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Statistical Engineering and
Variation Reduction

Stefan H. Steiner,

R. Jock MacKay

Business and Industrial Statistics

Research Group, Department of

Statistics and Actuarial Sciences,

University of Waterloo,

Waterloo, Ontario, Canada

ABSTRACT Statistical engineering as proposed by Hoerl and Snee (2010a)

aims to develop a discipline devoted to better understanding how to use

statistical tools to support project goals. Existing examples abound but more

work is needed. We discuss the use of statistical engineering to improve

problem solving—that is, reducing variation in processes—and note that this

requires a series of empirical investigations where we should use infor-

mation gained to help plan subsequent investigations. The systematic use

of prior=existing information, especially baseline information, in problem

solving is illustrated using a crossbar dimension case study. The baseline

results are used to help plan and analyze all subsequent investigations both

when looking for a dominant cause of the variation and when assessing a

possible solution. The effective use of prior statistical information and the

consequences of its use in the variation reduction context are not commonly

taught and thus opportunities for more efficient problem solving are lost.

KEYWORDS baseline, families of causes, full extent of variation, measurement

system assessment, method of elimination, process improvement, sequential

learning, six sigma

INTRODUCTION

Hoerl and Snee (2010a, 2010b) proposed a new discipline they termed

statistical engineering (SE). They defined SE as ‘‘the study of how to best

use statistical concepts, methods and tools, and integrate them with IT

and other relevant sciences to generate improved results’’ (2010a, p. 52).

This broad definition suggests that students of SE should look for better (if

not the best) ways to apply statistical methods. See also the panel discussion

in Anderson-Cook and Lu (2012a, 2012b) for more examples and opinions

about SE.

Process improvement is an important and rich context in which to think

about SE and its development and consequences. Hoerl and Snee (2001)

provided the foundation for process improvement through the principles

of statistical thinking:

1. All work occurs in a system of interconnected processes, where a process

is a chain of activities that turns inputs into outputs.

2. Variation, which gives rise to uncertainty, exists in all processes.
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3. Understanding and reducing variation are keys to

success.

We could quibble that some processes can be

improved by shifting the average (e.g., increasing

the yield in a chemical process), but experience has

shown that there are ample opportunities to reduce

variation and hence make improvements. To high-

light the importance, Neave (1990, p. 57) attributed

the following quote to Deming: ‘‘If I could reduce

my message to management to just a few words, I’d

say it all has to do with reducing variation.’’

For mass-produced components and assemblies,

reducing variation can simultaneously lower overall

cost, improve function, and increase customer satisfac-

tion with the product. Excess variation can have dire

consequences, leading to scrap and rework, the need

for added inspection, customer returns, impairment of

function, and a reduction in reliability and durability.

So let us concentrate on how SE can help with

variation reduction. Juran and Gryna (1980) pro-

vided the basic two-step algorithm for understanding

and reducing variation (Principle 3) via the diagnos-

tic and remedial journey shown in Figure 1.

Within Six Sigma (Breyfogle 1999), define–

measure–analyze–improve–control (DMAIC) fleshes

out this algorithm. There are many other such expan-

sions. For improving a medium- to high-volume

manufacturing processes, Steiner and MacKay

(2005) developed the version shown in Figure 2 that

we apply to the case study given later in this article.

Unfortunately, statistical engineering is a term that

has been used repeatedly with different meanings.

Most recently there is the general concept of SE as

introduced by Hoerl and Snee (2010a, 2010b) and

discussed earlier in this article. Steiner and MacKay

(2005) also chose the name statistical engineering

for their process improvement algorithm. To limit

possible confusion, we use the acronym StatEng to

refer to this algorithm and its application. SE as

described by Hoerl and Snee is a more general con-

cept. Statistical engineering is also a name associated

with the Shainin Red X problem-solving system

(Shainin 1993). The StatEng algorithm builds on

some of the ideas in the Shainin system.

Where does statistics come in then? What is its pur-

pose? We recommend that you take the broad view of

the discipline of statistics that provides the concepts,

methodologies, tactics, and tools for empirical learn-

ing. Note that learning is the key word in the

previous sentence. The purpose of statistics is to

learn, in either an exploratory or confirmatory sense.

Empirical means by observation or experiment; that

is, we learn about the process by watching it without

intervention (observational), after changing one or

more inputs (experimental) or some combination of

the two. Because applying statistics is inductive,

learning from an empirical investigation is often

imperfect; that is, we are left with some uncertainty.

Consistent with the principles of statistical thinking,

Deming purportedly said, ‘‘If you can’t describe what

you are doing as a process, you don’t know what

you’re doing.’’ We believe that there is great value in

also applying process thinking to the planning and
FIGURE 1 Diagnostic and remedial journey. (Color figure

available online.)

FIGURE 2 Statistical engineering (StatEng) variation reduction

algorithm.
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execution of any empirical investigation (i.e., statis-

tics). At a high level, we suggest the five step process

called QPDAC. The steps of QPDAC are as follows:

Question: Specify what you are trying to learn.
Plan: Formulate what, when, and how you will

collect the data.
Data: Execute the plan.

Analysis: Examine the data in light of the question
and plan.

Conclusion: Specify what has been learned with limita-
tions (uncertainty, deviations from the
plan, etc.).

See Steiner and MacKay (2005) and MacKay and

Oldford (2000) for the details of each process step.

QPDAC provides a process framework for carrying

out (or criticizing) any empirical investigation.

Now we have the elements to discuss SE in the con-

text of variation reduction. We will apply an algorithm

such as DMAIC or StatEng. Our first conclusion is that

it is better practice to use a sequence of empirical

investigations rather than a single investigation. In

most applications, it is a recipe for disaster to use a sin-

gle investigation to try to identify the cause(s) of vari-

ation and, at the same time, to try to find a remedy that

reduces or eliminates the effects of the causes. We

look to George Box for support. The use of statistical

tools to solve nontrivial problems requires ‘‘sequential

learning’’ as described in Box (1999) and Box and Liu

(1999). The main theme of these two papers can be

summarized as ‘‘Investigations are conveniently con-

ducted sequentially with results from previous experi-

ments interacting with subject matter knowledge to

motivate the next step’’(Box, 1999, p. 27).

In Box’s view, too much emphasis in statistics has

been given to ‘‘one-shot’’ procedures, such as

hypothesis testing and optimal designs that follow

a mathematical paradigm. He felt instead that there

should be more studies of statistics from a dynamic

point of view. The focus on the mathematical para-

digm can be partly explained by the relative ease

of deriving mathematical results and many statisti-

cians’ mathematical training.

Box and Liu (1999) also noted that in the context

of process improvement, there is often immediacy.

That is, we can apply QPDAC to get the results of

any investigation in a relatively short time frame so

a sequence of investigations is feasible. The same

may not be true in other contexts such as agriculture,

medicine, engineering, and so on.

A famous historical example of the successful

application of sequential empirical learning (and

SE) is the Wright brothers’ development of a heavier-

than-air fixed-wing manned airplane in the years

leading up to their maiden flight in 1903. The Wright

brothers experimented extensively, looking for an

effective way to control flight and design wings that

provided sufficient lift. They employed many tools=

methods including kites mounted on bicycles, a rudi-

mentary wind tunnel, and gliders both tethered and

manned. The brothers tested over 200 wing designs

in their wind tunnel and conducted hundreds of

unmanned and manned glider flights before they felt

ready to tackle actual flight. Along the way they

learned a lot but also suffered many setbacks. They

even discovered an error in the assumed value of a

physical constant, called the Smeaton coefficient of

air pressure needed to calculate the expected lift from

a particular wing design. The Wright brothers ulti-

mately succeeded in part due to their use of empirical

learning. Other better funded teams such as one led

by Samuel Langley failed when following a much

more theory-based approach. SE could have helped

the brothers to reach their goal more quickly.

One well-developed application of SE is response

surface methods (RSM) as initially proposed by Box

and Wilson (1951) and summarized by Box and

Draper (2007). Using RSM we conduct a series of

experiments to try to optimize an objective function

defined in terms of process outputs. With RSM, there

is explicit use of initial experiments to drive further

investigation. We may start with a highly fractionated

two-level screening experiment that looks for inputs

(factors) with large main effects. This is followed by

further factorial experiments (possibly with center

points) with higher resolution using promising fac-

tors found in the screening experiments. The results

are then used to suggest promising areas of the

design space (in terms of optimizing the objective

function). Further experiments are conducted with

new levels in the direction of steepest ascent (or

descent). As needed, these designs are augmented

with axial points to examine nonlinear and interac-

tion effects.

The purpose of this article is to illustrate the impor-

tant advantages and surprising consequences of using

sequential empirical investigations (and learning)

within a variation reduction algorithm such as DMAIC

or StatEng. In our experience, Six Sigma books and
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training material make few connections between and

within the stages of DMAIC. There is no explicit use of

information from previous stages to help complete

the current stage. For instance, in the well-known

Six Sigma book by Breyfogle (1999), few of the exam-

ples refer to anything learned in a previous stage of

DMAIC. This is especially strange when moving from

the analysis to the improvement stage; you would

think that knowing the cause would be helpful when

looking for a remedy.

To illustrate, we consider a case study that follows

an improvement team through a project to reduce

variation in the crossbar dimension of a plastic

switch base. We show how the knowledge gained

early in the improvement project drives and influ-

ences the choices made later on. The new knowl-

edge impacts fundamental details such as sampling

plans, when and what to measure, etc., of sub-

sequent investigations. Here we focus on the use of

information gained in a baseline investigation

conducted (in part) to assess the magnitude of the

problem at the start of the project.

The article is organized in the following manner.

In the next section, we outline the importance and

the use of the knowledge gained in the baseline

investigation to help plan and analyze subsequent

investigations. Next, we discuss an appropriate plan

and analysis of a baseline investigation that takes into

account the proposed uses. This is then followed by

a series of sections that illustrate the use of the

knowledge gained in the baseline investigation to

assess a measurement system, find the dominant

cause(s) of the variation, verify the identified

dominant cause, and assess the feasibility of various

variation reduction remedies. We conclude with a

summary and some additional discussion.

BASELINE INVESTIGATION

Establishing a baseline is the first step in most

variation reduction algorithms. For example, it is

one of the necessary activities in the measure stage

of DMAIC in Six Sigma (Breyfogle 1999). It is also

the first stage of the StatEng algorithm (Steiner and

MacKay 2005) illustrated in Figure 2.

We define the baseline as a numerical and graphi-

cal summary of the current process performance. In

other words, the baseline quantifies the size and nat-

ure of the process variation. The baseline may come

from data previously collected such as weekly scrap

rates or stored values from an end-of-line 100%

inspection. However, in many instances, we may

decide to carry out an empirical investigation to

establish the baseline.

We propose to use the baseline to help

. set the goal—i.e. determine how big a reduction in

variation is required;

. validate a potential solution if and when one is

found; and

. plan and analyze subsequent investigations when

searching for a cause or a solution.

The first two uses are commonly acknowledged.

However, it is our contention that, unlike most cur-

rent practice, the information gained in the baseline

can be exploited in planning and analyzing sub-

sequent investigations designed to gain the process

knowledge necessary to meet the project goal. Some

may argue that this is common sense; we should

always use any prior information as a guide; that is,

use sequential learning when planning any investi-

gation. However, in our experience, mistakes and

oversights are common in practice. In addition,

explicitly acknowledging the intended use of the

baseline suggests a particular plan for the baseline

investigation itself. We give our recommendations

in the next section.

We use the StatEng algorithm (Figure 2) to illus-

trate the benefits of using the baseline information

in variation reduction. We hope that in the future

project teams will make more systematic use of the

baseline information and achieve better results in

less time.

Here are some details about the case study. In the

manufacture of the injection-molded plastic base

shown in Figure 3, there was excessive variation in

a key crossbar dimension, measured as a difference

from a nominal value. With rescaling, the target

dimension was 1.0 inch and the specifications were

0 to 2.0 thousandths of an inch (thou). Note that thou

is often referred to as mil in the United States. In a

later assembly process, many mechanical and elec-

tronic components are inserted into spaces in the

plastic base. Problems occurred due to both break-

age when spaces were too small and loose assembly

when spaces were too large. The crossbar dimension

of the plastic base was used as a surrogate for all of
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the internal dimensions. If crossbar dimension was

small (large), the spaces were generally too big

(small). The project goal was to reduce variation in

the crossbar dimension.

PLANNING AND ANALYZING A
BASELINE INVESTIGATION

To determine the baseline, we need an empirical

investigation to estimate the long-term properties

(mean, standard deviation, etc.) of the critical pro-

cess output(s). For the purposes of illustration, we

assume a single output of interest and that a perfor-

mance measure is given. There are many feasible

choices for a performance measure—standard devi-

ation, capability ratio, etc. The choice helps to define

the question in QPDAC for this investigation. If poss-

ible, the process output should be a continuous

rather than a binary characteristic because that pro-

vides more process information per observation. In

addition, we would rather work with an output that

has two-sided specification limits and is not already a

measure of variation itself like out-of-roundness.

We propose a plan for the baseline investigation

that is designed to help progress through the StatEng

variation reduction algorithm (Figure 2). Specifically,

to accomplish the goals, the baseline investigation

should allow us to

. estimate the long-term performance measure,

. estimate the full extent of variation (denote FEoV)

in the output, and, perhaps most critically,

. determine the nature of the output variation over

time.

We define the FEoV as the range within which the

vast majority of output values lie. The range (mini-

mum to maximum) defines the FEoV when the sam-

ple size is in the hundreds and there are no wild

outliers (as in the case study). More generally, for a

histogram with a bellshape, the FEoV corresponds

to the range of output values given by the average

plus or minus three times the standard deviation.

This way the FEoV covers 99.7% of output values

using a Gaussian assumption. To define the FEoV

we ignore rare outliers. For binary and discrete out-

puts the FEoV is given by all of the output values

seen in normal production.

To accomplish the baseline investigation goals,

the sampling scheme is critical. First we must decide

over what time frame we will sample. This study per-

iod must capture the long-run performance of the

process characteristic of interest. To help decide,

we use any prior knowledge and=or experience

about the process we have. For example, if process

performance is already summarized using weekly

scrap rates (but we decide we want a baseline for a

continuous output characteristic), we can use the

pattern in the scrap rates to help decide the time

frame.

Instead of random sampling, we recommend a

systematic sampling plan that includes consecutive

parts and parts sampled from the process at regular

time intervals. Such a systematic sampling plan is

desirable because it provides information about the

time nature of the output variation. This proposed

plan can be thought of as a multi-vari investigation

focused on the time families of variation. See Snee

(2001) and De Mast et al. (2001) for more details

on multi-vari investigations. In this light, our sugges-

tion for the baseline investigation is similar to the

suggestion in Shainin (1993) to start problem solving

with a multi-vari investigation. An alternative is to

use a random sample over the proposed time frame

and keep track of when each observation is made.

We can describe the nature of the output (or any

other process characteristic) variation over time

using the idea of a time family of variation. If the out-

put changes quickly (that is, over a short time frame

we observe values across most of the FEoV), we say

that the output variation acts in the part-to-part

family. On the other hand, if the output changes

slowly—for example, to see values on both ends of

the FEoV we need to measure parts separated by a

FIGURE 3 Plastic base showing crossbar dimension with

arrow. (Color figure available online.)
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long time; for example, days—we say that the output

variation acts day-to-day. By sampling parts consecu-

tively at regular intervals we are able to distinguish

between situations where the output varies quickly

(part-to-part) or slowly (say, day-to-day) or some-

where in between. This information is valuable both

to help us choose the time frame for subsequent

investigations and to give us clues about the possible

major causes of variation.

In the crossbar dimension example, the team

planned and executed a baseline investigation where

six consecutive parts were selected from the process

each hour for 5 days. This choice was expected to

provide ample time for the process output to vary

over its normal range and give a large enough sam-

ple size to reasonably estimate the process variation.

We provide graphical and numerical summaries of

the data in Figure 4. We suggest always using both

a histogram and some sort of run chart. The right

panel in Figure 4 gives a multi-vari chart that illus-

trates how crossbar dimension varies over time.

The six consecutive values each hour are plotted at

the same horizontal location. The vertical dashed

lines show the division into the 5 days.

From the graphical and numerical summaries of

the data in Figure 4, we see that the FEoV of crossbar

dimension variation is �0.25 to 2.1 thou (as indicated

by the dashed lines in subsequent figures) and

the major source of variation acts hour-to-hour with

some evidence of day-to-day differences. More for-

mally, we also fitted a nested analysis of variance

(ANOVA) model. In agreement with the multi-vari

chart, the dominant source of variation is among

hours (with variance component standard deviation

equal to 0.45). The variation in crossbar dimension

for consecutive parts is small. The standard deviation

of the baseline data is 0.45 thou. The team set the

goal to reduce the standard deviation to less than

0.25 thou. There was no immediate explanation for

the smaller variation in crossbar dimension observed

on the fifth day. Note that had there been a large day

effect—that is, had the day averages been very

different—the baseline investigation was (probably)

not conducted over enough days to capture the

long-term performance. In that case, the team should

collect data over some additional days before

drawing conclusions.

One of the goals of the baseline investigation is to

estimate the current process performance in terms of

the output variation. Estimating a measure of variation

like a standard deviation is difficult with a small sam-

ple size. In addition, because of the multitude of uses

we make of the results of a baseline investigation, we

favor a large baseline sample size, ideally consisting of

hundreds of parts for a continuous output character-

istic and thousands of parts for a binary characteristic.

Due to the time nature of the crossbar dimension

variation, the team concluded that the time frame for

further observational investigations should be hours

and days. We expect to see the FEoV in the output

over that period. Investigations conducted over a

shorter time frame, say, only an hour, would not

show the FEoV and thus not reflect the long-term

behavior of the process.

One final point about the outcome of the baseline

investigation is that we recommend that several parts

with extreme values (i.e., to span the FEoV) be set

aside because they can be useful in subsequent stu-

dies, such as the measurement system assessment

investigation discussed in the next section.

FIGURE 4 Histogram, multi-vari chart, and numerical summary for crossbar dimension baseline data. (Color figure available online.)
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Next, we illustrate the use of the baseline in

subsequent investigations needed at various stages

of the StatEng algorithm.

USING THE BASELINE TO HELP CHECK

THE MEASUREMENT SYSTEM

After establishing the baseline, the next step in the

StatEng algorithm (Figure 2) is to assess the measure-

ment system for the output. The goal of this investi-

gation is to compare the size of the measurement

variation, denoted. rmeas, to the process variation,

denoted rprocess. We want to determine whether the

measurement system is a large source of variation

and whether it is adequate to support further process

investigations. If the measurement variation is large,

improving the measurement system is necessary

before proceeding with problem solving and may

solve the original problem. Note that for this reason,

in many other problem-solving systems, checking

the measurement system is often recommended

before we conduct a problem baseline investigation.

However, we propose establishing the baseline first

because we use the results from the baseline investi-

gation to help plan and analyze a better measure-

ment system assessment investigation. This is a

small example of SE where reversing the order of

the two investigations can increase efficiency.

A generic plan for measurement assessment is to

measure the same parts repeatedly over a variety of

conditions and times. We plan to use the baseline

estimate of the overall variation (i.e., the combined

effect of the process and measurement) to improve

the precision of the conclusion about the relative

size of the measurement variation. If we assume

independence—that is, the part dimension does

not affect the measurement variation—we have

roverall ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
process þ r2

meas

q
. The measurement investi-

gation will provide an estimate for rmeas, and

combining that with the estimate for roverall given

by the baseline allows us to solve for rprocess.
In the measurement system assessment investi-

gation, we suggest selecting three parts chosen (from

the baseline) to cover the FEoV for the output

observed in the baseline. We select one large, one

small, and one intermediate-sized part. The benefits

of choosing extreme parts were explored in

more detail by Browne et al. (2009, 2010), who

also proposed a more complicated analysis that

incorporates the measured part size from the base-

line investigation used to select the parts. Note the

difference from the usual suggestion in gage repeat-

ability and reproducibility (R&R) investigations for 10

randomly selected parts (Automotive Industry Action

Group 2010). The traditional gage R&R estimates

both rmeas and rprocess using only the measurement

investigation data.

In the crossbar dimension example, the three

(small, medium, and large) parts were measured

nine times each on two separate days. If the

measurement system is a dominant source of the

variation, based on what we observed in the base-

line, we expect to see the FEoV within the measure-

ments on each part over the 2 days. The results are

shown graphically in Figure 5 and the one-way

ANOVA numerical results are provided in Table 1.

In Figure 5 we added horizontal dashed lines to

show the output FEoV(�0.3 to 2.1) seen in the base-

line. Later we continue this suggestion and always

include lines showing the FEoV in all plots of individ-

ual output values. This practice helps ensure that the

plots are interpreted in an appropriate way when we

want to try to explain the FEoV as seen in the base-

line. In this investigation, because we deliberately

selected extreme parts from the baseline, we will

always see the FEoV. However, this is not necessarily

true with other investigations. Because the measure-

ment assessment investigation repeatedly measured

parts, the error variance in the ANOVA corresponds

to measurement error. Thus, from the ANOVA, we

find r̂rmeas ¼
ffiffiffiffiffiffiffiffiffiffiffi
0:020

p
¼ 0:14 (given by the pooled SD

FIGURE 5 Crossbar dimension measurement investigation

results. Dashed horizontal lines show the output FEoV from the

baseline. (Color figure available online.)
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or the square root of the mean squared error). The

estimated baseline standard deviation was

r̂roverall¼0.45. Thus, we estimate r̂rprocess ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:452 � 0:142

p
¼ 0:43. Because the measurement

variation is small relative to the process variation,

we conclude that the measurement system is

adequate for the project. The system can distinguish

between the three parts and the measurement vari-

ation is relatively small. Some may complain that,

unlike with traditional measurement assessment

studies, our investigation was conducted over two

separate days rather than as quickly as possible. At

the time the measurement investigation was conduc-

ted, we spread the investigation out over many hours

because the baseline investigation results suggested

that this was needed to generate the FEoV. However,

we now realize (continuous improvement) that con-

ducting the measurement assessment investigation

as quickly as possible is preferred because we do

not need to worry about generating the FEoV in the

measurement investigation if we select extremes

parts from the baseline (as we have done). We could

clarify this idea by adding the initial measurements

for each part with a special symbol to a plot like

Figure 5.

The proposed assessment plan is different than the

traditional gage R&R investigation (Automotive Indus-

try Action Group 2010) with 10 randomly selected

parts measured four to six times each. We can use

fewer parts in our investigation because we have an

estimate of the overall variation from the earlier base-

line investigation. The benefit of the proposal can be

quantified as in Stevens et al. (2010 and 2013) using

the asymptotic precision of the estimator for

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
meas r2

overall

�q
obtained as a linear approxi-

mation from the Fisher information. In Figure 8 we

compare the approximate standard deviation of the

estimator for c (when the true value is 0.2) for three

different plans defined in terms of (k, n) where k

represents the number of randomly selected parts

and n is the number of repeated measurements per

part. The three selected plans all have a total of 60

measurements and correspond to a plan similar to

the one used in the case study; that is, (3,20), the

standard gage R&R plan (10,6), and the plan (30,2)

proposed by Shainin (1993). Our proposed measure-

ment assessment plan and analysis will provide

slightly worse results than shown in Figure 8 for the

(3,20) plan because we did not select the three parts

at random. However, if we adopt the more compli-

cated analysis proposed by Browne et al. (2009,

2010) that incorporates the baseline part measure-

ments, we can do substantially better. In addition,

selecting extreme parts will make it easier to assess

the model assumption that measurement variation

does not depend on part size.

From Figure 8 we see that when there is no base-

line data (i.e., b¼ 0) the Shainin plan has the lowest

standard error at about 0.035. However, as we add

baseline information the proposed plan with only

three parts quickly becomes the best one. With a

baseline sample size of b¼ 240 (just off the right-hand

edge of Figure 8) the proposed measurement investi-

gation should have a standard error of a little more

than 0.02, which is less than half as big as using the

traditional gauge R&R plan with no baseline data that

has a standard error of more than 0.45. In summary,

Figure 8 shows the substantial benefits of the baseline

information (for all plans) and how for a reasonable

baseline size (say, greater than 50 parts) the proposed

plan with three selected parts measured 20 times each

is the best. We see similar results for other values of c.

USING THE BASELINE TO HELP

SEARCH FOR A DOMINANT CAUSE

Following thediagnostic and remedial journey (Juran

and Gryna 1980), the next step in the StatEng algorithm

is to identify one or more dominant causes of the vari-

ation. A dominant cause is a process input that, if held

TABLE 1 One-way ANOVA: Dimension Versus Part

Analysis of variance for dimension

Source df SS MS F P

Part 2 42.5111 21.2556 1,064.87 0.000

Error 51 1.0180 0.0200

Total 53 43.5291

Individual 95% confidence intervals for mean based on

pooled SD

Level N Mean SD

1 18 �0.1722 0.1797 (�)

2 18 0.9222 0.1166 (�)

3 18 2.0011 0.1183 (�)

Pooled SD 0.1413 0.00 0.70 1.40 2.10

SS: Sum of squares. MS: meansquare.
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fixed, would substantially reduce the variation in the

output. Assuming independence, we can partition the

variation in the process output into two parts:

roverall¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

due to specific cause þ r2
due to all other causes

q

We discussed a special case of this formula in the

measurement assessment section. The notion of a

dominant cause uses the Pareto principle applied to

causes (Juran and Gryna 1980). For a dominant cause,

the residual variation—that is, rdue to all other causes —

must be relatively small; that is, rdue to all other causes

<<rdue to specific cause. Figure 9 shows the percentage

reduction in the overall variation possible if we elim-

inate the contribution due to a specific cause. We see

that little improvement is possible unless we reduce

the contribution of a cause that is dominant. For

instance, suppose that we find a cause that accounts

for half the overall variation (on the standard devi-

ation scale). Then, in the unlikely event that we are

able to completely eliminate the effect of this cause,

we reduce the overall variation by only about 14%.

Figure 9 also suggests that if the problem is defined

by multiple large causes and not a dominant cause

it will be more difficult to solve. In such cases we will

need to address a number of large causes to make a

substantial difference and it will be much more diffi-

cult to identify any large cause due to the masking

effect of the other large causes.

In searching for a dominant cause, we use the

baseline in several ways:

. The results of a baseline investigation can be used

to eliminate many inputs as suspect dominant

causes because we determined the contribution

of some time families to the output variation. If a

dominant cause exists, it must act in the time

family that is the largest source of variation. For

instance, if the output varies slowly (say, hour to

hour), then any input that changes from part to

part cannot be a dominant cause.

. The baseline suggests a time frame for the plan of

any observational investigation designed to look

for a dominant cause. We want to collect data over

a long enough time period (or in such a way) to

be sure that the dominant cause acts during the

investigation.

. We can use the FEoV to check that the dominant

cause has acted during the investigation. There is

no sense in finding causes that explain only a small

part of the output variation. If the output variation

in an investigation does not closely match the

FEoV seen in the baseline, we conclude that the

dominant cause did not act. Then, it is not possi-

ble to generate strong clues about the identity of

the dominant cause using the investigation results.

In the case study, what clues about the dominant

cause are provided by the baseline investigation?

We know that the dominant cause must vary the

same way over time as the output crossbar dimen-

sion. The dominant cause is thus not an input that

varies quickly, say, part-to-part, such as cavity or

mold number. Otherwise, we would not have seen

the pattern of variation in the crossbar dimension

in the right panel of Figure 4.

To search for a dominant cause, the team planned

an investigation where they measured five varying

inputs and the crossbar dimension on 40 parts hapha-

zardly selected over a 2-day period. The five inputs

were all thought to be possible substantial causes

and all varied to match the pattern observed in the

baseline; that is, all five inputs were expected to vary

over hours. The investigation was conducted over 2

days because the baseline investigation suggested

that we should see the FEoV within that time.

The input–output investigation results are summar-

ized using the two scatterplots of an input versus the

crossbar dimension output given in Figure 6. The

plots for the remaining three inputs showed no

pattern; that is, they looked similar to the left panel

of Figure 6. In the scatterplots, the horizontal dashed

lines give the FEoV seen in the baseline. First, we

conclude that the dominant cause acted in the

FIGURE 6 Effect of baseline size (b) on the precision of

the estimator for c wherec ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2meas r2overall

�q
=0.2.
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investigation because variation in the crossbar dimen-

sion seen in the 2 days of sampling was close to the

FEoV. Second, we see that barrel temperature is a

strong suspect for the dominant cause. If we could

hold barrel temperature fixed, (it appears) that there

would be much less variation in crossbar dimension.

The other four inputs were eliminated as possible

dominant causes. Note that at this point we could fail

to find a dominant cause if it is measured with large

measurement variation. We should ideally check the

measurement systems for all inputs (suspected domi-

nant causes) in a way similar to the measurement

assessment investigation for crossbar dimension we

conducted earlier.

Note the contrast between the observational stu-

dies and the typical brainstorming and screening

experiment approach suggested in many implemen-

tations of Six Sigma (Breyfogle 1999). Observational

plans are preferred because they are usually cheaper

and easier to conduct than an experimental investi-

gation where we must select, and deliberately set,

one or more (normally varying) process inputs. We

suggest using an experimental plan, as described in

the next section, to verify the dominant cause only

after we have generated as many clues as we can

about the dominant cause with simpler and cheaper

investigations.

Here we illustrated searching for a dominant cause

using only an input–output investigation. There are

many other types of investigations that can be useful,

including disassembly–reassembly and component

swap (offline) experiments, group comparison, and

other simple stratification investigations (Steiner

and MacKay 2005). As a rule, the aim of these inves-

tigations is to use time or location families (groups)

of causes to narrow down the list of possible suspect

dominant causes. Each new investigation is planned

using the knowledge gained from all of the previous

investigations until we (hopefully) identify a single

(or small number) of remaining suspect(s). This

employs the ‘‘method of elimination’’ popularized

by Dorian Shainin (Shainin 1993; Steiner et al.

2008) that is another example of SE and should be

the subject of further research. In each investigation

we use the baseline knowledge in the same way as

for the input–output investigation. We use the output

time family to help decide on an appropriate time

frame and the observed FEoV to check that the

dominant cause acted in the investigation. Note that

the crossbar dimension case study is not a good

example of applying the method of elimination

because we use only a single investigation, rather

than a series of investigations, to find the dominant

cause.

USING THE BASELINE TO HELP VERIFY
A SUSPECT DOMINANT CAUSE

We want to be sure that the suspected dominant

cause(s), here called a suspect, is dominant before

moving to the remedial journey. We need to verify

the suspect because in the search for the dominant

cause using observational studies, we might have

inadvertently ruled out a family of causes that

contains the dominant cause or been misled by con-

founding. To verify that a suspect is a dominant

cause, we use an experimental plan (if feasible)

where the value of one or more suspects is deliber-

ately manipulated. A verification experiment should

only be considered when we have a single or only

a small number of remaining suspects. That is, a veri-

fication experiment should only be used to verify

clues previously attained and not to search for the

dominant cause.

We also use the baseline information to help plan

and analyze the verification experiment. The time

nature of the output variation in the baseline helps

us to

. define an experimental run,

. determine the importance of replication (i.e.,

choosing the number of runs), and

. determine the importance of randomization to

reduce the risk of confounding in the experiment.

To draw conclusions, we compare the output vari-

ation observed in the verification experiment to the

FEoV. Note that we are not primarily concerned with

statistical significance. The range of values for the

suspect dominant cause seen in regular production

should generate (close to) the FEoV in the output if

it is a dominant cause. We first illustrate these ideas

using our motivating example and then draw general

conclusions about how to use the baseline infor-

mation when verifying a dominant cause.

In the case study, the team concluded that barrel

temperature was a suspect dominant cause. They

decided that verification was necessary because it
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was possible that, in the earlier observational investi-

gation, barrel temperature may have been confounded

with the real dominant cause (that was not measured).

To verify barrel temperature as the dominant cause,

the team planned a simple two-level experiment. They

chose the low and high levels for barrel temperature as

75 and 80�C to cover the range of barrel temperatures

seen in the input–output investigation (see Figure 6).

Barrel temperature was difficult to hold fixed in normal

production but could be controlled for an experiment.

The verification experiment was conducted with only

two runs, one at each of the selected barrel tempera-

tures. For each run, the barrel temperature was set,

25 parts were made to ensure that the temperature

had stabilized, and the next 10 parts were selected

and measured. Then, barrel temperature was changed

as quickly as possible for the second run. Using design

of experiments terminology, the experiment consisted

of two runs with 10 repeats per run and no replication.

We see from the experimental results in Figure 7

that barrel temperature had a large effect on crossbar

dimension relative to the baseline variation. The

team concluded that they had verified barrel tem-

perature as a dominant cause of crossbar dimension

variation. The small number of runs and lack of ran-

domization was not a major concern. The earlier

investigations had shown that the dominant cause

acted in the hour-to-hour family and, thus, over the

30 minutes needed to conduct the verification

experiment, the team felt that it was very unlikely

that they would have seen the FEoV in crossbar

dimension unless barrel temperature was a dominant

cause. In other words, they concluded that there was

insufficient time for other causes in the hour-to-hour

family to change substantially during the experiment.

This suggests that during the verification experiment

barrel temperature could not have been confounded

with any other reasonable suspect.

We now draw some general conclusions about

conducting verification experiments. Assuming that

the verification experiment can be conducted in a

short time, if the dominant cause acts over a long

time, as in the crossbar dimension example, we do

not need to worry about confounding in the verifi-

cation experiment. Other causes in the same time

family as the suspect will not have time to vary sub-

stantially during the verification experiment. As a

result, the experimental principles of replication

and random assignment are not critical. On the other

hand, if the dominant cause acts over a short time,

we do need to worry about possible confounding

between the suspect and other inputs in the same

time family in the verification experiment. Then, in

this case, we need a verification experiment that uti-

lizes sufficient replication (i.e., many runs at each of

FIGURE 7 Reduction in variation if we remove a cause

contributing a given proportion of the overall variation.

FIGURE 8 Scatterplots of crossbar dimension by hydraulic pressure and barrel temperature. Dashed horizontal lines show the FEoV

from the baseline.
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the two levels of the suspect) and random ordering

to control the risk of confounding.

USING THE BASELINE TO HELP ASSESS
THE FEASIBILITY OF A VARIATION

REDUCTION APPROACH

As suggested in Figure 2, there are seven possible

approaches to reducing variation: fix the obvious,

desensitization, feed forward control, feedback con-

trol, robustness, 100% inspection, and moving the

process center. More details on these approaches are

given in MacKay and Steiner (1997–1998). We can

use the time nature of the output variation from the

baseline to help assess the feasibility of some of these

variation reduction approaches. For instance, if the

output FEoV is seen over a short time, feedback con-

trol is not feasible because any observed output values

provide only a poor prediction for future values.

To reduce variation, we must make some appro-

priate change to the process. We can add, remove,

or change a processing step (inspection, controller),

change some normally fixed input, or apply the

StatEng algorithm upstream to reduce variation in

the identified dominant cause. Here we look at

improving a process by changing the level of one

or more normally fixed inputs. Because the input is

normally fixed, we will need an experiment to find

the appropriate fixed input(s) to change and its best

level. The baseline information is useful to help plan

and analyze subsequent experiments designed to

determine whether an approach is feasible and=or

how to implement a particular approach. The time

nature of the output variation seen in the baseline

can help define a run. Generally, for experiments

conducted to check the feasibility of a variation

reduction approach, we want each run to resemble

a mini baseline investigation; that is, we want each

run to provide an estimate of the long-term behavior

of the process with the process changes specified by

the factor levels in the run. This suggests, for

instance, that if the output FEoV is seen over a long

time, the robustness approach (as defined in Steiner

and MacKay 2005; see also the upcoming example) is

likely not feasible because each run in a robustness

experiment would need to be conducted over too

long a time frame.

In the crossbar dimension example, the team

decided that the obvious solution of reducing vari-

ation in the barrel temperature was too expensive

and difficult with the existing process. Instead, they

hoped that they could change the process in some

other way to make it less sensitive to the variation

in barrel temperature. The team then noticed the

nonlinear relationship between barrel temperature

and crossbar dimension in the right panel of

Figure 6. As a result, they decided to raise the barrel

temperature set point (average) to make the process

less sensitive to barrel temperature variation. After-

wards it was straightforward to adjust the crossbar

dimension average (downward to compensate for

the increase that resulted from increasing the barrel

temperature setpoint) by changing another normally

fixed process input. However, when validating the

solution, they discovered that while the crossbar

dimension variation was reduced substantially, the

higher barrel temperature setpoint resulted in an

increase in the frequency of a mold defect called

burn. The burn problem arises when the barrel tem-

perature, which will still vary, is too high. The team

decided to retain the crossbar dimension solution

they worked hard to find and attack the burn defect

as a new problem. Investigating further (details not

shown here), they showed that the dominant cause

of burn acted in the part-to-part family, but the spe-

cific dominant cause was not found. They suspected

that the defect occurred due to variation in filling of

the mold. Next the team decided to try to make the

process robust to the unknown dominant cause(s)

of the burn defect.

To look for a solution to the burn problem, the

team planned an experiment with four factors that

FIGURE 9 Barrel temperature dominant cause verification

experiment results. Dashed horizontal lines show the FEoV from

the baseline. (Color figure available online.)
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are normally fixed inputs: injection speed, injection

pressure, back-pressure, and screw speed (rpm).

These factors were selected because of their influ-

ence on fill speed and other potential dominant

causes in the part-to-part family. They selected two

levels for each factor as given in Table 2. Just for

the experiment, the team planned to classify burn

on each part into one of four categories of increasing

severity. Levels 1 and 2 were acceptable, whereas

levels 3 and 4 resulted in scrap. Using a single rater

and boundary samples (i.e., photos of plastic bases

at the agreed-upon boundaries between the burn

levels), the team felt that this measurement system

would add little variation. A full baseline investigation

with the new burn classification system was not con-

ducted, but because burn levels 1 through 4 had been

seen in the earlier investigations, that gave the FEoV.

The team selected a fractional factorial experiment

with eight runs as given in Table 3 Because there was

no proper baseline investigation for the new burn

problem, the team assigned the labels A, B, C, and

D to the factors so that one of the treatments (treat-

ment 5) corresponded to the current process settings.

In the resolution IV design, pairs of two-factor

interactions are confounded, as given in Table 4.

The team defined a run as five consecutive parts.

Because they knew from the baseline that the time

family of variation containing the dominant cause

(of burn) was part-to-part, they hoped that the domi-

nant cause would act within each run in the planned

robustness experiment. Deciding to use only five

parts for each run was a great risk. Having more parts

would have made it more likely that each run would

reflect the long-term behavior of the process but

would have cost more time and money. Each run

was carried out once the process stabilized after

changing the values of the factors. The order of the

runs was randomized. The results from this robust-

ness experiment are given in Table 3.

We plot the individual burn scores against treat-

ment number in Figure 10. Because the data are

discrete, we add jitter in the vertical direction. Exam-

ining the results, we see that treatments 2 and 3 are

promising and look much better than the existing

process performance as given by treatment 5. It is a

bit worrisome, but not surprising given the run size,

that we did not see the FEoV (scores from 1 to 4) in

the treatment 5 run.

The team used average burn as the performance

measure for the formal analysis and looked for pro-

cess settings that made the performance measure as

small as possible. We can think of this as reducing

variation in the burn score about the ideal score of

zero. Fitting a full model with all possible effects

(four main and three two-way interactions) we get

the Pareto plot of the effects for the average burn

score in Figure 11. Note that in Figure 11 the factor

labels arbitrarily show only the first of the pairs of

aliased effects as given in Table 4. We see that only

factor C (back-pressure) has a large effect. In

TABLE 2 Factors and levels for the burn robustness

experiment

Factor Label Low level High level

Injection speed A Slow� Fast

Injection pressure B 1,000� 1,200

Back-pressure C 75 100�

Screw speed D 0.3 0.6�

�Indicates level in current process.

TABLE 3 Experimental Plan and Data for the Burn Robustness Experiment

Treatment Order

Injection

speed (A)

Injection

pressure (B)

Back-

pressure (C)

Screw

speed (D)

Burn

scores

Average

burn

1 4 Slow 1,000 75 0.3 1, 2, 1, 1, 1 1.2

2 8 Fast 1,000 75 0.6 1, 1, 1, 1, 1 1.0

3 2 Slow 1,200 75 0.6 1, 1, 1, 1, 1 1.0

4 3 Fast 1,200 75 0.3 1, 2, 2, 2, 2 1.6

5� 5 Slow 1,000 100 0.6 1, 3, 2, 2, 1 2.2

6 7 Fast 1,000 100 0.3 3, 3, 2, 2, 4 3.4

7 1 Slow 1,200 100 0.3 1, 1, 1, 2, 2 2.0

8 6 Fast 1,200 100 0.6 2, 2, 4, 3, 2 3.2

�Treatment 5 uses the current process levels.
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drawing this conclusion the team assumed that the

three-input interaction (ABD) aliased with C was

negligible. Checking Table 3 we see that low level

of back-pressure gives less burn on average than

the high level and that the results appear better than

the baseline for the existing process. The team

decided to address the burn defect problem by

reducing the back-pressure to 75 and leaving the

other fixed inputs at their original values.

We need to be careful drawing conclusions from

the experiment designed to look for a remedy. We

want to select new settings for one or more of the

experimental factors that results in better perfor-

mance than we saw in the baseline. We are not sim-

ply looking for a significantly large effect in the

experiment. If other settings had been very poor,

then a factor might be significant even if both levels

result in a process that is worse than the current pro-

cess settings. The baseline results again provide the

appropriate comparison. We could have added the

horizontal lines showing the baseline FEoV for burn

to Figure 10, though here it does not help much

because the output has only four possible values.

Suppose that the team had been able to identify the

dominant cause of burn that acts in the part-to-part

family. Then, if that cause could be controlled in an

experiment, but not easily in the regular process, it

would make sense to use a desensitization rather than

a robustness experiment (Steiner and MacKay 2005).

The goal of the desensitization experiment is the

same as in the robustness experiment, namely, we

want to see whether changing the level of one or

more fixed inputs can make the process less sensitive

to variation in the dominant cause. However, with a

desensitization experiment the team would deliber-

ately manipulate both of the dominant cause(s) and

the candidate fixed inputs. In this way, with the

desensitization experiment, we observe the variation

due to the dominant cause acting explicitly rather

than implicitly as with the robustness experiment.

This will make finding a better process (if one exists)

easier and more reliable because we no longer have

to rely on the five repeats to provide a measure of

the process variability. As a side point, note that

knowledge of the dominant cause may also have sug-

gested other (better) choices for the experimental

factors (fixed inputs) than given in the example. For

further comparison of robustnes and desensitization

experiments see Asilahijani et al. (2010).

To finish the project, the team conducted a vali-

dation investigation with the new process settings.

They produced 300 parts over a number of hours

and measured both the crossbar dimension and the

burn defect score. The standard deviation of the

crossbar dimension was 0.23 thou and only two parts

were scrapped for the burn defect. The team recom-

mended the new settings for the back-pressure and
FIGURE 10 Burn by treatment plot for burn robustness experi-

ment with added vertical jitter.

TABLE 4 Robustness Experiment Aliasing Structure

AþBCD

BþACD

CþABD

DþABC

ABþCD

ACþBD

ADþBC

FIGURE 11 Pareto plot of input effects on average burn score.
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the target barrel temperature that resulted from

investigating the two problems.

SUMMARY AND DISCUSSION

In SE, we look for better ways to use statistics to

achieve a specified goal. In the important context

of variation reduction (using DMAIC or StatEng) of

existing medium- to high-volume processes we

suggest that starting with a well-designed baseline

investigation is an improvement over most current

practice. We showed how the results of the baseline

investigation can be of great help in subsequent

investigations, first looking for a dominant cause of

the variation and then looking for the remedy. The

key feature of the proposed baseline investigation

is the recommendation to sample parts from the

process systematically over time. From the baseline

data we quantify the magnitude of the problem,

determine the FEoV in the output, and the time

nature of the output variation.

The baseline knowledge is helpful in the planning

and analysis of subsequent investigations to

. assess the measurement system,

. search for and verify a dominant cause,

. assess a variation reduction approach (i.e., search

for a solution), and

. validate a proposed solution.

To meet these goals, the baseline investigation should

consist of a reasonably large sample size (e.g., hun-

dreds of observations for a continuous output) so that

we can well quantify the output FEoV and standard

deviation. We also recommend that the baseline

investigation use a systematic (rather than random)

sampling plan that allows us to identify how the out-

put variation acts over time. The time nature of the

output variation is valuable information to help plan

subsequent investigations. It can be used to

. choose an appropriate study population time

frame;

. generate clues about the dominant cause of variation;

. help define a run, assess the risk of confounding,

and determine the importance of the experimental

principles of replication and random assignment in

an experimental plan; and

. rule out some variation reduction approaches as

not feasible.

The estimated performance measure and output

FEoV can be used in planning and are useful when

analyzing the results of any subsequent process

investigation. We recommend adding lines showing

the baseline output FEoV to all plots that show indi-

vidual output values. Knowing the FEoV allows us to

. select extreme parts (as in the measurement

assessment investigation) that must be generated

by the action of the dominant cause(s),

. directly see whether the dominant cause has acted

in an observational investigation, and

. determine how the process variation compares

to the baseline variation in an experimental

investigation.

In addition, the explicit use of the baseline FEoV in

the analysis of subsequent investigations forces

problem solvers to address the important difference

between statistical and practical significance. In

problem solving, practical significance is what

matters. Comparing results to the baseline FEoV

provides a direct way to determine whether any

observed effects are large relative to the baseline

variation. Small effects can be statistically significant

while being unimportant. When searching for causes

we want to find the dominant cause(s); that is, an

input that explains a lot of the output variation, not

one that is only statistically significant. The issue of

practical versus statistical significance is even more

critical when we use experiments to look for a sol-

ution. We want to find new process settings that

are better than the current process rather than better

than other treatments used in the experiment. One

method to alleviate the concern about drawing inap-

propriate conclusions from an experiment is to

always include a treatment with the current setting

for each of the fixed inputs (though this costs a run).

This article has illustrated how using information

gained in the baseline investigation can be effectively

used to better plan and analyze future process inves-

tigations. The work has addressed a number of

important issues and suggests many further ques-

tions related to how to better run variation reduction

projects, including the following:

. How important is the power=generality tradeoff

(De Mast and Lokkerbol 2012) in the choice of

problem-solving system?
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. How important is process stability, as defined by

statistical process control?

. What are the consequences if there is no single

dominant cause?

. When should blocking be used in the design of an

experiment?

. What is the best way to train novice problem

solvers to use sequential learning effectively?

Related to the last question, training problem

solvers to effectively reduce variation is challeng-

ing. DMAIC and StatEng provide general roadmaps

of how to proceed. But there are no specific

recipes. Each application is different. There are

always choices concerning what should be done

next. Problem solvers must choose among the

numerous available investigation plans, each with

their own cost and likelihood of success. Novice

practitioners of StatEng or Six Sigma will find

making these choices difficult. It is clearly so much

more than just applying the appropriate tool. Vari-

ation reduction involves conducting a series of

investigations, and for each investigation we must

choose an appropriate goal, study population, sam-

ple size, inputs to set (and their levels), and=or

inputs to measure. In the appropriate circumstances

the advantages of a more targeted variation

reduction method are evident. However, even pro-

viding good examples is difficult because each step

requires not just describing the goals of the current

investigation but also background on information

obtained in earlier investigations. To address this

need we have, over a number of years, developed

a virtual manufacturing process, called Watfactory

(Steiner and MacKay 2009). Watfactory can be

accessed through the website http://www.student.

math.uwaterloo.ca/~watfacto/login.htm allows a

wide variety of process investigations and possible

remedies.
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