �
ð1 � biÞsbk�s

i

Similarly, for a nonconforming product i,

PrðSi ¼ s j ai;Xi ¼ 0Þ ¼ k
s

� �
asið1 � aiÞk�s

The product-specific random effects ai (bi) can be

interpreted as the proportion of time that product i

would pass (fail) the BMS inspection, given that a

large number of repeated inspections are conducted.

The goal of the assessment study now becomes the

estimation of the average error rates la and lb, which

are the average customer’s and producer’s risks.

The Waterloo approach and de Mast’s model are

conceptually similar. That is, they both assume that

the misclassification rates vary within the popula-

tions of conforming and nonconforming products.

However, these models also differ in several aspects:

. de Mast’s model specifies the joint distribution of

some characteristics Z¼ (Z1, . . . , Zp) and links the

individual ai and bi to these variables through

the characteristic function q(Z). This approach

requires that all characteristics with a potential

effect on individual misclassification rates be ident-

ified. When there is only one product characteristic

influencing the measurement process as in the

misalignment example in Section 4 of de Mast’s

paper, the model includes two parameters. How-

ever, when there are two or more latent variables,

the number of model parameters indexing the joint

distribution of the latent variables Z, including the

correlation parameters, increases dramatically.

Note that in the example from Section 5 of de

Mast’s paper, the latent variables Z are assumed

independent, which might not be realistic in prac-

tice. On the other hand, the Waterloo model

directly specifies a distribution for the individual

misclassification rates and it does not require

identification of relevant latent variables. The

model just considers the composite effect of all

of them and includes five parameters—two mean

two variation parameters and one parameter

corresponding to the conforming rate.

. As a consequence, in the case where the process

influencing the BMS performance can be mainly

explained by a small number of product character-

istics Z (p� 2) as in the misalignment example, de

Mast’s model might be a better choice than the

Waterloo model. However, the Waterloo model

is more parsimonious for cases where p� 3,

because it is flexible and easy to understand. Note

that distributions other than the beta can be

assumed for the random effects ai and bi.
. The estimation procedure for de Mast’s model can

become quite difficult once the number of latent

variables becomes large, which is a common case

in practice. On the other hand, the estimation of

the parameters from the Waterloo model is

relatively simple.

As mentioned at the beginning of this section, other

statistical models have been proposed for analyzing

data from an assessment study when a gold stan-

dard is not available. However, work by Albert

and Dodd (2004) showed that latent class models

are not robust to departures from the assumed

distribution of the random effects. These authors

demonstrated that the estimators of the average mis-

classification rates might be severely biased when

the underlying model generating the data is very dif-

ferent than the fitted one. In addition, in a realistic

study design, it can be quite difficult to choose

between several competing models. They cautioned

practitioners about blindly relying on estimates of

average misclassification rates obtained from

studies for which no gold standard information is

available.

On the other hand, when the gold standard is

available for complete verification of a random sam-

ple of products, Danila et al. (2013) showed that the

simple moment estimators for the average misclassi-

fication rates are unbiased even when the individual

rates vary from product to product. Albert and

Dodd (2008) also showed that when the gold

standard is used only on a random collection of

products from the study sample, different latent class

models become robust to mispecification of the dis-

tribution of the underlying random effects. Albert

(2009) provided another solution to the lack of

robustness problem and recommends including in
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the assessment study an imperfect reference test with

good performance and known characteristics.

STUDY DESIGN RECOMMENDATIONS

Next, we discuss some important issues related to

the design of a BMS assessment study. Some of these

issues are also addressed in Section 4 of de Mast’s

paper, but here we take the opportunity to empha-

size some aspects and add some relevant recommen-

dations.

The standard protocol for conducting an assess-

ment study for a BMS when a gold standard is not

available involves the following steps:

. Select a random sample of n products from the

manufacturing process.

. Measure each sampled product k times with the

BMS.

. Record the total number of passes for each product

s1, . . . , sn.

If we assume that the misclassification probabilities

are constant within the population of conforming

and nonconforming products, we can estimate all

of the parameters given by the basic latent class

model when k� 3. If we assume a random effects

model such as the Waterloo one, all parameters are

identifiable when k� 5.

In practice, it is common that a study is conducted

as a regular assessment of a BMS that has been in use

for routine inspection. Therefore, large collections of

products previously accepted or rejected by the BMS

are available for the study. In addition, the BMS

tracks the number of products passed over time

and therefore prior (baseline) information about

the pass rate of the studied BMS is available.

Additionally, nowadays, most of the manufacturing

processes are high quality and high volume. These

common features of the manufacturing process and

the BMS, together with the ones mentioned in

Section 2, represent challenges in designing a BMS

assessment study but also offer additional infor-

mation that can be turned into solutions when used

cleverly.

For example, when the manufacturing process is

high quality it yields very few nonconforming pro-

ducts. A random sample from the process might

not contain enough nonconforming products to

estimate the average customer’s risk with good

precision unless the sample size is very large. How-

ever, a conditional selection where products are ran-

domly selected from the collections of previously

rejected products reduces the risk of having too

few nonconforming products. It is expected that with

such a selection protocol we will better estimate the

average customer’s risk, but the precision of the aver-

age producer’s risk will decrease. Danila et al. (2010,

2012) showed that when the study data are supple-

mented with baseline information about the pass

rate, the precision of all estimators is improved when

compared to that given by a standard plan with the

same study sample size.

As an example, we give some results from a simu-

lation study where data were generated from a

beta-distributed random effects model using two

selection plans. Figure 1 gives the ratio of sample

standard deviations for the average customer’s ðl̂laÞ
and producer’s ðl̂lbÞ risks and of the conforming rate

p̂pC ¼ PrðX ¼ 1Þ given by a beta-distributed random

effects model when we compare a standard protocol

(SP) vs. a conditional selection (CS) with products

selected from the stream of previously failed. For

both plans, the study sample includes n¼ 1,000

products, each measured k¼ 10 times. In addition,

the study data from the CS plan are augmented with

prior information about the pass rate based on

10,000 baseline products. For each selection plan,

we conducted 1,000 simulation runs for each combi-

nation of parameter values (la, lb¼ 0.02, 0.1, con-

forming rate pC¼ 0.85, 0.95), when the variability

FIGURE 1 sd(SP)/sd(CS); 10, 000 baseline products; n¼ 1,000;

k¼ 10. (Color figure available online.)
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of product-specific misclassification rates is moderate

and low. We note that the gain in precision for l̂la
and p̂pC is substantial when the CS plan with prior

information about the pass rate is used. The esti-

mator of lb has better precision for the CS in most

cases, although the difference is not as large as for

the other two estimators.

CONCLUSIONS

‘‘The Statistical Evaluation of Categorical Measure-

ments: Simple Scales, but Treacherous Complexity

Underneath’’ is a laudable initiative in identifying

issues specific to the current statistical methodology

for the assessment of categorical=binary measure-

ment systems. The authors warn researchers and

practitioners about the possible complexity behind

a simple categorical=binary measurement output,

and they recommend avoiding models that make

overly simplistic assumptions.

The paper also discusses statistical methods for the

case where the true quality status of products is not

known during the assessment study of a binary

measurement system and proposes a new latent class

model. This model is a good choice when the under-

lying process that influences the properties of the

measurement system is driven by a small number of

identified product or environmental characteristics.

However, the model can get quite complicated when

this number is large or when there are other unidenti-

fied latent variables. We recommend an alternative

approach that models the variation of the misclassifi-

cation rates directly, therefore including a composite

effect of all possible latent variables on these rates.

This alternative model is generally more parsimoni-

ous and involves a simpler estimation procedure.

Based on previous research from the medical

field, we further conclude that it is generally difficult

to assess the performance of a binary measurement

system when no information about the true quality

state of the products is available, in which case, the

analysis is based on latent class models. The proper-

ties of the estimators given by latent class models are

usually sensitive to the assumptions regarding the

distribution of the product-specific misclassification

rates. Partial verification by the gold standard or

using a high-performance reference test with known

characteristics are two possible solutions to the lack

of robustness problem.

In terms of designing an assessment study, we

recommend sampling the products used in the

assessment study wisely and incorporating any rel-

evant prior information related to the measurement

system or the manufacturing process into the analy-

sis. For example, sampling products from the stream

of previously rejected and using prior information

about the pass rate can substantially improve the pre-

cision of the estimators for the (average) customer’s

and producer’s risks.
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