
The Canadian Journal of Statistics
Vol. 43, No. 3, 2015, Pages 403–419
La revue canadienne de statistique

403

Flexible risk-adjusted surveillance
procedures for autocorrelated binary series
Edit GOMBAY1*, Abdulkadir A. HUSSEIN2 and Stefan H. STEINER3

1Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton,
Alberta, Canada T6G 2G1
2Department of Mathematics and Statistics, University of Windsor, Windsor, Ontario,
Canada N9B 3P4
3Department of Statistics and Actuarial Science, 200 University Avenue West, Waterloo,
Ontario, Canada N2L 3G1

Key words and phrases: Binary time series; health care performance; maximum partial likelihood estimator;
sequential test.

MSC 2010: Primary 62L10; secondary 62M10

Abstract: Risk-adjusted cumulative sum (RACUSUM) charts are popular for the surveillance of binary health
care outcomes such as 30-day mortality rates following cardiac surgery. RACUSUM charts are built on the
assumptions that the binary outcomes are independent and the baseline rates are known constants. However,
these two assumptions are often violated, thus undermining the validity of the surveillance procedure. In this
paper, the authors propose risk-adjusted surveillance procedures using a binary logistic regression model
which allows AR(p)-type autocorrelations among the binary outcomes. Two versions are presented: one
with known, the other with estimated baseline parameters. The authors use Monte Carlo experiments to
evaluate the power and the probability of false alarm (Type I error) of the surveillance procedures. Data
on 30-day mortality rates following cardiac surgery are used for illustration. The Canadian Journal of
Statistics 43: 403–419; 2015 © 2015 Statistical Society of Canada

Résumé: Les cartes à somme cumulée ajustées au risque (RACUSUM) sont des outils populaires pour la
surveillance d’événements binaires tels que le décès dans les 30 jours suivant une chirurgie cardiaque. La
construction des cartes RACUSUM est faite sous l’hypothèse que les événements binaires surveillés sont
indépendants et que le risque de base est connu et constant. Ces deux hypothèses sont souvent violées, ce qui
mine la validité de la procédure de surveillance. Les auteurs proposent une procédure de surveillance ajustée
au risque en utilisant un modèle de régression logistique qui permet une autocorrélation de type AR(p) entre
les événements binaires modélisés. Ils présentent deux versions de leur modèle: dans la première, le risque
de base est connu, mais dans la deuxième, il est estimé. À l’aide d’expériences de Monte Carlo, ils évaluent
la puissance et la probabilité d’une fausse alarme (erreur de type I) de la procédure de surveillance. Ils
illustrent leur méthode à l’aide de données sur la mortalité dans les 30 jours suivant une chirurgie cardiaque.
La revue canadienne de statistique 43: 403–419; 2015 © 2015 Société statistique du Canada

1. INTRODUCTION

Statistical methods for the surveillance of health care outcomes have recently gained momentum.
In particular, risk-adjusted cumulative sum (RACUSUM) charts have been developed for the
surveillance of binary outcomes such as the 30-day mortality rates of patients undergoing heart
surgery (see, for instance, Steiner et al., 2000; Frisen, 2003; Grigg & Farewell, 2004; Grigg &
Spiegelhalter, 2010; Gombay, Hussein, & Steiner, 2011).
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In general, apart from assumptions concerning the functional form of the risk model, there are
two major assumptions underlying the RACUSUM procedure. The first is the assumption that the
binary observations are independent over time, the second that the historically estimated baseline
parameters can be treated as known numbers. Concerning the independence assumption it has
been shown in a simulation study that, if the monitored sequence of binary observations has some
sort of serial dependence, then the theoretical average run lengths (ARL) of RACUSUM charts are
greatly affected (Hussein et al., 2015). Similarly, errors incurred in estimating the baseline rates
can affect negatively the performance of the RACUSUM chart (Jones & Steiner, 2012). As far as
the authors are aware the current literature on sequential testing does not address both of these
issues simultaneously. Furthermore, the new methods of this paper have the desirable feature of
simultaneous surveillance of several coefficients that is not available elsewhere. Other methods,
such as cumulative sum (CUSUM) charts, monitor for the presence of change without providing
information about its cause.

Höhle (2010) proposed a CUSUM procedure based on the generalized likelihood ratio statis-
tic for surveillance of categorical time series. Although such methodology is quite general and
applicable to a large class of categorical time series regression models, it carries several major
drawbacks that are common to CUSUM procedures. These are: (1) the parameters under the two
simple hypotheses are assumed to be known, (2) inflated false alarm rates, and (3) numerical
complexity in computing average run lengths requiring knowledge of the distributions of the
covariates. The literature on change-point analysis in the context of continuous responses is vast.
The reader is referred to Gombay (2008), Gombay & Serban (2009), and citations therein.

Our objective in this manuscript is to propose new sequential risk-adjusted surveillance pro-
cedures for the coefficients of a logistic regression model with the following features that are not
available in the current literature: (1) the binary responses are allowed to have an AR(p)-type
serial dependence, (2) the error due to the estimation of the baseline parameters from a historical
sample is accounted for, (3) the probability of false alarms is controlled, and (4) several regres-
sion coefficients can be monitored simultaneously. While in Fokianos et al. (2014) retrospective
(offline) methods were considered, the current paper proposes sequential (online) algorithms.
Although both of these proposals (Fokianos et al. and the current method) are based on the same
likelihood functions, the sequential, prospective nature of the current proposal requires further
theoretical considerations to verify the validity of the algorithms.

The new procedures will be proposed in Section 2. In Section 3, we use Monte Carlo simula-
tions as well as real data on 30-day mortality rates following cardiac surgery to demonstrate the
performance of the procedures. The technical proofs are contained in the Appendix.

2. MODEL AND SURVEILLANCE PROCEDURES

2.1. The Model and Hypotheses of Change
Monitoring 30-day mortality rates through risk-adjusted surveillance methods is a special instance
of monitoring the parameters of a general logistic regression model. In particular, monitoring
whether or not the odds of an adverse event for a particular surgeon are different from those of the
baseline, after controlling for patient case mix, is tantamount to testing the hypothesis of change in
the parameters of a logistic regression model. In this manuscript we will therefore present general
surveillance procedures for monitoring changes in the coefficients of a logistic regression model,
and then illustrate how this can be adapted to the case of monitoring 30-day mortality rates.

Consider a binary time series {Yt} with probability of success πt(β) depending on an unknown
vector β ∈ �p of parameters along with a corresponding p-dimensional vector of covariates {Zt}.
Following Kedem & Fokianos (2002), let us denote the history of the binary process and past
covariate information at time t by {Ft−1}: a filtration generated by Zt−1 and, possibly, by some
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variables Xt that may be known. Covariates Zt−1 are allowed to include lagged values of the
binary response Yt , thus permitting an AR(p)-type serial dependence over time. The conditional
probability mass function of the series {Yt} is given by

f (yt; β|Ft−1) = exp
{

yt log
(

πt(β)
1 − πt(β)

)
+ log(1 − πt(β))

}
, (1)

while the dependence on the covariate vector {Zt} is modelled through the logit link function as

g(πt(β)) = ηt = log
(

πt(β)
1 − πt(β)

)
= β

′
Zt−1, (2)

where β ∈ �p.
In order to formulate the surveillance procedure in the change-point setup, suppose that a

sequence of observations y1, y2, . . . generated by the logistic model (1) is available for testing
the following hypotheses of change in the β parameter:

H0 : β = β0, for all πt(β), t = 1, 2, . . . , n,

HA : β �= β0, for all πt(β), t = 1, 2, . . . , n,

where β0 is the baseline vector of coefficients. In some cases β0 is a known parameter, in others
it is estimated as β̂m = (β̂1m, β̂2m, ..., β̂pm) using a historical sample of size m collected prior to
the initiation of the surveillance process.

In this manuscript we propose procedures based on testing the above hypotheses of change via
the partial score statistics. Usually, it is not desirable to have an open-ended monitoring procedure
for many practical reasons. We therefore set a horizon (a maximal sample n) by which, if H0 has
not been rejected, the surveillance procedure will be re-started. This makes our surveillance
procedure a truncated one, thus providing better control over the probability of false alarms as in
Gombay, Hussein, & Steiner (2011). The choice of n is beyond the scope of the current study, but
it is related to the same choice in group sequential tests where it has been extensively studied. In
fact, our Test 1 of Section 2.2 is the continuous version of Pocock’s (1977) group sequential test.

In general, inferences concerning the binary time series model (1) are based on the binomial
log-partial likelihood function

L(β) =
k∑

t=1

lt(β) =
k∑

t=1

[
yt log

πt(β)
1 − πt(β)

+ log(1 − πt(β))
]
,

with p-dimensional score vector

Sk(β) =
∑

t

∇βl(β) =
k∑

t=1

Zt−1(Yt − πt(β)) =
k∑

t=1

Zt−1

(
Yt − exp(β′Zt−1)

1 + exp(β′Zt−1)

)
, (3)

where k is the number of observations available at the time of analysis. The maximum partial
likelihood estimator (MPLE) based on the m historical observations, denoted by β̂m, is a solution
(provided that it exists) of the score equations using only the historical data. The asymptotic
properties of the score vector and the MPLE β̂m have been studied by Fokianos, Gombay, &
Hussein (2014) who showed that the score vector can be approximated by a p-dimensional Brow-
nian motion with optimally small rate of error. Those results are necessary for the validity of the
surveillance procedure described in the next subsections.

2.2. Surveillance When the Baseline Parameters are Known
In what follows the superscript (i) indicates the ith component of a vector. The surveillance pro-
cedure proposed in this section is based on the standardized score vector where the standardizing
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matrix is the inverse of the observed Fisher information matrix. To construct the surveillance pro-
cedure we first introduce the observed Fisher information matrix of the score vector (3) computed
at the known baseline parameters, β0, as

Tk(β0) = 1
k

k∑
t=1

Zt−1Z
′
t−1πt(β0)(1 − πt(β0)). (4)

It has been shown in Fokianos, Gombay, & Hussein (2014) that, under conditions (A–C) of
Appendix A.1, the observed information matrix, Tk(β0), is a consistent estimator of the true Fisher
information

T = E(Zt−1Z
′
t−1πt(β)(1 − πt(β))). (5)

In Appendix A.2 we will prove that, under these same conditions, the standardized score vector
is well approximated by an Ornstein–Uhlenbeck process. Consequently, we obtain an approximate
distribution for the maximum of the standardized score vector via results in Vostrikova (1981) as
follows:

P{ sup
1<k≤n

k−1/2|[T−1/2
k (β0)Sk(β0)](i)|>u} ∼= exp(−u2/2)y√

2π

{
N

(
1 − 1

u2

)
+ 4

u2 + O

(
1
u4

)}
,

(6)

where N = log n and ∼= means that the ratio of the two sides converges to one as n → ∞. This
allows us to define the following surveillance procedure:

Test 1: The null hypothesis of in-control is rejected at the kth observation of the binary sequence,
1 < k ≤ n, if for some i, i = 1, 2, . . . , p, the absolute value of the standardized score component
corresponding to the ith coefficient crosses the horizontal boundary C1(α�, n). That is, as soon
as for some i, i = 1, 2, . . . , p,

k−1/2
∣∣∣∣(T

−1/2
k (β0)Sk(β0)

)(i)
∣∣∣∣ ≥ C1(α�, n).

In this testing procedure, α� = 1 − (1 − α)1/p is the probability of false alarm in monitoring the
ith component of the logistic regression coefficient, α is the overall probability of false alarm in
testing for a change in any coefficient, and n is the surveillance horizon after which the monitoring
process will be reset. The critical level (threshold for surveillance), C1(α∗, n), can be obtained from
Equation (6); the statistic is calculated with the known β0 values and the incoming observations
{yt, Zt}. At each stage k the standardizing matrix Tk is recalculated. To avoid initial small sample
estimation problems, testing should start at some k = n0, and should obviously continue until
the horizon n is reached or an alarm is raised by crossing the threshold. In our studies an initial
sample size n0 = 30 worked well.

2.3. Surveillance When the Baseline Parameters are Estimated
Now suppose that we have a historical sample of size m and the baseline parameters are estimated
by β̂m. It has been shown in Fokianos, Gombay, & Hussein (2014) under conditions (A–D) of
Appendix A.1 that the observed information matrix, T̂m = T̂m(β̂m), is a consistent estimator of
the true Fisher information (5) (where beta denotes the true model parameter vector). The key
theoretical result needed for our proposed surveillance procedure is that the maximum of the
standardized score vector, computed at the historically estimated baseline parameters, can be
approximated component-wise by the supremum of the standard Brownian motion process. This
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result, which will be proven in Appendix A.3, is formulated as

m−1/2 max
1<k≤n

(
T̂−1/2

m

(
1 + k

m

)−1

Sk(β̂m)

)(i)
D→ sup

0≤s≤j/(j+1)
W(s), (7)

where W(.) denotes a one-dimensional standard Brownian motion, T̂m = T̂m(β̂m) is the histori-
cally observed information matrix, and j = n/m. The constant j is always well defined since the
historical sample size (m) and the monitoring horizon (n) are both known at the planning stage.
Now we are in a position to formalize the proposed surveillance procedure.

Test 2: The null hypothesis of in-control is rejected at the kth observation of the binary sequence,
1 < k ≤ n, if for some i, i = 1, 2, . . . , p, the absolute value of the standardized score component
corresponding to the ith coefficient crosses the horizontal boundary C2(α�, j). That is, as soon
as for some i, i = 1, 2, . . . , p,

m−1/2

∣∣∣∣∣
(

1 + k

m

)−1 (
T̂−1/2

m Sk(β̂m)
)(i)

∣∣∣∣∣ ≥ C2(α�, j). (8)

The threshold C2(α∗, j) is computed by taking the 1 − α� quantile of the distribution of
sup0<s<1

√
j/(j + 1)|W(s)|, where W(s) is a one-dimensional standard Brownian motion. Again,

component-wise level α� = 1 − (1 − α)1/p is the probability of false alarm in monitoring the
ith regression coefficient of the model (1), while α is the overall probability of false alarm for a
change in any coefficient.

It is worth emphasizing that our surveillance procedures have the ability to monitor each re-
gression coefficient separately while controlling the overall false alarm rate, due to the asymptotic
independence of the standardized score vector used in building the surveillance procedure. This
gives the flexibility of choosing only some, or all, of the coefficients for monitoring purposes.

3. EMPIRICAL STUDIES

3.1. Changes in Mortality Rate After a Cardiac Surgery
We illustrate the proposed methodology by using data collected at a UK center for cardiac surgery.
The data consist of patients’ pre-operative covariate information such as age, gender, history of
hypertension, etc., which were summarized as patient Parsonnet scores (see Steiner et al., 2000).
These data have been used in the past for the purpose of monitoring surgeons’ relative performance
as compared to population baseline via RACUSUM and other methods. It is commonly assumed
that 30-day mortality can be adequately described by a logistic regression with the Parsonnet
score as the only covariate in the model. However, our analysis suggests that the data pertinent to
some of the surgeons have an AR(p)-type dependence structure. We consider the data pertinent
to Surgeon #6 who operated on approximately 1,655 patients over the period 1992–1998. We take
the data of 1992–1993 as our historical sample of size m = 450 and we prospectively monitor
the regression coefficients by using data over the period 1994–1998. Let Yt be the indicator of
mortality within 30 days of the surgery, that is, Yt = 1 if the patient died within 30 days of
surgery, and zero otherwise. Let πt be the probability of such an adverse event for the tth and
Xt their Parsonnet score. For model identification, we used a variable selection approach based
on backward elimination and the AIC, as suggested in Kedem & Fokianos (2002), and obtained
logit(πt) = β1 + β2Xt + β3Yt−2 as the best fitting model with an AIC of 168.15. Our purpose
is to demonstrate the ease with which our algorithms can be applied, so we assume that this is
the correct model, even though the use of this selection criterion may be questioned. Surgeon
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Table 1: Estimated coefficients of the model logit(πt) = β1 + β2Xt + β3Yt−2 for Surgeons #6 and #7,
based on historical samples of size m = 450 and m = 243, respectively.

Coefficient Estimate Std. error P-value

Estimated coefficients for Surgeon 6

β1 −3.781 0.325 2 × 10−16

β2 0.093 0.020 4 × 10−6

β3 1.597 0.614 0.009

Estimated coefficients for Surgeon 7

β1 −4.726 0.617 2 × 10−14

β2 0.120 0.024 7 × 10−7

β3 2.177 0.809 0.007

#7 had data with similar characteristics. The fitted model’s estimated parameters, their standard
errors and corresponding P-values are reported in Table 1. We do not include more covariate
components than necessary, such as a Yt−1 term, as increasing the number of parameters leads
to tests with smaller power. This can be seen from the formula for α∗, which decreases as the
dimension increases.

We applied our two prospective surveillance procedures to the same segment of the data
(collected in the period 1994–1998). For Test 1, the known baseline values were obtained from
the collective performances of a large number of surgeons, considered as acceptable population
parameters. As shown in Figure 1, Test 1 is significant and it detected a change in the β2 component
at observation k = 693. Having the full data sequence we can show that the other two components’
monitoring would not indicate instability. On the other hand, when monitoring the surgeon’s
performance against its own history by Test 2 with baseline estimated as β̂m, m = 450, the
surveillance procedure, as seen in Figure 2, does not indicate any change in the coefficients.

3.2. Monte Carlo Simulations
We carried out Monte Carlo simulations to assess the empirical false alarm rates (Type I errors)
and the power of the surveillance procedures. The data generating model was fitted to the data
for surgeon #7 with coefficients reported in Table 1. Parsonnet scores Xt were randomly sam-
pled (with replacement) from the 628 available Parsonnet scores for the patients operated on by
Surgeon #7. We used n = 300 and n = 400 as monitoring horizons while the historical sample
size was varied over m = 300 to m = 800 with steps of 100 and m = 1,000, 2,000. A second set
of simulations used a n = 9,000 monitoring horizon with varying historical sample sizes closely
matching situations when a lot of data are available. Each scenario was repeated 2,000 times
to generate the probabilities of false alarm and the power of the surveillance procedure. All the
simulations and tests were implemented in FORTRAN using the IMSL libraries and the results
are reported in Tables 2–6.

In general, the false alarm rate (Type I error) varies somewhat as the historical sample size m

changes, but it is fairly close to the target of 0.05 and improves as m increases. Also, for large
n, m, the asymptotic independence of the surveillance procedures for the various coefficients
can be seen from the results of the simulations. For example, in Table 2, when n = 400 and
the historical sample size is m = 2,000, the overall probability of rejecting the true H0 is α̂ =
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Figure 1: Performance of Surgeon #6 monitored with Test 1 over a finite horizon n = 1,200, using baseline
parameters obtained form a large number of surgeons’ performances. The critical level 3.56 is reached at
k = 693 where testing would stop with change in β2 detected. (We show the full history of the other two

components for information only.)

0.0485 which is very close to the nominal α = 0.05, and the probability of not rejecting H0
is (1 − 0.019)(1 − 0.014)(1 − 0.0195) = 0.9484, which is close to 1 − α̂ = 0.9515 and to the
theoretical 1 − α = 0.95, thus supporting our theoretical asymptotic independence. The values of
m at which the asymptotic independence works and the theoretical critical level is good enough
may vary from model to model, so we recommend that Monte Carlo experiments be used in order
to evaluate the appropriate value of m.

Following the suggestion of a referee, we have also examined the effect of model selection on
the Type I error of the procedures. For simplicity we only report results for Test 2 in Table 6. In these
simulations, we generated a historical sample of m = 2,000 as well as a sample of size n = 400 for
surveillance from each one of five true models given by logit(πt) = −4.70 + 0.12Xt + β3Yt−1
with β3 varying over the values {0.2, 0.4, 0.6, 0.8, 1}. These values of β3 are designed to result
in a spectrum of significant and non-significant values. In each Monte Carlo run we fitted the true
model and a model with β3 = 0 to the historical data, choosing the one with the smaller AIC.
We then prospectively monitored the coefficients of the chosen model by using Test 2. Over the
2,000 Monte Carlo runs, we recorded the average marginal P-values of the coefficient β3 for the
true model, the average proportion of times that the AIC selected the true model, and the overall
as well as component-wise Type I errors of the surveillance procedure for the model coefficients.
See Table 6 for the outcomes. When β3 is marginally insignificant, the AIC chooses the correct
model only 23–39% of the time, increasing to 95% when β3 = 1, which is a highly significant
case. Clearly, the overall Type I errors of Test 2 are not much affected, even when the wrong
model is selected most of the time. The marginal Type I errors of the stable coefficients, (β1, β2)
are slightly inflated while those of β3 are slightly conservative.
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Figure 2: Performance of Surgeon #6 monitored with Test 2 over a finite horizon n = 1,200, using historical
sample of size m = 450 of the same surgeon for estimating the baseline parameters. The critical level 2.24

is not reached for any component. (Maximum is 2.2219 at k = 865 for β2.)

Figure 3 shows the simulated power properties of the surveillance procedure Test 2. Here
we matched the in-control parameters to the data on surgeon #7 as β0 = (−4.70, 0.12, 2.2)′, set
m = 600 for the size of the historical data and n = 1,000 for the monitoring horizon. The Parsonnet
scores were randomly generated from this surgeon’s data. In these simulations we changed β02,
the coefficient of the Parsonnet score, from the in-control value β02 = 0.12 to an alternative value
βA2 = 0.17 in steps of 0.01. The results, summarized in Figure 3, clearly show that the coefficient

Table 2: Simulated Type I error of Test 2 for n = 400 (bottom), n = 300 (top), overall nominal level
α = 0.05 with α∗ = 0.01695 for monitoring each of the three coefficients and baseline parameters

estimated from historical sample of size m.

Coefficient m = 300 m = 400 m = 500 m = 600 m = 700 m = 800 m = 1,000 m = 2,000

β1 0.0490 0.0340 0.0300 0.0280 0.0240 0.0205 0.0230 0.0190

β2 0.0290 0.0200 0.0235 0.0210 0.0235 0.0175 0.0185 0.0165

β3 0.0405 0.0305 0.0315 0.0210 0.0235 0.0280 0.0260 0.0170

Combined 0.0980 0.0740 0.0750 0.0640 0.0665 0.0580 0.0610 0.0510

β1 0.0405 0.0415 0.0290 0.0265 0.0230 0.0265 0.0210 0.0190

β2 0.0255 0.0265 0.0240 0.0190 0.0150 0.0150 0.0210 0.0140

β3 0.0415 0.0280 0.0225 0.0215 0.0260 0.0295 0.0250 0.0195

Combined 0.0915 0.0850 0.0695 0.0645 0.0585 0.0665 0.0585 0.0485
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Table 3: Simulated Type I error of Test 2 for n = 9,000, overall nominal level α = 0.05 with α∗ = 0.01695
for monitoring each of the three coefficients and baseline parameters estimated from historical sample of

size m.

Coefficient m = 3,000 m = 5,000 m = 7,000 m = 9,000 m = 11,000

β1 0.0225 0.0190 0.0205 0.0215 0.0185

β2 0.0130 0.0160 0.0230 0.0180 0.0150

β3 0.0160 0.0210 0.0180 0.0140 0.0180

Combined 0.0495 0.0550 0.0605 0.0520 0.0510

Table 4: Power simulation results for Test 2 with m = 600 and n = 1, 000.

Test component β0 = 0.12 βA2 = 0.13 βA2 = 0.14 βA2 = 0.15 βA2 = 0.16 βA2 = 0.17

β1 Test 0.0285 0.0355 0.0530 0.0905 0.1500 0.2520

β2 Test 0.0215 0.0900 0.3810 0.7765 0.9680 0.9970

β3 Test 0.0280 0.0460 0.0845 0.1265 0.1885 0.245

Overall 0.0715 0.1460 0.4345 0.7935 0.9700 0.9970

Overall nominal level α = 0.05 with α∗ = 0.01695 for each of the three monitoring. In control parameters are
estimated with historical data of size m. Only the parameter in the column heading changed.

Table 5: Power simulation results for Test 1 with n = 1,000.

Test component β0 βA2 = 0.13 βA2 = 0.14 βA2 = 0.15 βA2 = 0.16

β1 Test 0.0375 0.0360 0.0520 0.0795 0.1445

β2 Test 0.0050 0.0945 0.6410 0.0980 0.9990

β3 Test 0.0310 0.0370 0.0360 0.0310 0.0315

Overall 0.0735 0.1625 0.6675 0.9830 1.000

βA1 = −4.0 βA1 = −3.7 βA1 = −5.5 βA3 = 3.0 βA3 = 3.5

β1 Test 0.8615 0.9985 0.01750 0.1320 0.4460

β2 Test 0.9580 0.9995 0.8220 0.0460 0.1720

β3 Test 0.0935 0.2080 0.0190 0.6670 0.9910

Overall 0.9935 1.000 0.8460 0.7115 0.9950

Overall nominal level α = 0.05 with α∗ = 0.01695 for each of the three monitoring. Parameter β0 is given. Only
the parameter in the column heading changed.

affected by the change is the one triggering the alarm the fastest in most of the cases and hence
contributes the most to the power of the surveillance procedure. For instance, when β02 is changed
from 0.12 to βA2 = 0.15, the power corresponding to the monitoring of that component is 0.7765
while the overall power is 0.7935. The 0.017 difference accounts for the proportion of cases
when alarm was raised by a component other than the one corresponding to β2. As the difference
between the parameter value after change and its in-control value increases, the difference in power
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Table 6: Type I errors of Test 2 when the true model, logit(πt) = −4.70 + 0.12Xt + β3Yt−1, is selected by
AIC criteria and distinguished from a model with β3 = 0.

β3

Coefficient 0.2 0.4 0.6 0.8 1

β1 0.019 0.028 0.025 0.014 0.008

β2 0.018 0.029 0.024 0.022 0.019

β3 0.007 0.004 0.006 0.018 0.019

Combined 0.042 0.061 0.051 0.053 0.046

AIC correct choice 0.231 0.388 0.617 0.841 0.952

P-val of β3 0.302827 0.084603 0.004895 0.00003 0.00000

The coefficient β3 is varied from insignificant to significant values and simulated P-values as well as the pro-
portion of times that the AIC catches the correct model are reported (rows headed by P-val and AIC). Here
n = 400, m = 2,000.

between the overall monitoring and the monitoring of the specific component in which the change
occurred decreases. Also, we show the power exhibited by coefficients that did not change, and
they are quite small (as desired). This clearly indicates that, although we are monitoring multiple
coefficients at the same time, the investigator can visually see which coefficients have changed.
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Figure 3: Simulated power of the surveillance procedure Test 2 with n = 1,000, m = 600, overall level
α = 0.05 and α∗ = 0.01695 for monitoring each of the three coefficients.
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Figure 4: Simulated power of the surveillance procedure Test 1 with n = 1,000, overall level α = 0.05 and
α∗ = 0.01695 for monitoring each of the three coefficients.

In Figure 3 we included the performance of RACUSUM for comparison. The very same data
were monitored with critical level h designed for average run length under H0, ARL = 1,000,
identical to our truncation point. The alternative required in the process was set as R = 2 for the
increase in odds ratio, which is R = 1 under the null hypothesis. Although RACUSUM is open
ended, we monitored the data only up to n=1,000, but even so, the figure shows that the Type I
error exceeds 0.5, making the process unreliable. In other words, although the graph shows greater
power of RACUSUM initially, much of it is attributable to the inflated empirical level making the
power comparison unrealistic. Table 4 gives a detailed record of Monte Carlo studies concerning
the power properties of the two-sided Test 2. Again, to match the parameters of the surgeon data
study, we set m = 600 for the size of the historical data and n = 1,000 for the truncation point.

Figure 4 presents results of simulations of monitoring data by Test 1. The same data were
generated as for Figure 3, except the in-control parameter vector is not estimated, but given as
β0 = (−4.72, 0.12, 2.18)′. Testing started at n0 = 30 and from that point on the standardizing
matrix T was estimated. More details about Test 1 are provided in Table 5, and they show general
good performance.

The tests are designed using large sample approximations, so it is not surprising that they are
somewhat, but not seriously, anti-conservative, and have good powers. Often the component of
the test statistics process that is corresponding to the changing parameter is the earliest to trigger
stopping. However, there may be values of β where this is not observable. For this reason, we
recommend Monte Carlo studies to assess the performance of the test, which is possible as the
algorithm is fast and easy to implement.
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4. CONCLUSION AND COMPARISONS

In this paper we proposed two risk-adjusted surveillance procedures for monitoring the coefficients
of a logistic regression model. The proposed methods are simple to implement and the output of
both is an easily interpretable graph. These new methods give sequential surveillance procedures
that enrich the family of available algorithms in several important ways. First, Test 2 does not
assume that the baseline parameters of the logistic regression model are known, instead such
parameters are estimated from historical data and so it accounts for the variability therein. Second,
the proposed surveillance procedures allow for dependence on the past outcomes of the binary
series, thus accommodating possible autocorrelations. Third, these tests can be used to monitor
all the logistic regression model coefficients simultaneously, but can also monitor a selected
subset only. This allows investigators to not only keep an eye on the mortality rate changes due
to surgeons but also changes in the relationship between rates and other covariates such as the
Parsonnet scores.

Currently, the most popular monitoring statistics are based on Page’s CUSUM strategy, where
independence of observations is assumed and specification of the alternative parameter value
under the alternative HA is required in the likelihood ratio statistic. Gombay, Hussein, & Steiner
(2011) compared the performance of the efficient-score-based procedure to the RACUSUM-based
surveillance in case of independent observations via Monte Carlo simulations. In our current
simulation study we included RACUSUM to show what would happen if users chose that method
instead of our tests. Note that the dependence structure is not accommodated in RACUSUM or in
Gombay, Hussein, & Steiner (2011), so this is a new feature of this study. Furthermore, Kulldorff
et al. (2011) demonstrated that the performance of the CUSUM test is very sensitive to the choice
of the alternative parameter value. In contrast, the user does not have to specify such an alternative
parameter value in the score vector, hence its performance does not depend on an often arbitrary
selection. There are various versions of the CUSUM process in use, but their studies seldom focus
on Type I errors as we do. An exception is, for example, Nishina & Nishiyuki (2003) who compare
the performance of two one-sided CUSUM statistics designed to detect change in independent
Normal observations with known initial mean and variance.

We provided Monte Carlo simulations to examine the performance of the procedures in terms
of false alarm rates (Type I errors), that is, the error of signalling change in a parameter which
is in fact stable. We also applied the procedure to the monitoring of 30-day mortality rates after
cardiac surgery. Because of the simple structure of the test, it is easy to perform simulation
studies to explore its performance for various models and various parameter combinations, and
we recommended it before starting any surveillance.

APPENDIX
A.1. Regularity conditions

For ease of notation let the ith component of a p-dimensional vector x be denoted as xi, i =
1, . . . , p. Under the null hypothesis of no change, we need the following conditions on the
covariate process and parameter β.
(A) {Zk} is ergodic and stationary in the sense that for all k ≥ 0 (Zk+1, Zk+2, . . .) has the same

distribution as (Z0, Z1, . . .).
(B) E[Zi

k−1]4 < ∞, i = 1, . . . , p, where Zi
t−1, 1 ≤ i ≤ p, are the components of vector Zt−1.

(C) For all components i, j = 1, . . . , d

E

∣∣∣∣∣1
n
E

(
n∑

t=1

(zizj)2|F0

)
− E

(
zizj

)2
∣∣∣∣∣ → 0, n → ∞.

(D) The true value of β is in an open subset of the parameter space �, � ⊂ �p.
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Conditions (A), (B), and (D) are standard. Condition (C) is a technical requirement in the proofs;
its heuristic meaning is that the distant past is forgotten in this sense. See Serfling (1968) on more
explanations, and possible alternative conditions. Note that from condition (B) by the ergodic
theorem we have

1
n

n∑
t=1

Zi
tZ

j
t →a.s E(Zi

tZ
j
t ), n → ∞,

1
n

n∑
t=1

Zi
tZ

j
t πt(β)(1 − πt(β)) →a.s E(Zi

tZ
j
t πt(β)(1 − πt(β))), n → ∞,

1
n

n∑
t=1

Zi
tZ

j
t Z

l
t →a.s E(Zi

tZ
j
t Z

l
t), n → ∞,

for all i, j, l ∈ {1, 2, . . . , p}.

A.2. Theoretical justification for the validity of Test 1

In Fokianos, Gombay, & Hussein (2014), it was shown that under conditions (A–C) there exists
a vector of mean-zero Brownian motions with covariance matrix T such that, if β is the true
vector of coefficients in the regression model (1), the score vector in (3) admits the following
approximation

Sn(β) − W(n) � n1/2−κ a.s. (9)

for some κ > 0.
Let W1(n) be a standard one-dimensional Brownian motion. Covariance calculations for

k−1/2W1(k), n−1/2W1(n) show that with transformation t = log n, s = log k, process n−1/2W1(n)
is stationary and Gaussian with covariance function exp(−1/2|t − s|), also known as an Ornstein–
Uhlenbeck process. By (9)

k−1/2Sk(β) − k−1/2W(k) � k−κ, a.s. (10)

Note that the components of k−1/2T−1/2W(k) are independent, so we can use the results of Darling
& Erdős (1956) to approximate the maximum functional of the components of k−1/2T−1/2Sk(β)
over the interval [1, n] using the above transformation and N = log n.

Theorem. Let U(t) = t−1/2W1(t), then with a(N) = (2 log N)1/2 and b(N) = 2 log N +
(1/2) log log N − (1/2) log π we have for all −∞ < y < +∞ that

lim
N→∞ P

{
a(N) sup

0≤t≤N

|U(t)| − b(N) ≤ y

}
= exp(−2e−y). (11)

From this, we get for any component i, 1 ≤ i ≤ p, that

lim
N→∞ P

{
a(N) sup

1≤k≤n

k−1/2|[T−1/2(β)Sk(β)]i| − b(N) ≤ y

}
= exp(−2e−y). (12)
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For ease of notation, let 	 = T−1/2(β) and T
−1/2
k (β) = 	̂k. We have to show that replacing matrix

	 by its estimate 	̂k does not change the asymptotic distribution.
In Fokianos, Gombay, & Hussein (2014), it was shown that for 	̂k of (4) as k → ∞

Tk(β) = 1
k

k∑
t=1

Zt−1Z
′
t−1πt(β)(1 − πt(β)) →a.s E(Zt−1Z

′
t−1πt(β)(1 − πt(β))) = T. (13)

From this, we get that

	̂k →a.s 	, (14)

and for each component i, j, 1 ≤ i, j, ≤ p, of the matrices 	̂ and 	

max
1≤k≤n

|	̂k(i,j) − 	i,j| = OP (1), (15)

an almost surely finite valued random variable.
Applying (11) on the interval (1, log n) we get that a(N) sup0≤t≤log(N) |U(t)| − b(N) converges

to −∞ in the sense that for any y ∈ �

lim
N→∞ P

{
a(N) sup

0≤t≤log(N)
|U(t)| − b(N) ≤ y

}
= 1, (16)

and adding an error of size OP (1) does not alter the limit as for any y ∈ �

lim
N→∞ P

{
a(N)[ sup

0≤t≤log(N)
|U(t)| + OP (1)] − b(N) ≤ y

}
= 1. (17)

On the interval [log n, n], as log n → ∞ from (14)

max
log n<k≤n

|	̂k(i,j) − 	i,j| = oP (1), (18)

and for any y ∈ �

lim
N→∞ P

{
a(N)[ sup

log N≤t≤N

|U(t)| + oP (1)] − b(N) ≤ y

}
= exp(−2e−y), (19)

as

lim
N→∞ P {a(N)oP (1) − b(N) ≤ y} = 1. (20)

This validates the asymptotics for Test 1. Using arguments as above, we could also prove that
replacing β by β̂m the asymptotic distribution does not change as m → ∞. However, as our
simulations show, the level is distorted at the sample sizes of our study, so we do not recommend
Test 1 in such situations.
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A.3. Theoretical justification for Test 2

Again, for our starting point we use (9), and use the expansion

m−1/2Sm+k(β̂m) = m−1/2

{
Sm+k(β0) + (β̂m − β0)

m+k∑
t=1

Zt−1Z
′
t−1πt(β0)(1 − πt(β0))

}
+Rm+k,

(21)

where Rm+k is the error of approximation. As
∑

1≤t≤m Zt−1(Yt − πt(β̂m)) = 0, by using notation
q̂t = Zt−1(Yt − πt(β̂m)), qt = Zt−1(Yt − πt(β)) and Qt = Zt−1Z

′
t−1πt(β)(1 − π(β)) we have for

the monitoring statistic

m−1/2
m+k∑

t=m+1

q̂t = m−1/2

⎧⎨
⎩

m+k∑
t=1

q̂t −
(

k

m
+ 1

) ∑
1≤i≤m

q̂t

⎫⎬
⎭ , (22)

and by (21),

m−1/2
m+k∑

t=m+1

q̂t = m−1/2

⎧⎨
⎩

m+k∑
t=1

qt −
(

k

m
+ 1

) ∑
1≤i≤m

qt

⎫⎬
⎭

+ m−1/2(β̂m − β)

{
m+k∑
t=1

Qt −
(

k

m
+ 1

) m∑
t=1

Qt

}

+ Rm+k −
(

k

m
+ 1

)
Rm. (23)

Noting that t = k/m, by (9) as m → ∞,

m−1/2

⎧⎨
⎩

m+k∑
t=1

qt −
(

k

m
+ 1

) ∑
1≤i≤m

qt

⎫⎬
⎭ D→ W(1 + t) − (1 + t)W(1), t ≤ j, (24)

where W(t) is a p-dimensional Brownian motion with covariance matrix T (β), and for a fixed
t ≤ j

m1/2(β̂m − β)

{
t + 1

m(t + 1)

m+mt∑
t=1

Qt − (t + 1)
1
m

m∑
t=1

Qt

}

= m1/2(β̂m − β)(t + 1) {A(mt) − A(m)} .

By Assumption (B), we have that as m → ∞, A(mt) and A(m) converge almost surely to the same
finite constant C, so their difference converges to zero, almost surely. As m1/2(β̂m − β) = OP (1),
we get

m1/2(β̂m − β)(t + 1) {A(mt) − A(m)} = oP (1). (25)
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The error term Rm+k consists of components like

(m + k)1/2(β̂m − β)i1 (β̂m − β)i2
1

m + k

m+k∑
t=1

[
∑

Z
i1
t−1Z

i2
t−1Z

i3
t−1]ci1,i2,i3

(
k

m

)
,

k ≤ mj, with the uniformly bounded coefficients ci1,i2,i3 . Therefore, by condition (B),
(1/(m + k))

∑m+k
t=1 Z

i1
t−1Z

i2
t−1Z

i3
t−1 converges almost surely to a constant, hence Rm+k = oP (1).

For the dominant term’s limit, we can conclude that

{
W(1 + t) − (1 + t)W(1)

1 + t
, 0 < t < j

}
=D

{
W(s), 0 < s <

j

(j + 1)

}
.

This justifies the approximation of the test statistic in (7). By Slutsky’s theorem, T (β)−1/2 can be
replaced by T̂ (β̂m)−1/2 of (4) without altering the limit distribution.

ACKNOWLEDGEMENT
This research was in part supported by NSERC Canada Discovery Grants.

BIBLIOGRAPHY
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