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Profile data consist of the coordinates of points along the edge of the product. Often, several hundred
points are involved. Mechanical and automated procedures (e.g., scanning) are used in data gathering.
The large data dimensionality presents challenges in the development of control charts to monitor product
profiles. The data also show strong cross-correlations between points close to one another. In this article,
using the leading principal components of the coordinate covariance matrix, we develop Hotelling’s T 2

and upper exponentially weighted moving average (EWMA) charts to monitor product size. The methods
are extended to monitor product edging using the angles between the normal vectors of the blueprint
and sample profiles. We use a Markov chain approximation to calculate average run length. Through
simulations, we assess the performance of the proposed methods and show the upper EWMA chart exhibit
good performance in most of the o↵-target scenarios considered. A comparison with existing methods
reveals that the proposed charts are very competitive and require fewer distributional assumptions.

Key Words: Angular Vectors; Average Run Length; EWMA Chart; Hotelling’s T 2 Chart; Principal Com-
ponents; Smoothing; SPC.

1. Introduction

BLUEPRINTS or designs of mechanical parts are
drawn to represent graphically detailed part

specifications. Computer-aided design (CAD) pack-
ages are usually used in this process. Often the parts
display flat forms, for instance, when obtained by
cutting from metal sheets and other flat materials.
A turning process using a lathe is another example.
If the flat material exhibits su�ciently homogeneous
thickness, the main features of the workpiece are de-
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termined by its edge. In what follows, we refer to
the planar representation of the edge as the shape or
profile of the workpiece.

Shape specifications include dimensional charac-
teristics such as length and width; curvature such as
straightness, circularity, and ovality; and edge tex-
ture such as roughness and waviness. No matter how
tightly a process is run, manufacturers recognize that
no two workpieces made from the same design are
identical. Every process is bound to exhibit some in-
herent variation in shape from part to part. The role
of statistical process control methods is to spot when
the variation in the profile of the manufactured parts
shows deviation beyond the natural process varia-
tion.

The concepts and methods discussed in this article
apply equally to shapes from cross-sections of three-
dimensional parts, e.g., the profile of a workpiece at
a given height of the part when it rests on a level
surface.
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Profile monitoring initially focused on situations
where the profiles are adequately described by a lin-
ear regression between a single product quality vari-
able and a single predictor. The primary objective is
to uncover when the linear association breaks down
in the Phase II process operation (see, e.g. Mah-
moud and Woodall (2004) and Sullivan (2002) for
more details on Phase I and Phase II analyses).
The methods make use of the residuals or coe�-
cient estimates (e.g., Kim et al. (2003), Mahmoud
and Woodall (2004), Gupta et al. (2006), among oth-
ers) or are based on change-point analysis (e.g., Zou
et al. (2006)). The methods were then extended to
processes where multiple linear or polynomial re-
lationships between a single quality indicator and
predictors are appropriate (e.g., Zou et al. (2007),
Kazemzadeh et al. (2008), Noorossana et al. (2010)).
In the more recent research, attention centers on
curved or nonlinear profiles using parametric nonlin-
ear regression (e.g., Williams et al. (2007a, 2007b))
and nonparametric charts (Qiu et al. (2010)).

In the above references, the profile description is
univariate. For instance, Qiu et al. (2010) consider
data for m profiles, where the ith profile consists of
ni observations, {xij , yij}, 1  j  ni, 1  i  m,
described by yij = g(xij) + fi(xij) + ✏ij where g(x)
is the target profile, fi(x) models the variation of
the ith profile around the target, and ✏ij is a ran-
dom error, the source of which is typically measure-
ment error. Here x is a predictor or covariate, such
as time or distance, depending on the process. This
is a mixed-e↵ects model and Qiu et al. (2010) fit it
nonparametrically to Phase I data.

Colosimo et al. (2008) discuss bivariate profiles
where the data are many pairs of (x, y) values corre-
sponding to points along the edge of a product. Un-
like the previously discussed profiles, the planar rep-
resentation of the bivariate profiles are closed-loop
curves. Naturally, measurement error can occur in
both x and y coordinates. Colosimo et al. (2008) bor-
row ideas from spatial statistics, specifically spatial
correlation, to develop a parametric normal regres-
sion model to describe the profiles. After fitting the
model to a sample of Phase I profiles, they use the es-
timated model coe�cients to construct a Hotelling’s
T 2 chart to monitor part size from Phase II sam-
ple profiles. Additionally, they provide an informa-
tive discussion on many issues in product manufac-
turing from an engineering perspective that conveys
well the context for profile control charts in industrial
applications.

We focus on bivariate profiles and develop alter-
native charts to those of Colosimo et al. (2008) to
monitor the size of parts. The methods proposed are
nonparametric and straightforward to implement us-
ing conventional statistical software such as R, SAS,
or MATLAB. We then extend the methods to moni-
tor edge smoothness from the same bivariate profile
data.

In the next section, we describe formally the bi-
variate profiles of interest along with practical as-
pects of profile data gathering. A short review follows
on principal component analysis upon which the con-
struction of the proposed Hotelling’s T 2 and expo-
nentially weighted moving average (EWMA) charts
for monitoring product size and edging are built.
Details on the charts, including average run length
(ARL) calculation, are provided. We then focus on
simulation of sample profile data yielding rough and
smooth sample profiles useful in chart calibration and
performance assessment. Next, the results of a nu-
merical study of chart performance is presented using
six o↵-target scenarios. A study that compares nu-
merically the proposed methods with the main com-
peting charts follows. The paper ends with a discus-
sion of the advantages and limitations of the pro-
posed methods.

2. Bivariate Profiles:
Target, Sample and Data Gathering

Bivariate profile data consist of the (x, y) coordi-
nates of points sequentially located along the edge
of a manufactured item. If n points are sampled, the
profile data take the form p = {(xj , yj)} n

j=1. Ide-
ally, the points should be uniformly spread along the
edge for slowly changing sections of the product and
tighter on fast changing sections. Naturally, keeping
track of order is critical.

The target profiles considered here are planar
closed loops and thus can adequately be described
by bivariate functions indexed over an interval as

p0(s) = (x0(s), y0(s)), s 2 [a, b]; p0(a) = p0(b).
(1)

The components will be continuous and di↵erentiable
except for a finite number of points representing “cor-
ners” in the items profiled. Representation (1) al-
lows for curved loops of arbitrary shapes. Through
a simple linear transformation, one could work with
[a, b] = [0, 1].

Most authors working on profile monitoring fo-
cus on representations of the regression type. For in-
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FIGURE 1. Circle and Oval Target Profiles, and Sample Profile Data With and Without Measurement Error.

stance, Qiu et al. (2010) work with

(x, g(x)), x 2 [a, b], (2)

where x is treated as a covariate. Note that equation
(2) can be represented as equation (1) by defining

(x0(s), y0(s)) = (s, g(s)), s 2 [a, b]. (3)

Profiles described by equation (2) are essentially or-
dinary univariate functions. Generally they are in-
adequate to describe profiles shaped as closed loops,
as they can represent only sections of such profiles.
However, as discussed in the next section, depending
on how the data are gathered, there are instances
where closed loops can be unfolded, enabling a uni-
variate treatment.

Several target and sample profiles are displayed in
Figure 1. In Figures 1(a) and 1(c), the target profile
is a circle with functional representation

p0(s) = (x0(s), y0(s))
= (r cos(s), r sin(s)), 0  s  2⇡, (4)

where r is the radius of the circle. In Figure 1(b), the
target profile is a pointed oval with functional form

p0(s) = (x0(s), y0(s))

=

8<
:

(1.5 sin(2⇡s), 8s), 0  s  0.5;
(1.5 sin(2⇡(s� 0.5)),
8(1� s)), 0.5  s  1.

(5)

Sample profiles of 150 points each are displayed
in Figure 1. In Figure 1(a) and 1(b), the points
are joined by segments to identify the sequence.
These cases correspond to situations where substan-
tial measurement error is present. A smooth sample
profile is shown in Figure 1(c). Profile data of this

type are typically obtained when a high-precision in-
strument, such as a laser scanner, is used in the data-
gathering process.

For planar profiles exhibiting a convex shape (i.e.,
↵(x1, y1)+(1�↵)(x2, y2) lies inside the profile for ev-
ery pair of points (x1, y1) and (x2, y2) on the profile
and every 0  ↵  1), one may collect the data by the
method of angular spanning. First, identify a “cen-
ter” point for the part. In principle, any point within
the profile can be used as center, provided the point is
consistently used for all the parts. Second, for a given
angle s in radians (0  s  2⇡), trace the segment at
angle s starting from the center and extending up to
the edge. Last, identify the coordinates (x(s), y(s)) of
the point of intersection. The process is illustrated in
Figure 2(a). One then repeats the process for selected
angles s1, s2, . . . , sn. Here [a, b] = [0, 2⇡]. The result-
ing sample data take the form {(x(sj), y(sj))}n

j=1.
Colosimo et al. (2008) follow this approach using the
radial distances in their analysis.

In other applications, a mechanical tool and object
rotation are used to gather data on the shape of ob-
jects. The mechanical device has a flexible arm that is
capable of retracting or extending as it comes in con-
tact with objects. The method is depicted in Figure
2(b). First, fix the device at some point P . Second,
center and fix the product at another point C, where
P and C are far enough apart to allow the arm to
reach the edge of the object for which we wish to
capture the profile. Third, rotate the object around
C and record the distance r from the device to the
edge of the object. The process may be performed ei-
ther continuously, for instance on graph paper, or at
di↵erent points in time s1, s2, . . . , sn as the object ro-
tates at a constant speed. The data can be converted
to coordinates {(x(sj), y(sj))}n

j=1. Alternatively, one
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FIGURE 2. Gathering Sample Profile Data by (a) Angular Spanning and (b) Retractable-Armed Device and Object Rotation.

can work with the radial distances from the center C
to the edge of the part.

Greater data-gathering e�ciency and precision
are achieved through the use of a laser scanner to
capture the shape of an item. Companies use profile
laser scanners routinely in several stages of a manu-
facturing process, including part inspection, robotic
guidance, and shape check. In addition, scanners typ-
ically record a larger number of points on the prod-
uct’s edge than do manual and other low-tech meth-
ods, thus providing a more detailed description of
the shape. Another advantage is their capability of
capturing nonconvex shapes, a challenge for manual
and mechanical methods.

3. Principal Components
Chart for Product Size

3.1 Principal Components of Phase I Sample
Profiles

Following the familiar approach for control-chart
construction, the starting point is the availability
of process data amenable to estimation of the pro-
cess parameters required in setting up and calibrat-
ing the chart. After careful inspection and possibly
some data cleaning, we assume that sample profile
data from m parts are available when the process is
stable. Further, assume that the data were collected
systematically so that the indexing of points is the
same across the m parts. We refer to this dataset as
the Phase I or training sample profiles.

Represent the Phase I profiles as

pi = {(xij , yij) = (xi(sj), yi(sj))}n
j=1,

i = 1, 2, . . . ,m.

Each profile will be treated as a row vector with 2n
components, namely

pi = (xi1, xi2, . . . , xin, yi1, yi2, . . . , yin),
i = 1, 2, . . . ,m.

The average Phase I profile is

p0 = (x01, x02, . . . , x0n, y01, y02, . . . , y0n)

=
mX

i=1

pi/m. (6)

We further assume that measurement error is ei-
ther small or has been reduced, for instance, by data
smoothing. Thus, the sample profiles should typically
look like that in Figure 1(c). Section 4 on profile sim-
ulation provides further details.

An estimate of the covariance matrix of the pro-
file coordinates is a key ingredient of the proposed
multivariate control chart discussed in the next sec-
tion. We use the m training profiles to produce this
estimate. The main consideration here is that the
coordinates of points physically close in the profile
of an item likely exhibit high (positive) correlation
while points far apart will not. We denote by S0

the within-profile covariance matrix associated with
a profile vector p for items produced under normal
process operation.
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We will work with the sample covariance matrix
estimate, namely,

S0 =

 
Sxx Sxy

S0
xy Syy

!
,

with the n ⇥ n matrices Sxx, Sxy, and Syy being
the estimates of the within x, between x and y and
within y covariance matrices, respectively.

Note that, should there be an underlying structure
(e.g., time series or other) in the x and y components
for the edge points of the profile, it will be reflected
in the above estimates. An attractive feature of the
proposed approach is that such a structure does not
need to be made explicit. However, if one wishes to
investigate the nature and extent of such serial cor-
relations and is able to identify a viable time-series
model for the Phase I profile data, the above covari-
ance estimates can be replaced with the correspond-
ing estimates from the time-series model.

Our proposed monitoring approach focuses on the
leading principal components that explain the ma-
jority of the variability in the Phase I profile data.
The main motivation is a reduction in dimension in
the monitoring problem by concentrating on the di-
rections that drive the variability in the profile data.

The analysis will be based on the well-known spec-
tral decomposition for quadratic forms (see, e.g.,
Johnson and Wichern (2007), p. 61; Krzanowski
(2008), p. 126). Specifically, if �1, �2, . . . , �2n are the
eigenvalues of S0 (we assume that �1 � �2 � · · · �
�2n) and e1, e2, . . . , e2n the associated normalized
column eigenvectors, then

S0 = U⇤U0, (8)

where U is the 2n ⇥ 2n matrix with corre-
sponding columns given by the eigenvectors U =
(e1|e2| · · · |e2n), and ⇤ is the 2n⇥2n diagonal matrix
of the eigenvalues. Because the normalized eigenvec-
tors are also orthogonal, then e0iei = 1 and e0iej = 0
for i 6= j, leading to U0U = UU0 = I2n where I2n is
the 2n⇥ 2n identity matrix and

U0S0U = ⇤.

Because S0 is a (sample) covariance matrix, it is pos-
itive semidefinite. As a result, all of its eigenvalues
are nonnegative. We chose U so that the eigenvalues
are ordered from largest to smallest.

The principal components for an n-point profile
p = (x1, x2, . . . , xn, y1, y2, . . . , yn) are

c = U0p0,

with estimated covariance matrix

Var(c) = U0S0U = ⇤.

A measure of overall variability in a multivariate
data set is the total sample variability (tsv), defined
as the sum of all the sample variances for the indi-
vidual variables,

tsv = tr(S0), (9)

where tr(A) denotes the trace of matrix A. Because
tr(AB) = tr(BA), it follows from equations (8) and
(9) that

tsv = tr(⇤) =
2nX
i=1

�i.

Thus, the percentage of the total variability ac-
counted for by the first k eigenvalues is

Pk = 100⇥
Pk

i=1 �iP2n
i=1 �i

%, k = 1, 2, . . . , 2n. (10)

Consider the first k principal components, namely

ck = U0
kp

0, (11)

where Uk = (e1|e2| . . . |ek). One can readily show
that

V ar(ck) = U0
kS0Uk = ⇤k, (12)

where ⇤k = diag(�1, �2, . . . , �k). Thus, the total
variability in the first k principal components isPk

i=1 �i and, hence, the percentage of the total vari-
ability in the full data explained by the first k prin-
cipal components is Pk as given by equation (10).

3.2 Hotelling’s T 2 and Upper EWMA Charts
for Product Size

Direct application of standard multivariate con-
trol charts requires inverting the 2n⇥ 2n sample co-
variance matrix S0. With large n and strong cross-
correlations, S0 is nearly singular. To get around
this di�culty, we propose to build charts using the
scores from the leading principal components. The
main motivations of the proposed approach are as
follows. In many high-dimensional data sets, a small
to moderate number of leading principal components
often explain the majority of the variability in the
data, thus providing a substantial reduction in di-
mension. In addition, the principal components as-
sociated with the larger eigenvalues tend to be most
sensitive to changes in the patterns of multivariate
data. Note also that the principal components are
nonparametric in the sense that no statistical model
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for the multivariate data is needed for their calcula-
tion and interpretation. There are many applications
of principal components in quality control, particu-
larly on the use of one to three leading components
in problems involving a large number of process vari-
ables (see, e.g., Jackson (2003), chs. 6 and 7; Mont-
gomery (2008), ch. 11; and the references therein).

A word of caution is necessary here. Looking at
the leading principal components helps capture the
largest sources of variation in the Phase I profile data.
However, these may not always be the best for de-
tecting subtle changes in the process. In other words,
there is no reason why some special causes may not
act in other directions. Note that this is a lurking
feature of any data-reduction–based control chart.

From equations (11) and (12), the Hotelling’s T 2

statistic from the leading kP components for a given
1⇥ 2n profile vector p is

T 2 = (p� p0)UkP ⇤�1
kP

U0
kP

(p� p0)0, (13)

where p0 is the Phase I sample average (6). The
quantity T 2 is a statistical distance between the sam-
ple profile p and the average Phase I profile p0.

For Phase II profiles, we propose the Hotelling’s
T 2 chart arising from equation (13). Specifically, one
plots T 2

t vs. t, where T 2
t is the value from equation

(13) obtained for the sample profile p of an item
selected from production at sampling period t. Af-
ter setting an in-control average run length ARL0,
the (upper) control limit H for the T 2 chart can be
obtained as the (ARL0 � 1)/ARL0 percentile of the
distribution of T 2 when the process is stable. The
percentile can be estimated using the m T 2-values
from the Phase I profiles. A better approach is to fit
an appropriate statistical distribution to those values
and then use the percentile of the fitted distribution
to obtain the control limits. Note that, if the Phase II
profiles p are stable and have an approximate multi-
variate N2n(p0,S0) distribution, then T 2 follows an
approximate �2 distribution with kP degrees of free-
dom. Experimentally, we found that, in many situa-
tions, a gamma distribution, which contains the �2

distribution as a particular case, provides a satisfac-
tory approximation to the distribution of T 2 in Phase
I. In this case, the required control limit H satisfies

P (Z  H) =
ARL0 � 1

ARL0
(14)

where Z ⇠ Gamma(↵0, �0) and ↵0 and �0 are the
shape and scale parameters of the approximating
gamma distribution.

It should be pointed out that, as with ev-
ery control chart that relies on Phase I sample
data to estimate the stable process parameters, the
above method provides only approximate average
run lengths. This stems from the fact that the pro-
cess parameters are not set to their true values but
to estimates. If the Phase I sample is large, the en-
suing estimates have small sampling errors, leading
to more accurate ARLs.

It is well known that a more e↵ective chart
to detect small persistent changes is the exponen-
tially weighted moving average (EWMA) chart (e.g.,
Montgomery (2008), ch. 9). Introduced by Roberts
(1959), the chart has received much attention, par-
ticularly for normally distributed measurements. See,
for example, Crowder (1987, 1989) and Lucas and
Saccucci (1990). In our situation, the quantity of
interest T 2 follows a gamma distribution approxi-
mately when the process is in-control.

If T 2
t is the Hotelling’s T 2 value of equation (13)

from the Phase II sample profile pt at sampling pe-
riod t, the standard EWMA chart statistic is

Wt = (1� �)Wt�1 + �T 2
t , (15)

where 0 < �  1 is the smoothing parameter with
the starting value W0 set at the expected value for
T 2. Assuming T 2 follows a Gamma distribution with
shape ↵0 and scale �0 when the process is stable,
then we let W0 = ↵0�0.

Because the aim is primarily to catch process dete-
rioration, only large values of Wt are of interest. Some
authors advocate the use of a reflecting barrier in the
EWMA and other charts, aimed at injecting higher
e�ciency in detecting excursions from the stable con-
dition (see, e.g., Gan (1992, 1994), Zhang and Chen
(2004), Knoth (2005), Li et al. (2009)). The idea is
to prevent the statistic from reaching values too low
that unduly slow its reaction to process changes. The
modified resulting chart, termed the upper EWMA,
is based on the statistic

Zt = max{B, (1� �)Zt�1 + �T 2
t }, (16)

where B (0  B < 1) is the barrier. Setting B = 0
leads to equation (15). A tested and recommended
choice for B is E(T 2) for T 2, calculated from on-
target profiles. Thus, if T 2 follows a Gamma(↵0, �0)
distribution under stable conditions, then B = ↵0�0.
Further, the initial chart value Z0 can be taken to be
Z0 = E(max{B,T 2}), again, calculated for T 2 from
the appropriate gamma distribution. One can show
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that, when T 2 follows a Gamma(↵0, �0) distribution,

Z0 = BG(B;↵0, �0) + ↵0�0[1�G(B;↵0 + 1, �0)],
(17)

where G(x;↵0, �0) denotes the gamma distribution
function. We use the upper EWMA chart throughout
our analysis with the above choices for B and Z0.

Calibrating the upper EWMA chart involves de-
termining the control limit H that yields a speci-
fied in-control average run length ARL0 with the
chart signaling when Wt > H for the first time. The
Markov chain method works well here. The method
is described in detail for the standard EWMA
by Lucas and Saccucci (1990) for a normally dis-
tributed chart statistic. In our situation, T 2 follows
a Gamma(↵0, �0) distribution. The relevant result is
that, given any control limit H, the in-control aver-
age run length ARL0 is approximated by

ARL0 = v00(I�P0)�11, (18)

where P0 is the N ⇥ N transition probability ma-
trix with entries given in equation (19) and v0 is the
N ⇥ 1 vector of 0s except for the entry correspond-
ing to the state containing Z0 from equation (17),
where 1 is entered instead. The larger the value of N ,
the better the approximation. Then H is varied until
ARL0 reaches a desired (large) value. The form of the

transition probability matrix P0 = (p(i, j)) N N
i=1 j=1 is

p(i, j) =

8>>>>>><
>>>>>>:

G
⇣

Cj�(1��)Ci

� + L
� ;↵0, �0

⌘
, j = 1;

G
⇣

Cj�(1��)Ci

� + L
� ;↵0, �0

⌘
�G

⇣
Cj�(1��)Ci

� � L
� ;↵0, �0

⌘
,

2  j  N ;
(19)

for 1  i  N , where L = (UCL � B)/(2m),
Ck = B + (2k � 1)L, and G(x;↵0, �0) is the gamma
distribution function.

Table 1 contains the control limit H when ARL0 =
400 for an in-control gamma distributed T 2 for se-
lected values of the shape parameter ↵0 with scale
fixed at �0 = 1. In all cases, � = 0.1. If �0 6= 1, the
respective control limit is �0H, where H is the con-
trol limit from Table 1 for the same ↵0. Interpolation
can be used for shape values between those in the ta-
ble. For the H values in Table 1, a total of N = 1000
states were used, resulting in a 1000⇥1000 transition
probability matrix.

4. Simulating Profile Data

Many defects in manufactured parts appear in the
form of cracks, scratches, or insu�cient/excess ma-

TABLE 1. Control Limit (H) for the Upper EWMA Chart for In-Control Average Run Length ARL0 = 400 and
Gamma Distributed Phase I T 2 for Several Shape Parameter Values ↵0 and Scale �0 = 1 (� = 0.1 in All Cases)

↵0 0.1 0.3 0.5 0.7 1.0 2.0 3.0
H 0.4008 0.7652 1.0699 1.3528 1.7560 3.0141 4.2110

↵0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
H 5.3765 6.5223 7.6539 8.7750 9.8877 10.9934 12.0935

↵0 11.0 12.0 13.0 14.0 15.0 16.0 17.0
H 13.1886 14.2796 15.3667 16.4506 17.5315 18.6099 19.6858

↵0 18.0 19.0 20.0 22.0 24.0 26.0 28.0
H 20.7594 21.8311 22.9009 25.0354 27.1639 29.2871 31.4058

↵0 30.0 32.0 34.0 36.0 38.0 40.0 42.0
H 33.5203 35.6309 37.7382 39.8424 41.9438 44.0424 46.1387

↵0 44.0 46.0 48.0 50.0 55.0 60.0 65.0
H 48.2328 50.3245 52.4145 54.5025 59.7151 64.9184 70.1134

↵0 70.0 75.0 80.0 85.0 90.0 95.0 100.0
H 75.3007 80.4817 85.6569 90.8264 95.9912 101.1513 106.3072
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FIGURE 3. Perpendicular (Normal) Profile Vectors.

terial in some areas of the part. It is then useful to
gauge disagreement between part and blueprint by
measuring how far the edge of the part is from the
master piece. In this section, we present a method
for generating sample profile data keeping this issue
in mind. The method is independent of any monitor-
ing chart. Note that, in assessing the performance of
any monitoring scheme theoretically, it is essential to
have a procedure to simulate profile data.

Consider a profile p with functional form p(s) =
(x(s), y(s)), a  s  b, p(a) = p(b). From basic
vector calculus we know that, for a given s 2 [a, b],
a vector perpendicular (normal) to the profile at
point p(s) = (x(s), y(s)) is any multiple of v(s) =
(y0(s),�x0(s)) with origin at p(s) (see Figure 3).

To illustrate the method, consider the circle tar-
get profile discussed in Section 1 with functional form
given by equation (4). Without lost of generality, a
radius r = 1 will be used. We focus on generation
of sample Phase I profiles but the method can read-
ily be used for out-of-control profiles with specified
nonconformance patterns (see Section 6). Consider
generating profiles with n points indexed by equally
spaced values, si = 2⇡(i� 1)/n, i = 1, 2, . . . , n. Two
types of profiles will be generated; we label them here
as “rough” and “smooth”.

Rough sample profiles are produced as follows:

(a) For each index si, obtain the outside normal
vector ⌫(si) = (cos(si), sin(si)) to the circle
at point (x0(si), y0(si)) and normalize it to

get (y00(si),�x00(si))/
p

[y00(si)]2 + [�x00(si)]2 =
(cos(si), sin(si)).

(b) Generate a normal N(0, �) random value ai

and obtain point bi = (cos(si), sin(si)) +
ai(cos(si), sin(si)). Here, � is kept constant for
all draws and is expected to be small if the pro-
cess is tight to the target.

(c) The ensuing rough profile consists of the points
{bi, i = 1, 2, . . . , n}, where the ai random num-
bers are generated independently of one an-
other.

The resulting profiles are on target in the sense
that the expected (or average) coordinate values for
the points generated at each index si equal the cor-
responding blueprint coordinates for the point. Note
also that we can replace the normal distribution in
(b) with other distributions centered at 0 such as
U(��, �), for example. Furthermore, the ai values
may be correlated, for instance, following a multi-
variate normal distribution with 0 mean and selected
covariance matrix, such as in a circular time series
(e.g., see Fisher and Lee (1994)). In all of these cases,
the sample profiles will be on target on average. Note
also that the ensuing profiles may be spiky, perhaps
adequate to model situations with substantial mea-
surement error. This is in contrast with the smooth
profiles one typically sees in many finished products.

For the smooth profiles, we go a step further as
follows.

(d) Consider a rough profile {bi = (xi, yi), i = 1,
2, . . . , n} from (c) above. Smooth the respec-
tive values (x1, x2, . . . , xn) and (y1, y2, . . . , yn)
over (s1, s2, . . . , sn), separately. Then, from the
smoother, predict corresponding values for (s1,
s2, . . . , sn) resulting in (x(s)

1 , x(s)
2 , . . . , x(s)

n ) and
(y(s)

1 , y(s)
2 , . . . , y(s)

n ). Assemble the univariate
predictions to form points {b(s)

i = (x(s)
i , y(s)

i ),
i = 1, 2, . . . , n}. These points form the smooth
n-point sample profile.

Many smoothers are available in the literature,
each o↵ering control parameters to regulate di↵er-
ent aspects of the smoothing process. Chief among
them is the smoothing parameter that controls the
degree of smoothing. We experimented with three
smoothers available, either directly or through down-
loadable libraries, in the R computing package (R
Development Core Team (2008)). Most of them in-
volve some form of regression. Perhaps the best
known is loess() in the core R package based on
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fitting local polynomial regressions. Also available in
the core R package is smooth.spline(), which fits
a cubic smoothing spline. A variant of loess() is
lpridge(), which fits a local polynomial regression
with ridging, available in library lpridge of Seifert
(2007). Each of these smoothing methods is nonpara-
metric and produces on-target profiles whenever the
original rough data are on target. Also, each method
allows predictions. An interesting and important fea-
ture of the smooth profiles is that neighboring points
will tend to be similar and thus will exhibit high
positive coordinate-wise correlation while points far
apart will be nearly uncorrelated.

The rough sample profile for the circle shown in
Figure 1(a) contains n = 150 points generated using
the above method, with ai values independently gen-
erated from a normal distribution with mean 0 and
standard deviation 0.1. The same process produced
the rough sample profile in Figure 1(b) but using the
functional form for the oval target profile from equa-
tion (5). The smooth sample profile shown in Figure
1(c) comes from a rough sample profile of n = 100
points generated with independent ai ⇠ N(0, 0.1)
values and smoothed using smooth.spline() with
the smoothing parameter set at spar = 0.6.

For smooth Phase I sample profiles, the role of �
is to reflect the intrinsic leeway of the manufacturing
process around the blueprint shape. Simulation of
tight processes requires � to be small, while a large �
recreates processes with substantial wiggling around
the target.

Exampe 1: Phase I Profile Sample

The purpose of this example is to illustrate the
foregoing methods and to generate a sample of Phase
I profiles to be used in calibrating the proposed
charts. A sample of m = 1000 rough and smooth
independent profiles was generated employing the
above method with the circle of radius r = 1 as the
blueprint. The index values were si = 2⇡(i� 1)/200
radians, i = 1, 2, . . . , 200, with the ai values gener-
ated from N(0, �) with � = 0.1 for the rough pro-
files. The rough profiles were then smoothed using
smooth.spline() in R with spar = 0.6 to obtain the
smooth profiles. For the remainder of the article, we
consider these sample profiles as typical of profiles
seen when the process is stable. Thus, they will form
the Phase I sample.

The sample covariance matrix S0 was obtained for
the 400 coordinate values (200 x-coordinates, 200 y-
coordinates) for the 1000 smooth profiles. A contour

plot for the resulting 400 ⇥ 400 sample correlation
matrix was produced and examined. The plot re-
veals that x-coordinates from neighboring points are
highly positively correlated and so are the respective
y-coordinates. However, the correlations between x-
and y-coordinates for neighboring points show reg-
ular sections of very high positive correlations and
sections of very high negative correlations as one
crosses the quadrants. This feature is explained by
the coordinate constraints arising from their circular
conformance. Finally, coordinates of points far apart
exhibit nearly 0 correlation.

5. Measuring and Monitoring Edging

5.1 Appraising Edging

The question addressed here is: how well does the
edge of a Phase II part conform to the edge of the tar-
get part? We assess this conformance relative to the
conformance of the Phase I profiles when the process
operates in control.

The first task is to develop a measure of agree-
ment in edging between a part and the target part.
We propose to focus on the angles (in radians) be-
tween the outside normal vector of the target profile
and the outside normal vector at the edge of the part
at points where information is available in the sample
profile. Specifically, consider the normal vector ⌫0(s)
at point p0(s) = (x0(s), y0(s)) on the target pro-
file, given by ⌫0(s) = (u0(s), v0(s)) = (y00(s),�x00(s))
(see Figure 3). Similarly, for a smooth sample pro-
file p(s) with index values s1, s2, . . . , sn, calculate
for each s = si the outside normal vector ⌫(si) =
(u(si), v(si)). To do this, one can use the coordinate
derivatives provided by the univariate smoothers or
use basic numerical approximation of the coordinate
derivatives, e.g., f 0(x0)

.= [f(x0+�)�f(x0��)]/(2�).
Next align ⌫0(s) and ⌫(s) to have the same origin, for
instance using p(s) as origin. Finally, calculate the
signed angle (in radians) between ⌫0(s) and ⌫(s),

✓(s) = arctan
✓

u0(s)v(s)� v0(s)u(s)
u0(s)u(s) + v0(s)v(s)

◆
. (20)

Repeat the calculation across all the available index
points s1, s2, . . . , sn to obtain the 1⇥n angular vector

✓ = (✓1, ✓2, . . . , ✓n) = (✓(s1), ✓(s2), . . . , ✓(sn)).

Note that the angle orientation in equation (20) is
counterclockwise, that is, ✓(s) is positive if one trav-
els against the clock when going from ⌫0(s) to ⌫(s),
and negative otherwise.
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FIGURE 4. Angles Between Outside Normal Vectors for
Sample and Target Profiles.

Figure 4 illustrates the angles at eight points from
a smooth sample profile of 200 points generated using
the method described in Section 4 for the circle target
profile of radius r = 1. Here, � = 0.12 and smoothing
was done using smooth.spline() with spar = 0.6.
The numerical values obtained for ✓1 to ✓8 (in radi-
ans) were 0.031, 0.151, 0.251, 0.168, �0.021, �0.230,
0.063, and �0.053. Note that the largest disagree-
ment in edging occurs at location 3, even though the
two profiles are very close to each other. On the other
hand, at locations 1 and 5, the edging is very similar
(i.e., small angles) but the target and sample profile
points are far apart. These remarks highlight the dif-
ference between product size and edging. Note that
the angles, including signs, are invariant under posi-
tive scaling, translation, and rotation.

5.2 Angular Principal Component Charts for
Edging

To construct control charts for edging, one can use
the n-point Phase I smooth profiles p1,p2, . . . ,pm

discussed earlier to render Phase I angular vec-
tors ✓1,✓2, . . . ,✓m by applying the method just de-
scribed. We then calculate the sample covariance ma-
trix A0 of the angular vectors.

Analogous to the charts developed for part size,
the leading principal components of A0 can be
used to construct Hotelling’s T 2 and EWMA control
charts for edging. Denoting by Vk the n⇥ k matrix
containing as columns the coe�cients (loadings) for

the k leading principal components of A0 with asso-
ciated eigenvalues ↵1 � ↵2 � · · · � ↵k, we then use
the scores V0

k(✓�✓0)0 to calculate the Hotelling’s T 2

values

T 2 = (✓ � ✓0)Vk��1V0
k(✓ � ✓0)0, (21)

where ✓ is the angular vector for a smooth sample
profile p, ✓0 is the sample average of the Phase I
angular vectors, and � = diag(↵1, ↵2, . . . , ↵k) (see
equation (13)). Thus, T 2 is a statistical distance com-
paring the edging in the sample profile to the aver-
age Phase I edging. The T 2 values from the m (in-
control) Phase I angular vectors can be used for chart
calibration.

In Phase II, the value T 2
t obtained from the angu-

lar vector ✓ = ✓t arising from a part chosen at sam-
pling period t can be used to construct a Hotelling’s
T 2 chart for edging by plotting T 2

t vs. t. Further, one
can use equation (15) with the angular T 2

t to obtain
an upper EWMA chart for edging.

Example 2: Phase I Angular Profile Sample

Signed angular vectors were obtained by the
method just described for the smooth profiles gen-
erated in example 1. Each of the m = 1000 ensuing
vectors has n = 200 angles,

✓i = (✓i1, ✓i2, . . . , ✓i200)
= (✓i(s1), ✓i(s2), . . . , ✓i(s200)), i = 1, 2, . . . , 1000.

We use these data as a Phase I sample of angular
vectors.

The 200⇥ 200 sample covariance matrix was cal-
culated for the m = 1000 Phase I angular vectors.
The resulting correlation matrix resembles closely
the upper-left and lower-right sections of the corre-
lation matrix for size in example 1. The salient fea-
tures are a strong positive correlation between angles
for profile points close to each other while angles for
points far apart are nearly uncorrelated. The under-
lying cause for the high correlations is the smooth-
ness of the profiles.

6. Phase II Analysis

The methods proposed will be illustrated in this
section with the circle profile of equation (4) with
radius r = 1 as the blueprint. On-target process op-
eration generates smooth profiles as discussed in Sec-
tions 4 and 5, with parameters set at r = 1, � = 0.1,
and spar = 0.6. Here, r has the biggest say on the size
of the part while � and spar determine the degree of
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edge wiggling/smoothness. Changing these parame-
ters produces varying deviations from normal stable
operation. The 1000 smooth sample profiles from ex-
ample 1 and corresponding angular vectors from ex-
ample 2 are used as the Phase I data.

6.1 Monitoring Size: Chart Calibration

The smooth sample profiles from example 1 were
randomly split into two groups of size 500 each. The
sample covariance matrix S0 was calculated for one
of the subsets. Then the eigenvalues and eigenvectors
of S0 were obtained. Figure 5(a) displays the percent-
age of variability explained by the leading principal
components as calculated from equation (10) for up
to 50 out of the 400 components. The plot reveals
that the principal components associated with the
largest 15, 18, and 24 eigenvalues account for 90%,
95%, and 99% of the total variability, respectively.
We worked with the 24 largest eigenvalues, which
were stored in the diagonal matrix ⇤24, and loadings
(coe�cients) of the associated components, stored as
columns in the 400⇥ 24 matrix U24.

Matrices U24 and ⇤24 were then used to obtain
T 2 values, using equation (13), for the 500 Phase
I smooth sample profiles in the other subset. If the
coordinates for all profile points followed a multivari-
ate normal distribution, the T 2 values would be chi-

squared distributed with 24 df, approximately (e.g.,
see Johnson and Wichern (2007), p. 163). We found
that a gamma distribution provides a more satisfac-
tory fit. Using maximum likelihood and the 500 T 2

values, we get parameter estimates ↵0 = 11.5434 and
�0 = 2.1806. The fit is very good, as shown by a
gamma QQ plot of the T 2 values. See Figure 5(b).
Note that the chi-square distribution with 24 df is
a member of the gamma family with shape 12 and
scale 2.

Control limits were then set for the Hotelling’s
T 2 and EWMA charts. The on-target average run
length was set at ARL0 = 400 for both charts. For
our case, with ↵0 = 11.5451 and �0 = 2.1803, the
resulting control limit for the Hotelling’s T 2 chart
obtained from equation (14) is H = 50.9655. As for
the EWMA chart, Table 1 was used to calculate the
required control limit. Noting that ↵0 falls between
11.0 and 12.0, linear interpolation was applied to cal-
culate the control limit, yielding H = �0[13.1886 +
(14.2796 � 13.1886)(↵0 � 11.0)] = 30.0518. The
smoothing parameter in the upper EWMA chart was
set to � = 0.1 throughout.

6.2 Monitoring Size: Chart Performance

In Phase II, several process departures from the
circle profile were selected to test the ability of the

FIGURE 5. (a) Variability Explained by the Principal Components of the Sample Covariance Matrix for the x - and y -
Coordinates of 500 of the Phase I Smooth Profiles. (b) Gamma QQ Plot for Resulting T 2 Values from the 24 Leading
Principal Components.
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charts to detect changes in size. Naturally, with high-
dimensional measurements, there are many ways in
which a profile of a manufactured product may devi-
ate from its stable average. Our choices here focus on
systematic departures in size, in the degree of edge
wiggling/smoothness, and on abnormalities in cer-
tain spots of the product.

The following process departures were selected (in
all cases spar = 0.6):

Case 1: Undersized Product. The product’s circular
profile is systematically of radius r = 0.95
(rather than r = 1.0), but the degree of wig-
gling/smoothness remains in control (� =
0.1).

Case 2: Oversized Product. The radius is systemati-
cally r = 1.03 (rather than r = 1.0) with on-
target degree of wiggling/smoothness (� =
0.1).

Case 3: Smoother Product. The product shows on-
target radius (r = 1.0) but is systematically
smoother than in Phase I with (� = 0.09).

Case 4: Rougher Product. The degree of wiggling
is systematically higher, coming from � =
0.11, but the radius is on-target (r = 1.0).

Case 5: Chipped Product. The product exhibits a
dent in a spot but in-control radius (r = 1.0)
and degree of wiggling (� = 0.1).

Case 6: Knobby Product. A lump appears systemati-
cally in the product but everything else is in
control (r = 1.0, � = 0.1).

Illustrations of these scenarios are shown in Fig-
ure 6. Note that the chip is on the southeast section
(case 5) and lump in the same place (case 6). The
R code used to generate chips and lumps is available
on request.

The o↵-target average run length (ARL1) was
then calculated for both the Hotelling’s T 2 and upper
EWMA charts. Thus, ARL1 is the number of sam-
ples that, on average, is needed to signal a change in
the process when a change to a particular case of the
six selected scenarios occurred. Although tedious, the
most direct approach to accomplish this task is run-
length simulation. However, we found that the T 2

values from o↵-target sample profiles obtained using
U24 and ⇤24 also follow closely a gamma distribu-
tion but with di↵erent shape and scale parameters.
Capitalizing on this finding, 2000 o↵-target smooth
profiles were generated and resulting T 2 values cal-
culated. A gamma distribution was fitted and then

the average run length was calculated using the pro-
posed Markov chain method with the previously cal-
culated control limit H. Although the ARL1 values
were fairly stable, the method was repeated eight
times and the resulting ARL1 values averaged.

The two columns under “ARL1 for size” in Table
2 display the results. Recall that both charts were
calibrated to ARL0 = 400. When the departure is
small (cases 4, 5, and 6), the EWMA chart performs
better than the Hotelling’s T 2 chart. Note that, when
the change results in smoother product (case 3), the
T 2 will tend to be smaller than in the on-target case
and thus will take much longer to detect the change
because we are using only an upper control limit (H).

6.3 Monitoring Edging: Chart Calibration

The 1000 Phase I 1⇥ 200 sample angular vectors
from example 2 were similarly split into two sub-
sets of 500 vectors each. The 200 ⇥ 200 covariance
matrix A0 was calculated for one subset and the
eigenvalue/eigenvector decomposition obtained. The
35 leading principal components, which explain 99%
of the total variability, will be used in the charts. The
associated eigenvalues were stored in diagonal matrix
�35 and the corresponding loadings (eigenvectors) as
columns in matrix V35.

Next, the T 2 values for the 500 angular vectors in
the other subset were calculated from equation (21).
We fit a gamma distribution using maximum likeli-
hood, resulting in parameter estimates ↵0 = 17.5464
and �0 = 2.0670. A gamma QQ plot (not shown)
reveals a satisfactory fit. Using equation (14) with
ARL0 = 400 yields H = 65.318 as the control limit
for the Hotelling’s T 2 chart. Interpolation in Table 2
gives H = 41.9037 as the control limit for the upper
EWMA chart.

6.4 Monitoring Edging: Chart Performance

A similar approach to product size was followed
to assess the performance of the charts in detecting
changes in product edging from the circle blueprint.
The six o↵-target scenarios previously considered
were used. The o↵-target average run lengths ob-
tained are displayed in Table 2 in the columns un-
der “ARL1 for edging”. Some interesting patterns
emerge. Somewhat expected, when the product is
bigger than the blueprint and the same degree of wig-
gling occurs, or the product is smoother but similar
in size as the blueprint, the outside normal vectors
for the blueprint and product will tend to be aligned.
As a result, the angles between these vectors will
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FIGURE 6. Sample Profiles for Each of the Six O↵-Target Scenarios Considered.

be smaller and so will be the T 2 values, resulting in
very large ARL1. When the product manufactured is
smaller but with the same degree of smoothing, the
wiggling will appear larger and thus will be detected
faster. For chipped or knobby product, both charts
detect the change from on-target product at about
the same speed. In the two particular cases shown,
the chip and the knob are fairly smooth. However, if
they were sharper, i.e., spiky inwards or outwards de-
fects, the edging chart will detect them more rapidly
than the chart for size.

7. Comparison with Other Charts

In this section, we compare the performance of
our proposed upper EWMA chart for size with the
T2+S2 chart proposed by Colosimo et al. (2008).
This chart performs the best among the three charts
they evaluated. To model their profiles, they consider
the spatial autoregressive regression (SAR) model
discussed by Cressie (1993, p. 441). This parametric
framework has been successfully applied to environ-
mental spatial data, where varying degrees of corre-
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TABLE 2. O↵-Target Average Run Length (ARL1) for Detecting a Change in Product Size and Edging for
Six Selected Departures from Normal Process Operation with the Hotelling’s T 2 and

the Upper EWMA Charts Calibrated at ARL0 = 400

ARL1 for size ARL1 for edging

O↵-target feature Hotelling’s T 2 Upper EWMA Hotelling’s T 2 Upper EWMA

Case 1: Undersized product 1.03 1.02 78.21 19.49
Case 2: Oversized product 1.03 1.02 >2000 >2000
Case 3: Smoother product >2000 >2000 >2000 >2000
Case 4: Rougher product 45.11 11.26 29.90 7.41
Case 5: Chipped product 9.11 2.97 10.32 3.03
Case 6: Knobby product 19.44 3.97 22.56 4.86

lation as well as short- and long-scale e↵ects need
particular consideration.

Colosimo et al. (2008) consider profiles consisting
of radial distances from the center to the edge of
the product, measured at N = 748 angles. They use
100 Phase I real-sample profiles to estimate the SAR
model parameters. They select the resulting SAR
model of order 2 (denoted SARX(2)) as the baseline
model (Phase I) for the profiles. Then they simu-
late 20,000 Phase I profiles to calibrate their T2+S2
chart, choosing an upper control limit with on-target
average run length ARL0 = 100. Their equation (16)
describes in detail the generating process for Phase I
profiles.

In Phase II, the charts were applied to sample pro-
files with assignable causes introduced by spindle-
motion errors that a↵ect product roundness. Specif-
ically, the o↵-target scenarios considered were ob-
tained by adding to a baseline (on-target) sample
profile a spurious harmonic of a certain frequency
and with amplitude directly proportional to a pa-
rameter �. All the values of � used were between 0
and 1, with larger values producing more severe de-
partures from the baseline profile. Equations (18)–
(21) of Colosimo et al. (2008) provide the specific
form of the altered shapes. Their Figure 10 shows
the baseline profile while Figure 11 depicts several
profiles with assignable causes of the type just de-
scribed. For each o↵-target scenario, they simulated
1000 run lengths to estimate the o↵-target average
run length ARL1. Their Figure 12 displays the re-
sults.

Our assessment uses the same Phase I and Phase
II profile simulation process as in Colosimo et al.
(2008). Following our approach, first 20,000 on-

target sample radial profiles (N = 748 points each)
were simulated. Each profile was smoothed using
smooth.spline() in R with spar = 0.5. The 748 ⇥
748 covariance matrix was calculated for 10,000 of
the smooth radial profiles and the principal compo-
nent analysis performed. The k = 32 leading princi-
pal components, which explain 99% of the total vari-
ability, were retained. Then the T 2 values from equa-
tion (13) were calculated for the other 10,000 smooth
sample radial profiles. The familiar monotonic trans-
formation Y = �(T 2)�1/3 was applied and a QQ nor-
mal plot revealed that the transformed values were
close to normal. The resulting mean and standard
deviation were y0 = �0.313513 and s0 = 0.051414,
respectively. Then the upper EWMA chart for nor-
mal data (using y0 and s0) was calibrated, resulting
in an upper control limit of H = �0.287777 for an on-
target average run length ARL0 = 100. The Markov
chain method was used to calculate ARLs.

For each scenario with assignable causes, 1,000
sample profiles were simulated. Using the same coef-
ficients (loadings) for the 32 leading principal com-
ponents from Phase I, the T 2 values were calculated
using equation (13). After transformation, a normal
QQ plot was drawn to check for normality, which
each plot supported, and the new sample mean (x)
and standard deviation (s) were calculated. Using
the Markov chain method with the new x and s but
the Phase I upper control limit, the o↵-target ARL
was obtained.

Table 3 displays the results of the simulation
study. The ARL values for T2+S2 were read from
Figure 12 of Colosimo et al. (2008). The smaller ARL
of the two methods is highlighted in bold. Both meth-
ods take fewer runs on the average to detect the
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TABLE 3. Average Run Length Performance of the T2+S2 Chart Proposed by Colosimo et al. (2008) (as Read from Their
Figure 12), and of Our Proposed Upper EWMA Chart for Size on the 20 Scenarios with Assignable Causes

Scenario � T2+S2 Upper EWMA

On target 100.0 100.0

Half-frequency spindle-motion error 0.30 38 11.2
0.40 20 5.2
0.50 10 2.8
0.60 6 2.1

Bilobe spindle-motion error 0.25 40 48.8
0.50 12 17.0
0.75 6 7.9
1.00 4 4.7

Trilobe spindle-motion error 0.25 43 39.9
0.50 13 15.5
0.75 7 7.0
1.00 4 5.5

Four-lobe spindle-motion error with fixed phase 0.05 36 1.1
0.06 28 1.0
0.07 20 1.0
0.08 14 1.0

Four-lobe spindle-motion error with random phase 0.05 39 1.0
0.06 28 1.0
0.07 19 1.0
0.08 16 1.0

presence of the assignable cause as � increases, re-
flecting the fact that larger values of � are indicative
of greater departure from in-control process opera-
tion. It is clear that our proposed chart is competi-
tive compared with the T2+S2 chart in the scenar-
ios simulated with its best showing when a four-lobe
spindle-motion error is present with either fixed or
random phase.

An important distinction between the two meth-
ods is worth noting. The Colosimo et al. (2008) ap-
proach is parametric, based on a statistical model for
the profile points. Thus, their method would be ex-
pected to do well when the model provides a good fit
for the profile data. On the other hand, our proposed
principal components-based method is approximate
but assumes no specific statistical model. We expect
it to do well in many types of profile data but per-
haps not as well as a chart that is built from the

correct statistical model for the profile data. At the
same time, such charts can be less robust to model
changes.

8. Conclusions

This article presents methods to monitor size and
edging from product profile data. The focus is on the
leading principal components of the covariance ma-
trix for the sample coordinates of the profile points,
which contain information about product size, and
the leading principal components of the covariance
matrix of certain profile angular vectors, which con-
tain information about product edging. When com-
pared with standard charts for multivariate pro-
cesses, the most attractive features of the methods
proposed are (a) a reduction in dimensionality, (b)
accounting for the cross-correlation structure, (c) im-
plementation requiring tools readily available in most
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214 ROMÁN VIVEROS-AGUILERA, STEFAN H. STEINER, AND R. JOCK MACKAY

standard statistical software, and (d) the methods
are largely nonparametric. A simulation study shows
that the methods proposed perform well in detect-
ing a variety of departures from in-control process
operation.

In the case of product size, the proposed Hotel-
ling’s T 2 chart provides an alternative to the chart
developed by Colosimo et al. (2008). The latter as-
sumes a parametric spatial autoregressive regression
(SARX) model originally developed for spatial data.
Some e↵ort is needed to elicit the covariates to be
used because there are no measured covariates in the
case of product profile data. It is of interest to more
fully compare the performance of the two charts to
monitor product size. Also of interest will be to de-
velop an extension of the SARX-based chart to mon-
itor product edging.

The high dimension of product profile data
presents other challenges. For instance, a larger num-
ber of Phase I multivariate samples (i.e., product pro-
files) is needed in chart calibration. Another chal-
lenge is that departures from normal process oper-
ation are not amenable to simple characterization
through a few numbers, as is the case with stan-
dard multivariate process monitoring. As a result,
optimal tuning parameters (e.g., optimal degree of
smoothing � in the case of the EWMA) are not eas-
ily found. Note that, in our illustrations in this pa-
per, we worked with the standard value of �, namely
� = 0.1.

The proposed methods, which use an upper con-
trol limit for the size and edging charts, are designed
to spot process worsening, reflected in large values of
the respective T 2

t . However, one might be interested
in detecting improvements as well. For instance, we
might like to detect greater conformance to blueprint
arising from reduced wiggling. In this case, we can
run two charts, one for catching process deterioration
and one for process improvement. Specifically, we can
use Wt = max{B, (1��)Wt�1 +�T 2

t } with an upper
control limit to spot process deterioration (as done in
this paper) and Zt = min{B, (1��)Zt�1+�T 2

t } with
a lower control limit to detect process improvement.

One important follow-up to the methods proposed
is the extension to a genuinely multivariate EWMA
(e.g., see Lowry et al. (1992)). It entails working with
the multivariate chart statistic

Wt = (1� �)Wt�1 + �U0
k(pt � p0)0 t = 1, 2, . . . ,

to monitor size and

Wt = (1� �)Wt�1 + �V0
k(✓t � ✓0)0, t = 1, 2, . . .

to monitor edging. In either case, an out-of-control
signal is issued when Wt⌃�1

W W0
t > H. This chart

should have greater power to detect persistent pro-
cess changes.
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