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Abstract

The comparison of two measurement systems is important in medical and other contexts. A common

goal is to decide if a new measurement system agrees suitably with an existing one, and hence whether the

two can be used interchangeably. Various methods for assessing interchangeability are available, the most

popular being the limits of agreement approach due to Bland and Altman. In this article, we review the

challenges of this technique and propose a model-based framework for comparing measurement systems

that overcomes those challenges. The proposal is based on a simple metric, the probability of agreement,

and a corresponding plot which can be used to summarize the agreement between two measurement

systems. We also make recommendations for a study design that facilitates accurate and precise

estimation of the probability of agreement.
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1 Introduction

Accurate and precise measurements in medical and other contexts are of paramount importance.
However, accuracy and precision may come at a cost; an accurate and precise measurement
system—defined here to be the devices, people, and protocol used to make a measurement—may
be costly in terms of time, money, resources, or may be invasive. In this case, new measurement
systems that are less expensive, less time-consuming, less labor-intensive, or less-invasive may be
developed. Interest often lies in comparing a new measurement system to an existing one. To do so,
we perform a measurement system comparison (MSC) study.

The goal of this comparison may vary in emphasis by context. Dunn1 highlights four possible
goals that can be described as follows: (i) calibration problems, which deal with establishing a
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relationship between a new system and an existing one that can be used to appropriately adjust the
new system’s measurements; (ii) comparison problems, which deal with assessing the level of
agreement between two measurement systems whose measurements are on the same scale; (iii)
conversion problems, which deal with the comparison of two systems whose measurements are
on different scales; and (iv) gold-standard comparison problems, which deal with the comparison
of a new measurement system with a system that is known to make measurements without error. In
addition to these, a fifth goal, which we term superiority, may be to determine whether the new
system is in fact better, in terms of accuracy and/or precision, than the existing one.

Each of these goals is important; they are appropriate in different contexts, and at times
appropriate within the same context. In the present article, we focus mainly on problem (ii). That
is, we wish to quantify the level of agreement between two measurement systems and hence
determine whether the agreement is sufficient for the two systems to be used interchangeably.
Thus, for this article ‘‘comparing measurement systems’’ is synonymous with ‘‘assessing
agreement’’. Secondary to this, we will also demonstrate how the proposed methodology may be
used to address calibration, conversion, gold-standard comparison problems, and superiority.

This choice of emphasis is driven largely by the literature. Bland and Altman2,3 provide a method
of assessing agreement between measurement systems, called the limits of agreement approach, that
has been cited over 30,000 times. This citation record suggests that the statistical evaluation of
agreement is a common goal. The importance of assessing agreement is also evident in various
regulations set forth by the US Food and Drug Administration. For example, the FDA4

mandates that agreement be formally assessed in the context of bioequivalence studies. As well,
the FDA5 commands the use of the limits of agreement approach when demonstrating substantial
equivalence between a premarket measurement device and an existing one. Similarly, the assessment
of agreement is recommended by the Mayo Clinic6 when validating assays and by the Clinical and
Laboratory Standards Institute7 when comparing measurement procedures. Furthermore, when
reporting the results of a method comparison study some academic journals, for example the
Annals of Clinical Biochemistry,8 require that a limits of agreement analysis be included. Other
journals, Clinical Chemistry9 for example, strongly recommend its inclusion. What is proposed
here is a more transparent and informative alternative to this approach.

In a typical MSC study, some characteristic—the measurand—of a number of subjects is
measured one or more times by both measurement systems. We denote the number of subjects by
n, and we use r to denote the number of measurements on each subject by each system. For now we
assume that r is the same for both systems and all subjects, but we discuss relaxing this assumption in
section 5.

We adopt the common convention of describing data of this form with the following linear mixed
effects structural model that relates the measurements by two systems10

Yi1k ¼ Si þMi1k

Yi2k ¼ �þ �Si þMi2k

ð1Þ

where i ¼ 1, 2, . . . , n indexes the subjects, j ¼ 1 corresponds to the reference measurement system,
j ¼ 2 the new measurement system and k ¼ 1, 2, . . . , r indexes the replicate measurements. Thus Yijk

is a random variable which represents the value observed on system j’s kth measurement of subject i.
Si is a random variable that represents the unknown true value of the measurand for subject i. In
model (1) we assume that Si � N �, �2s

� �
and that subjects are sampled randomly from the target

population, but we discuss relaxing these assumptions in section 5. Mijk is a random variable which
represents the measurement error of system j ¼ 1, 2. We further assume that the Mijk are
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independent of each other and independent of Si, and that they are distributed N 0, �2j

� �
where �j

quantifies the measurement variation, or repeatability, of system j. In this article we assume that �j is
constant across true values and hence each measurement system is homoscedastic. We briefly discuss
the heteroscedastic case in section 5.

The parameters �; and � quantify the bias of the new measurement system relative to the
reference system. We refer to � as the fixed bias since it increases or decreases the average
measurement of the second system by a fixed amount and we call � the proportional bias because
it biases the second system’s measurements by an amount that is proportional to the true value.11 It
would of practical interest to estimate the absolute bias of each system; i.e. include an �j and �j for
both systems. However, because both measurement systems are prone to error, the true values of the
measurand are unknown and so we cannot estimate the absolute bias of the measurement systems;
we can only estimate relative bias. If, however, the reference measurement system is a gold-standard,
the relative biases � and � can be interpreted as the absolute bias of the new system. We discuss this
point further in section 3.4.

Based on equation (1), we say that the two measurement systems are identical if � ¼ 0, � ¼ 1 and
�1 ¼ �2. However, the two systems do not need to be identical to be used interchangeably.
Informally we say that two systems can be used interchangeably if, most of the time, their
measurements are similar. In other words, two measurement systems agree and could be used
interchangeably if Yi2 � Yi1, the difference between single measurements on a given subject by
each system, is small. Typically this happens when � � 0, � � 1, and both �1 and �2 are small,
relative to �s. We formalize the notion of interchangeability in sections 2 and 3.

Note that this formulation of the problem assumes that the measurements by both systems are on
the same scale. If, however, the measurements by the two systems are on different scales, i.e. degrees
Celsius versus degrees Fahrenheit, then relative bias is confounded with the conversion between
scales. In this situation, two measurement systems may be interchangeable even if � 6¼ 0 and � 6¼ 1.
This is discussed further in section 3.4.

A variety of statistical techniques exist for assessing agreement between two measurement systems.
Excellent reviews of existing techniques are provided by Choudhary and Nagaraja,12 Barnhart et al.,13

Lin,14 and Carstensen.4 As mentioned previously, the most widely cited technique is the limits of
agreement approach due to Bland and Altman.2,3 In section 2, we describe this approach and identify
several problems associated with it that can lead to misinformed judgments of interchangeability. In
section 3, we introduce a novel analysis method which facilitates a better understanding of the
relationship between the two measurement systems. We illustrate this new method with two
examples from the literature. In section 4 we provide recommendations for the design of an MSC
study, and we end with a summary and discussion in section 5.

2 The limits of agreement technique

2.1 Description

The ‘‘limits of agreement’’ approach is the most widely used technique for assessing
interchangeability of measurement systems. It was first introduced by Bland and Altman in
1983,2 but the wide uptake did not begin until the publication of Bland and Altman’s second
paper on the topic which appeared in the Lancet in 1986.3 This latter article has been cited over
30,000 times and is one of the ten most frequently cited statistical articles ever.15

To describe this technique, suppose we have one measurement by each system on each of n
subjects. The limits of agreement approach characterizes the agreement between two
measurement systems by evaluating the difference between measurements made on the same
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subject. Using a scatter plot, known as a ‘‘difference plot’’, the observed differences for subject i,
di ¼ yi2 � yi1, are plotted against the observed averages: ai ¼ yi1 þ yi2ð Þ=2.

One purpose of this plot is to evaluate whether the differences are related to the averages, a
surrogate for the unknown true values. If no relationship appears to exist, the distribution of the
differences is summarized by the limits of agreement, defined as

�d� 1:96sd ð2Þ

where, for a sample of i ¼ 1, 2, . . . , n subjects, �d and sd are respectively the sample average and
standard deviation of the observed differences. Assuming the differences roughly follow a normal
distribution, these limits represent the interval within which we expect 95% of the differences to lie.
Horizontal reference lines corresponding to the upper and lower limits of agreement and the average
difference �d, are added to the plot.

To decide whether two measurement systems agree sufficiently to be used interchangeably, one
must compare the limits of agreement to the clinically acceptable difference (CAD). Bland and
Altman2,3 define the CAD to be the maximum allowable difference between two measurements
that would not adversely affect clinical decisions. How far apart two measurements can be before
it causes difficulties is not a statistical question; instead the answer must be based on clinical
judgment. In many situations the CAD is defined as an interval around zero: �c, cð Þ.

In what follows, we refer to the upper and lower limits of agreement as ULA and LLA,
respectively. If the limits of agreement are contained within the CAD, i.e.
�c � LLA5 05ULA � c, one concludes that the differences will be clinically acceptable at least
95% of the time, and the measurement systems are deemed interchangeable. Otherwise, if the limits
of agreement fall outside the CAD, it is likely that measurements by the two systems will too often
differ by more than the allowable amount. In this situation, one concludes that the two measurement
systems do not agree sufficiently and should not be used interchangeably.

Since the introduction of the limits of agreement approach, Bland and Altman have authored
many articles which clarify the method, and guide its use in nonstandard situations. For example,
they suggest alternate methods of calculating limits of agreement if the differences appear to depend
in some way on the true value,16 or if replicate measurements are made.17 However, whether in the
simple or more complex cases, problems can still arise and investigators can be misled. We describe
these problems in the next section.

2.2 Problems with the limits of agreement approach

Though the limits of agreement method is simple to implement, its simplicity can also be its
downfall. Because no model is assumed the relationship between measurement systems is
oversimplified which inhibits informed comparisons. In this section we demonstrate problems that
are inherent to the approach or that arise as a result of misuse.

A serious problem associated with misuse is that although Bland and Altman recommend
measuring each subject two or more times by each measurement system, replicate measurements
are rarely made in practice.1,18 This could, in part, be because the example presented in their
landmark Lancet paper ignores the fact that each system made two measurements on each
subject, and uses only the first measurement on each subject to compare the two systems.
Replicate measurements are ignored in examples in a subsequent paper as well.16

To fully understand the relationship between the two measurement systems, and hence to decide
if they are interchangeable, it is important to model their relationship as in equation (1) and estimate
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all of the corresponding parameters. Without replicate measurements we cannot separately estimate
all of the parameters in equation (1), a limitation which Barnett13 refers to as the problem of
identifiability and that Voelkel and Siskowski18 refer to as the problem of indeterminacy. This
issue arises because there are six parameters to estimate, but without replicate measurements the
data provide only five minimally sufficient statistics. A consequence is that without separate
estimates of � and �, we cannot distinguish between fixed and proportional bias, and so the
biases become confounded. As well, without separate estimates of the two repeatabilities, �1 and
�2, we cannot determine which system is more precise, and we risk rejecting a new measurement
system which is more precise than the existing one.

Bland and Altman2,16 oppose the use of such structural models and instead use the difference
plot, as described above, to visualize the relationship between two measurement systems. However,
this plot cannot disentangle confounding biases, it does not indicate which system is more precise
and hence it does not provide adequate information about this relationship. Without the additional
information gained by replicate measurements, the difference plot can be misleading.

To illustrate the effect of not explicitly estimating and comparing �1 and �2, consider the
comparison of two measurement systems when the new system is unbiased (� ¼ 0 and � ¼ 1). In
this situation the standard deviation of the differences is �d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ �

2
2

q
, which is estimated by sd,

defined in equation (2). Because � ¼ 0 and � ¼ 1, these systems should agree on average, but
acceptable agreement may be hindered by large variability in one or both systems. For example,
when �1 is large but �2 is small, �d and hence sd might still be large enough to push the limits of
agreement outside the CAD, leading one to reject interchangeability. It is true that agreement
should be small in this case, but when this happens an unsuspecting practitioner unknowingly
rejects a new measurement system which is more precise than the existing one, even though both
are unbiased. Bland and Altman3,16 acknowledge that in using their technique this problem is a
possibility. However, we feel that this is a potentially serious problem that practitioners
should avoid.

Another problem inherent to the technique is one which we call false correlation. As stated by
Bland and Altman2,3 one purpose of the difference plot is to detect whether there is a relationship
between the differences and the averages (which are a surrogate for the unknown true values of the
measurand). By using the averages on the horizontal axis, we are supposedly protected against the
appearance of a pattern when no real relationship between differences and true values exists, i.e.
when there is no proportional bias (� ¼ 1). To investigate this issue we consider the correlation
between differences D ¼ Y2 � Y1 and averages A ¼ ðY1 þ Y2Þ=2 for a particular subject when � ¼ 1

Corr D,Að Þ ¼
�21 � �

2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�21 þ �
2
2

� �
4�2s þ �

2
1 þ �

2
2

� �q ð3Þ

If �1 ¼ �2 then D and A are uncorrelated. But if the repeatabilities are not equal, a more realistic
assumption, the differences and averages are correlated. It is interesting to point out that Bland and
Altman19 initially acknowledge that �1 and �2 may not be equivalent, and hence this correlation may
be nonzero, but they suggest in a subsequent paper that the correlation in equation (3) should be
zero because the variability of each measurement system should be the same: ‘‘as they should if they
are measurements of the same thing’’ (p. 91).20 However, just because both systems are measuring
the same thing, does not imply that the repeatabilities should be the same.

A serious issue arises here. In the absence of an actual relationship between differences and true
values, the Bland and Altman difference plot can suggest a significant relationship exists. As well, the
presence of a false negative correlation could mask the existence of a true positive relationship, and
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vice versa. Thus the existence of a false correlation can confuse the relationship between two
measurement systems and may lead to misinformed judgments of interchangeability. That said,
false correlation can be identified and accounted for if replicate measurements are taken and the
individual variance components in equation (1) are separately estimated.

Because the limits of agreement approach can be misleading in the absence of replicate
measurements, we do not recommend its use in this case. In fact, we do not recommend the
comparison of measurement systems at all, if replicate measurements are not available.

Bland and Altman5,6 describe extensions to the limits of agreement technique when replicate
measurements are available. They recommend averaging the replicate measurements on a single
subject by a particular measurement system, and constructing the difference plot using the
differences and averages of the averaged measurements on each subject. By doing this the limits
of agreement as defined in equation (2) are too narrow and so the calculation of sd is adjusted to
account for the reduction in measurement variation that results from working with the average of
replicate measurements instead of individual measurements. Although this results in limits that more
accurately reflect the distribution of differences in single measurements, the approach is not without
difficulties.

First, by plotting averages of the replicate measurements, a transparent display of the raw data is
unavailable. A plot of the averages can mask large differences in the replicate measurements on the
same subject by each system, and can make the level of agreement between the two measurement
systems appear stronger than it truly is. A second issue is that Bland and Altman’s method of
calculating the limits of agreement in this situation assumes that ‘‘the difference between the two
methods is reasonably stable across the range of measurements’’ (p. 572).17 In other words, this
technique assumes there is no proportional bias (� ¼ 1), and so its applicability is limited. A third
problem is that although replicate measurements are made, there is no explicit comparison of
repeatabilities, i.e. �1 and �2 in equation (1), and so it is still possible to reject interchangeability
with a more precise measurement system if the measurement variation in the reference system is large.

Another issue that exists, that is not a fault of the limits of agreement approach, is that in general
the technique is widely misused. In fact, Bland and Altman acknowledge the misuse of their
technique when they say ‘‘the 95% limits of agreement method has been widely cited and widely
used, though many who cite it do not appear to have read the paper’’ (p. 91).20 To investigate this,
Mantha et al.21 and Dewitte et al.22 undertook large-scale literature reviews of MSC studies
analyzed by the limits of agreement technique, and found a variety of problems. The most
pervasive and alarming was that in more than 90% of the articles examined the authors did not
define a clinically acceptable difference. These authors were unaware that the crux of the limits of
agreement approach, and the basis upon which interchangeability is determined, is the comparison
of the limits of agreement to the clinically acceptable difference. Without this comparison, an
assessment of interchangeability is ill-informed.

In this section, we have described the limits of agreement technique for comparing measurement
systems, and although it is widely used we have demonstrated some of the challenges associated with
the approach. Given that it is so widely used, it is clear that there is need for an analysis method that
more accurately quantifies the agreement between two measurement systems and that is better
safeguarded against misuse.

3 The alternative: Probability of agreement

In this section we propose a new method of analysis as an alternative to the limits of agreement
approach. We propose a simple metric, the probability of agreement, and an associated plot to
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quantify the agreement between two measurement systems and hence help to decide whether the two
systems can be used interchangeably. This approach strives to overcome the deficiencies of the limits
of agreement technique described in the previous section.

3.1 The probability of agreement

The limits of agreement technique seeks to assess agreement by comparing the distribution of
observed differences to what is considered clinically acceptable. This is a sensible goal, but in
practice this comparison seems to be misunderstood and often omitted. A more direct and
intuitive method of achieving this goal is to quantify the probability that the observed differences
are small enough to be considered clinically acceptable. Using the notation associated with model
(1), and assuming a clinically acceptable difference has the form CAD ¼ �c, cð Þ we define � sð Þ, the
probability of agreement

� sð Þ ¼ P Yi2 � Yi1j j � cjSi ¼ sð Þ ð4Þ

The probability of agreement is the probability that the difference between single measurements on
the same subject by the two systems falls within the range that is deemed to be acceptable,
conditional on the value of the measurand. Based on the distributional assumptions associated
with (1), � sð Þ can be written as

� sð Þ ¼ �
c� �� �� 1ð Þsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�21 þ �
2
2

q
0
B@

1
CA��

�c� �� �� 1ð Þsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�21 þ �

2
2

q
0
B@

1
CA ð5Þ

where � xð Þ is the standard normal cumulative distribution function evaluated at x.
Using probabilities of this form, we construct the probability of agreement plot which graphically

displays the estimated probability of agreement across a range of plausible values for s. On this plot
we include approximate pointwise confidence intervals for each value of � sð Þ which reflect the
uncertainty associated with its estimation. Note we employ maximum likelihood estimation to
obtain estimates of �,�,�, �1, �2, �sð Þ from model (1) which are substituted into (5) to obtain �̂ sð Þ.
We sketch the technical details associated with this estimation procedure, and describe how to
obtain the standard errors necessary for calculating approximate confidence intervals in the
Appendix.

This probability of agreement plot serves as a simple tool for displaying the results when
comparing two measurement systems; it summarizes agreement transparently and directly while
accounting for possibly complicated bias and variability structures. While the modeling and
estimation of � sð Þ is somewhat complicated, its interpretation is extremely simple and one that
most nonstatisticians can understand.

Another benefit is that even if a more complicated model than equation (1) is assumed, the
interpretation of the probability and the plot is unchanged. For example we may wish to relax
the assumption that Si is normally distributed or perhaps model heteroscedastic measurement
variation. In both cases we might alter model (1), but our interpretation of the probability of
agreement and of the probability of agreement plot remains the same. These generalizations are
discussed in section 5.

With this method, the probability that is deemed to indicate acceptable agreement and hence
interchangeability is context-specific and is not a statistical decision. Accordingly, in this article we
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demonstrate how to estimate and interpret � sð Þ, but how large it must be to indicate
interchangeability must be decided by the user. One reasonable choice might be to require � sð Þ �
0.95, similar to the limits of agreement approach.

If the probability of agreement plot does not indicate acceptable agreement, (i.e. � sð Þ is too low in
the range of interest for s), then we recommend looking at the separate estimates of
�,�,�, �1, �2, �sð Þ to determine the source of disagreement. Although the probability of agreement
plot is informative and simple to interpret, examining the individual parameter estimates is the most
informative description of the relationship between the two system’s measurements. We also discuss
how their estimation can be used to address Dunn’s1 additional MSC goals in section 3.4.

When the value of � sð Þ is largely unchanged across the possible values for s, or if we simply wish
to focus on the most likely values of the measurand, we may summarize the probability of agreement
with a single number. We define an unconditional version of the probability of agreement, denoted
�, which is, in a sense, the average value of � sð Þ across the distribution of Si. Using the components
of model (1), the unconditional probability of agreement is

� ¼ P Yi2 � Yi1j j � cð Þ ¼ �
c� �� �� 1ð Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1ð Þ

2�2s þ �
2
1 þ �

2
2

q
0
B@

1
CA��

�c� �� �� 1ð Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 1ð Þ

2�2s þ �
2
1 þ �

2
2

q
0
B@

1
CA ð6Þ

Use of an estimate of this single-number summary is appropriate when the probability of agreement
is similar for all values of s, or when the range of measurand values of interest is close to the mean,
�. Thus, we first recommend the use of equation (5) and the corresponding plot to assess agreement,
and then if the plot suggests that it is appropriate one may choose to summarize agreement based on
equation (6).

Bland and Altman16 offer a nonparametric approach which calculates the proportion of observed
differences that fall within an acceptable range. Their method, although similar in spirit to the
probability of agreement, does not address modeling the underlying relationship between
measurement systems and, consequently, does not provide enough information to make an
informed judgment regarding the interchangeability of two measurement systems.

The probability of agreement as defined in equation (4) may be viewed as a generalization of what
Lin et al.23 refer to as coverage probability. Here, we extend this idea to model (1) which is more
general than what Lin et al.23 consider in that proportional bias, replicate measurements and
between-subject variation are considered. Another key difference between the proposed method
and Lin’s coverage probability is the manner in which it is used. For a fixed values of s, Lin
et al.23 consider testing hypotheses of the form H0 : � sð Þ � �0 versus HA : � sð Þ5 �0, where
agreement is rejected if H0 is rejected. The emphasis of the probability of agreement approach on
the other hand, is estimation as opposed to hypothesis testing; here we are interested in estimating
and visualizing the agreement between two systems across a typical range of values for the
measurand. Furthermore, by explicitly modeling the relationship between the two systems, we are
able to identify the source of disagreement, should disagreement be indicated

3.2 Model checking

The first step in this procedure is to look at the data and decide whether the intended analysis is
appropriate. In this context we suggest checking two assumptions of model (1). Specifically, we
should check whether (i) the unknown true values of the measurand are normally distributed, and
(ii) the repeatability is constant across the range of true values. We can assess each of these
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assumptions respectively with a modified QQ-plot and a repeatability plot. The latter plot also has the
benefit of allowing us to check for outliers in the individual measured values.

To assess whether the measurand values are normally distributed, for each measurement system
separately we average the replicate measurements on a particular subject and create a QQ-plots of
these n averages. By working with the averages we reduce the effect of the measurement variation,
allowing us to better examine the between-subject variation and the distribution of Si. If the
normality assumption holds both of these plots should yield a relatively straight line. To aid in
their interpretation, we suggest overlaying the quantiles of 50 simulated normal datasets with mean
and variance equal to the sample mean and sample variance of the n averages as suggested by
Oldford.24 Doing so depicts a region that we could expect the observed points to lie, if they came
from a normal distribution. If this modified QQ-plot suggests that the normal distribution is a
reasonable assumption for Si then model (1) is applicable. However, if it does not, then an
alternative to the maximum likelihood approach should be used. In section 5, we discuss a
moment-based estimation procedure which does not require the normality assumption.

To decide whether the measurement variation for each system is constant across true values of the
measurand we suggest constructing a repeatability plot for each measurement system. The plot is an
individual values plot of the residuals of the replicate measurements on each subject versus the
average of those replicate measurements, ordered by size. If the residuals seem unrelated to the
averages this suggests that the measurement variation is homoscedastic. If however there appears to
be a dependency between the residuals and averages, for example if variability in the residuals
increases as the average increases, we conclude the measurement variation is heteroscedastic. The
exact structure of heteroscedasticity will depend on the nature of the relationship between the
residuals and averages. If the repeatability plots suggest heteroscedasticity of any kind in one or
both measurement systems then model (1) is no longer appropriate and another approach must be
taken. We discuss this issue in section 5.

In the next section, we present an example in which we illustrate this model checking approach.

3.3 Blood pressure example

To illustrate how to determine whether two measurement systems are interchangeable using the
probability of agreement and the associated plot, we use systolic blood pressure data from an
example published by Bland and Altman.16 In this example, 85 subjects are measured three times
by each of two observers, labeled ‘‘J’’ and ‘‘R’’, both using a sphygmomanometer. While this is
technically a comparison of two observers using the same measurement system, it is statistically
equivalent to the comparison of two measurement systems; we can think of observer J as
measurement system 1 (MS1), and observer R as measurement system 2 (MS2).

Before proceeding with the analysis, we check the model assumptions in accordance with the
previous section. Figure 1 depicts the modified QQ-plots (upper panels) and repeatability plots
(lower panels) by measurement system for this example. Examining the modified QQ-plots, we
see that the blood pressure values in this particular sample are somewhat right-skewed, but we
also see that the observed points fall within the grey region, indicating there is no evidence
against the normal assumption. In examining the repeatability plots, we see that the points are
randomly scattered with no clear trends indicating that the repeatability of each measurement
system is homoscedastic. Thus we conclude that model (1) is appropriate.

Using the data described above, we estimate � sð Þ for s in the range �̂� 3�̂s, �̂þ 3�̂sð Þ and
construct the probability of agreement plot given in Figure 2. Note that the calculation of these
probabilities assumes a clinically acceptable difference with c ¼ 10. This is somewhat arbitrarily
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chosen since Bland and Altman16 do not report a clinically acceptable difference for this example. To
justify our assumed CAD we note that when assessing systolic blood pressure measuring devices,
O’Brien et al.25 provide criteria for grading such measurement systems. A blood pressure
measurement device can be graded as A, B, C, or D depending on the proportion of differences
that lie within �5, �10, and �15 mmHg. These criteria are based on the difference between
measurements by a new system and a sphygmomanometer, and are intended for assessing the
adequacy of a new system relative to this standard. Our goal (assessing interchangeability) is
different, but we assume this CAD is still relevant and use c ¼ 10 for illustration. Note that the
probably of agreement will increase for larger values of c and decrease for smaller values.

In Figure 2, we see that the probability of agreement is relatively constant (roughly 0.8) across the
range of reasonable systolic blood pressures. It is not surprising then to find that the estimate of the
unconditional probability of agreement � is 0.799 with an approximate confidence interval given by
(0.61, 0.98). Because there is little change in � sð Þ across s, use of the unconditional probability seems
reasonable for these data.

Figure 1. Modified QQ-plot and repeatability plot for observers ‘‘J’’ (MS1) and ‘‘R’’ (MS2) from the blood pressure

data. Left panels correspond to observer ‘‘J’’ and right panels correspond to observer ‘‘R’’.
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Whether these results indicate agreement between the two measurement systems and that they
could be used interchangeably depends on whether the investigators deem � � 0.8 to be sufficiently
large. Suppose that � � 0.8 is not sufficiently large (perhaps � � 0.95 is necessary), leading us to
conclude that the two measurement systems do not agree well enough to be used interchangeably.
To identify the source of this disagreement we examine the individual parameter estimates and their
asymptotic standard errors, which are shown in Table 1.

In light of the apparent disagreement, it is perhaps surprising to find that the fixed and
proportional biases are negligible (� � 0, � � 1) and the repeatabilities are very similar (�1 � �2),
indicating that the distribution of the measurements made by each system are similar. The issue here
is that although �1 � �2, both �1 and �2 are large relative to �s leading to large differences between
individual measurements made by each system, causing the probability of agreement to be small.

In situations like this, when the reference system is highly variable, we may decide the new system
is interchangeable with the reference even if the probability of agreement is small. For example, if the
reference system is used routinely, perhaps a justification can be made for using a new system that is
equally imprecise if it is, say, cheaper to operate.

Such a decision cannot be made by looking at the probability of agreement plot alone; although it
accounts for complicated bias and repeatability structures, the probability of agreement masks the
individual values of these parameters. Accordingly, we recommend that if the plot suggests
disagreement between two systems, the individual parameter estimates be examined for guidance
on a final decision.

For completeness we present the Bland and Altman replicate measures difference plot for these
data in Figure 3. This plot also indicates disagreement, as the limits of agreement lie outside

Figure 2. Probability of agreement plot comparing ‘‘J’’ and ‘‘R’’ for the blood pressure data.
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CAD ¼ �10. However, the difference plot does not quantify the disagreement as concisely as does
the probability of agreement plot, nor does it offer any indication of the source of this disagreement.

This probability of agreement analysis technique and plot construction have been automated, and
software is freely available at www.bisrg.uwaterloo.ca.

Table 1. Maximum-likelihood estimates and asymptotic standard errors associated with the

blood pressure data.

Estimate Asy. standard error

� 127.3612 3.2937

� �1.3623 2.1432

� 1.0108 0.016377

�s 30.1959 2.3421

�1 5.5655 0.28559

�2 5.4955 0.28347

� 0.7985 0.09511

Figure 3. Replicate measures difference plot comparing ‘‘J’’ (MS1) and ‘‘R’’ (MS2) for the blood pressure data.
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3.4 Addressing alternative goals of comparison

In section 1, we described several goals that may be considered important when comparing two
measurement systems. The primary emphasis of the present article has been to quantify the
agreement between two systems, with the goals of calibration, conversion, gold-standard
comparison, and superiority having secondary importance. In this section we describe how the
proposed methodology may be used to address these other goals.

If the probability of agreement plot suggests disagreement between two measurement systems, we
have suggested the estimates of the parameters in model (1) be examined to identify the source of
disagreement. Often disagreement will arise, in part, because of a systematic difference between the
two systems, i.e. �̂ 6¼ 0 and �̂ 6¼ 1. In this situation it may be of interest to calibrate the new system
such that it agrees, on average, with the reference system. The corresponding adjustment to the new
system’s measurements is given by Y�2 ¼ Y2 � �̂ð Þ=�̂. When these adjusted measurements are
compared to the reference system’s measurements (i.e. Y1), the probability of agreement plot
should be constant across s, and any disagreement that remains is due to large variation in one
or both systems. This plot may be referred to as a potential agreement plot as it displays the potential
agreement between measurement systems after calibration. Note that this plot assumes �̂ and �̂ are
fixed values, and does not account for the uncertainty associated with their initial estimation.

If the measurements by both systems are on the same scale, then a systematic disagreement
corresponds to the existence of relative bias. However, if the two systems measure on different
scales then a systematic difference is due to a combination of the conversion between scales and
relative bias. In this situation, Yi1 and Yi2 will not be similar and the probability of agreement plot
will suggest disagreement even if relative bias is negligible. However, if the scale conversion is known
it can be performed before analysis and agreement can then be quantified in the usual manner. Any
remaining systematic difference (now just relative bias) can then be dealt with through calibration as
described in the previous paragraph. Alternatively, if the scale conversion is unknown we can
estimate � and � with the data on the original scales and perform a calibration which now
simultaneously addresses the conversion between scales and relative bias.

The comparison to a gold-standard measurement system (one that measures without error)
represents a somewhat different problem; it serves as an assessment of the accuracy and precision
of the new measurement system. In this situation the parameters � and � represent the absolute bias
of this system, and the probability of agreement becomes � sð Þ ¼ P Yj � s

�� �� � cjS ¼ s
� �

, which
quantifies how closely the measurements by system j agree with the true value of the measurand.
Estimation within this framework can be carried out with regression techniques and as we discussed
earlier in this section, any bias (absolute bias in this case) can be addressed through calibration.

When deciding which of two measurement systems is superior (in terms of bias and precision), the
probability of agreement is not overly useful; this decision is based solely on the parameter estimates.
Fortunately, however, these estimates are obtained as a part of the probability of agreement
analysis. If �̂ � 0 and �̂ � 1, then the answer to which system is superior is based on a
comparison of the repeatabilities, �̂1 and �̂2. If, however, a relative bias does exist we may
perform a suitable calibration to eliminate this, meaning that the two systems will agree on
average, in which case the decision again is still based on a comparison of repeatabilities.

3.5 Ventricle brain ratio example

To illustrate some of the ideas discussed in the previous section we introduce another example from
the literature which compares two devices that use CAT scan images to measure ventricle brain
ratios (VBR).1 In the study, the VBR of n ¼ 50 schizophrenic patients is measured r ¼ 2 times by a
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hand-held planimeter on a projection of an X-ray image, and by an automated pixel count based on
such images. Here, it is assumed that the planimeter (PLAN) can be regarded as the reference system
and the pixel count (PIX) is assumed to be the new system. The raw data (which is on a log-scale) is
presented in Dunn’s book1 along with a Bland and Altman difference plot.

Before the probability of agreement plot is constructed we assess the assumptions of model (1) in
accordance with section 3.2. Though not shown here, the modified QQ-plots both suggest that a
normality assumption for log(VBR) is reasonable, and the repeatability plots both suggest that the
measurement variation of each system is homoscedastic on the log scale. We note that the model
used by Dunn1 to analyze these data accounts for a random subject-by-system interaction, which
allows the effect of each system to differ from one subject to another. Though this model may be
more appropriate, the parameters are not identifiable without further assumptions. Though the
probability of agreement method may be carried out using such a model, for illustrative purposes
we perform the analysis based on model (1).

The left panel of Figure 4 displays the probability of agreement plot for the VBR data. Without a
clinically acceptable difference reported, we arbitrarily choose c ¼ 0.1. As we can see, the level of
agreement between the planimeter and pixel count depends highly on the true VBR, but is low for all
values. Recall that the level of agreement will increase for larger c but its dependence on s will
persist.

The parameter estimates displayed in Table 2 suggest that the source of disagreement is partly due
to the fact that �̂ 6¼ 0 and �̂ 6¼ 1, which indicate a systematic disagreement between systems. Using
the calibration adjustment described in section 3.4, we calibrate the pixel count measurements to
those made by the planimeter and redo the analysis. Table 3 displays the parameter estimates when
the calibrated pixel measurements are used and the potential agreement plot (the probability of
agreement plot for calibrated data) is shown in the right panel of Figure 4. As expected, the
agreement between systems is constant across true VBR since �̂� � 0 and �̂� � 1. However,
the probability of agreement is still quite low (roughly 0.25), which results from a disparity

Figure 4. Probability of agreement plot (left panel) and potential agreement plot (right panel) comparing ‘‘PLAN’’

and ‘‘PIX’’ for the VBR data.
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between the repeatabilities of each system. Tables 2 and 3 indicate that the planimeter is extremely
variable, and in fact �̂1 4 �̂s. The pixel count, on the other hand, is much less variable on both the
original and on the calibrated scales. Because �̂1 is so large, we can conclude that agreement between
the two systems is unlikely. We can further conclude that after suitable calibration, the pixel count
appears to be the superior method of measuring VBR.

4 Planning MSC studies

When using the probability of agreement to decide whether two measurement systems are
interchangeable, it is important to consider the design of the MSC study. The typical plan is to
measure n subjects r times for a total of N ¼ nr measurements with each system. As has been stated
several times, replicate measurements are necessary to ensure that the parameters in model (1), and
hence the probability of agreement, can be estimated.

The emphasis of this article has been on estimating the agreement between two measurement
systems. As such this investigation of study design is based on the assumption that precise estimation
of the probability of agreement is of primary interest. If, however, agreement is based on a
hypothesis test (such as the one discussed in section 3.1), then a power analysis approach would
be more appropriate.

Table 2. Maximum-likelihood estimates and asymptotic standard errors associated with the

VBR raw data.

Estimate Asy. standard error

� 1.7861 0.0506

� �1.9235 0.3905

� 1.8652 0.2160

�s 0.2771 0.0423

�1 0.3197 0.0227

�2 0.0401 0.0040

� 0.1274 0.6427

Table 3. Maximum-likelihood estimates and asymptotic standard errors associated with the VBR data after

calibration.

Estimate Asy. standard error

� 1.7860 0.0506

� 0.0009 0.2091

� 0.9995 0.1157

�s 0.2772 0.0423

�1 0.3197 0.0227

�2 0.0215 0.0021

� 0.2450 0.4905
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Here, we assume that N measurements can be made by each system, and the primary interest is to
decide how to spend resources and hence decide how to allocate those measurements. As such we
investigate the effect of the number of subjects n and the number of replicate measurements r on the
precision with which � can be estimated. Note that we base these comparisons on the unconditional
probability of agreement, �, instead of � sð Þ because it is difficult to determine in general which values
of s are relevant. As such, we investigate the effect of n and r on the estimate of �, the probability of
agreement for ‘‘typical’’ values of s. We compare designs using the asymptotic standard deviations
of the estimator ~�, calculated from the Fisher information matrix, as described in the Appendix.

To ensure that the asymptotic results will allow us to appropriately rank the possible designs, we
first conducted a simulation study to compare the asymptotic and simulated standard errors of �̂
which we describe in section 4.1. This simulation confirmed that even for small sample sizes the
simulated and asymptotic results agree, justifying the use of asymptotic results to investigate possible
n, rð Þ combinations for a given value of N. In section 4.2, we make design recommendations for
optimal estimation of the probability of agreement. In section 4.3, we investigate whether the
manner in which subjects are selected effects the estimation of � sð Þ and we report the results of a
simulation study which compared three sampling protocols in their ability to accurately and
precisely estimate � sð Þ.

4.1 Comparing simulated and asymptotic standard errors

In this simulation study, we compared the simulated and asymptotic standard errors of �̂ for a
variety of n, rð Þ combinations and parameter values. To cover a wide range of sample sizes, replicate
measurements and parameter values, we considered:

. n ¼ 10 to 200 in steps of 10 and r ¼ 2 to 10 in steps of 1

. � ¼ 1, 10, 100

. �s ¼ �=10, �=4

. �1 ¼ �s=10, �s=4

. �2 ¼ 3�1=4, �1, 5�1=4

. � ¼ 0, 0.5�

. �¼ 1, 1.1

For each combination of n, r and the parameters, we generated 10,000 samples according to model
(1) and for each sample determined the maximum likelihood estimate of � and the asymptotic
standard error associated with that estimate. We explain in the Appendix how we obtained the
asymptotic standard error.

We then compared the simulated and asymptotic results by dividing the standard deviation of the
10,000 estimates of �̂ by the average of the 10,000 asymptotic standard errors. Across all
combinations of n, r and the parameters, the average of this ratio was 0.9915 and it ranged
between 0.89 and 1.11 with the middle 50% lying between 0.97 and 1.02. Thus, overall the results
suggest that the asymptotic standard deviation closely matches the simulated results for all designs.
Accordingly we proceed to rank designs based on the asymptotic results.

4.2 Recommendations for MSC study design

For a particular combination of the parameter values and N ¼ 40, 60, 100, 120, 200, we iterate
through 2 � r � 10 and take n ¼ N=r. In the case that N=r is not an integer, we round this quantity
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down to the nearest integer to determine n, in which case nr5N. We then rank the designs
according to the asymptotic standard deviation of �, and consider the design associated with the
smallest asymptotic standard deviation the ‘best’. In doing this it became clear that the design in
which each subject is measured twice, corresponding to n, rð Þ ¼ N=2, 2ð Þ, always has the smallest, or
nearly the smallest, asymptotic standard deviation.

To investigate this further we compare the asymptotic standard deviations associated with the
‘best’ design and the design with two replicate measurements, i.e. n, rð Þ ¼ N=2, 2ð Þ. Specifically we
divide the standard deviation corresponding to the best design by that of the n, rð Þ ¼ N=2, 2ð Þ design.
For N ¼ 40, 60, 100, 120, 200, 2 � r � 10, and the parameter values outlined in Section 4.1 we found
the average of this ratio to be 1.01. Thus the asymptotic standard deviation associated with the
n, rð Þ ¼ N=2, 2ð Þ design is on average only 1% larger than the best design. We found the maximum of
this ratio to be 1.065, which occurs when � is different from 0, � is different from 1 and when �1 and
�2 are very different.

Software is available at www.bisrg.uwaterloo.ca which provides the best design for a particular
combination of parameter values and maximum number of measurements N. However, because the
best design depends on the values of the unknown parameters, and the n, rð Þ ¼ N=2, 2ð Þ design is
close to optimal across all parameter values we considered, we recommend its use. To select N, we
can use the software described above to investigate the standard deviation of � in the N=2, 2ð Þ design
for various reasonable values of the unknown parameters.

4.3 Effect of subject sampling protocol

The design recommendation in the previous section assumes subjects are sampled randomly. To
investigate the effect the sampling protocol has on the estimation of � sð Þ, we performed a small
simulation study. For three different sampling protocols, we compared the true value of � sð Þ to the
simulated estimate, and compared the true asymptotic standard deviation to the simulated
asymptotic standard error. These comparisons were made for � sð Þ evaluated at small, medium
and large values of s: s ¼ �� 2�s, s ¼ �, s ¼ �þ 2�s, respectively. The sampling protocols that
we considered were random sampling, uniform sampling (equal number of subjects sampled between
each decile of the distribution) and extreme sampling (subjects sampled equally from the upper and
lower quarters of the distribution).

For every combination of the parameter values listed in section 4.1 and n ¼ 50, 100, 200 and r ¼
2, 3, 4, 5 we simulated 100 datasets and estimated � �� 2�sð Þ, � �ð Þ and � �þ 2�sð Þ and their
asymptotic standard errors. We then average these 100 estimates to obtain the simulated estimate
and also determined the corresponding simulated asymptotic standard error. We then calculate the
bias of the estimate as the true value of � sð Þ minus the simulated estimate, and we examine the ratio
of the asymptotic standard deviation to the simulated standard error.

The bias associated with estimating � sð Þ for all sampling protocols, parameter values, sample sizes
and values of s was on average 0.0001 or less. The only exception was estimating � �þ 2�sð Þ in the
context of extreme sampling, in which case the average bias was 0.048, though it was 0.0001 for � ¼
1. Thus the manner in which subjects are sampled has little effect on the accuracy with which � sð Þ is
estimated.

Across all parameter values and sample sizes the average ratio comparing asymptotic and
simulated standard errors for � �ð Þ was 1.00, 1.003, and 1.002 for random, uniform, and extreme
sampling, respectively. The average ratios associated with � �� 2�sð Þ and � �þ 2�sð Þ were also
approximately 1 for random and uniform sampling, but significantly different from 1 in the case
of extreme sampling. Thus we see general agreement between asymptotic and simulated precisions
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and so we conclude that approximate confidence intervals for � sð Þ should be valid if subjects are
sampled randomly or uniformly. In the case of extreme sampling such intervals should be valid for
values of s close to �.

5 Conclusions and discussion

In this article, we propose a new method of assessing agreement between two measurement systems:
the probability of agreement. The probability of agreement is, for a particular value of the
measurand, the probability that the difference between two measurements made by different
systems falls within an interval that is deemed to be acceptable, defined by equation (4). This
quantity can be translated into an informative plot which depicts the probability of agreement
across a range of possible true values for the measurand. The result is a simple and intuitive
summary of the agreement between two measurement systems. The benefit of this approach is
that while the statistical modelling and estimation (which is handled by software) may be
complicated for a nonstatistician, the interpretation is straight forward and intuitive, and the
same regardless of which model is used and what assumptions are made. This ease of
interpretation is of practical importance as it facilitates the wide-spread use of this technique,
especially given that estimation and plot generation is automated with the software available at
www.bisrg.uwaterloo.ca.

Here, we have assumed that the true values of the measurand follow a normal distribution.
However, if normality does not hold we may apply a moment-based approach to estimating
equation (4) that does not rely on this assumption.26 We have also assumed that each system’s
repeatability is homoscedastic. However, if the measurement variation is heteroscedastic then we
suggest using a model different from equation (1) that accounts for a dependence between the
measurement variation and the unknown true value of the measurand.26 Performing the present
analysis on log-transformed data may also be effective. Even in the face of these adaptations, the
probability of agreement and associated plot can still be interpreted and applied in the same way.
We plan to explore this in future work.

We note that the level of agreement between two measurement systems depends critically on the
value c, which defines the clinically acceptable difference; agreement will increase for larger values of
c and decrease for smaller values. However, the choice of c is often a difficult decision to make in
practice. In these situations we suggest repeating the analysis for different values of c to investigate
the sensitivity of the conclusions to this value. For a particular choice of s we could summarize this
analysis with a plot of � sð Þ versus c to visualize the sensitivity of � sð Þ to c. An example of such a plot
is shown in Figure 5 for the blood pressure data when s ¼ �̂ ¼ 127.3612. An alternative approach
might be to adapt Lin’s total deviation index (TDI)27 and invert the definition of equation (4) to
calculate c for a value of � sð Þ which is suitably large, then decide whether this value of c is practically
acceptable.

In this article we assume that there are no operator effects; i.e. we implicitly assume that the
measurement systems being compared have only a single operator, or if multiple operators exist, we
assume that their effects are the same. One possible extension is to incorporate operator effects into
the probability of agreement analysis. We have also assumed that each measurement system
measures each subject r times. Another straight forward extension of this work would be to
adapt the model and consider the case when the two systems make a different number of
replicate measurements per subject, i.e. r1 6¼ r2, or a different number of measurements on each
subject.
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Appendix

Here,we elaborateupon themaximum-likelihoodprocedureused toobtainpoint and interval estimatesof
� sð Þ. For a particular subject i, we order the random vector corresponding to its measurements by system
and write Yi ¼ YT

i1,Y
T
i2

� �T
, where Yij ¼ Yij1, Yij2, . . . ,Yijr

� �T
corresponds to the r measurements by

system j on subject i. In what follows we let Ja be a column vector of a 1’s, Ja	b be an a	 b matrix of
1’s, and Ia be the a	 a identity matrix. From model (1), we have Y �MVN l,

P� �
with

l ¼ �,�þ ��ð Þ
T

Jr

and

X¼
�2s

1 �
� 1

� 	

 Jr	r þ

�21 0
0 �22

� 	

 Ir

where 
 denotes the Kronecker product.
In order to explicitly write down the log-likelihood function for subject i we must first obtain the

inverse and determinant of the covariance matrix. Fortunately the form of
P

allows us to write
down

P�1

and
P�� �� explicitly
X�1

¼
1=�21 0

0 1=�22

" #

 Ir �

�2s

1þ r�2s
1
�2
1

þ
�2

�2
2

� �
1

�41

�

�21�
2
2

�

�21�
2
2

�2

�42

2
6664

3
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 Jr

X��� ��� ¼ �21�
2
2

� �r
1þ r�2s

1
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Denoting the observed data by yijk i ¼ 1, 2, . . . , n, j ¼ 1, 2 and k ¼ 1, 2, . . . , r (we distinguish the
random variable Yijk by using a lower-case yijk to denote the observed data), the log-likelihood
contribution from subject i with r replicate measurements by both systems is

�rln 2�ð Þ �
1

2
ln
X��� ���� 1

2
yi � l
� �TX�1

yi � l
� �

since by model (1), Yi �MVN l,
P� �

. We can explicitly write this as

li �,�,�, �1, �2, �sð Þ ¼ � rln 2�ð Þ �
1

2
ln 1þ r�2s

1

�21
þ
�2

�22


 �� 	
�

1

2�21

Xr
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2

þ
b

2�41
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yi1k � �ð Þ

( )2

�
1

2�22

Xr
k¼1

yi2k � �� ��ð Þ
2
þ
b�2

2�42

Xr
k¼1

yi2k � �� ��ð Þ

( )2

�
b�

�21�
2
2

Xr
k¼1

yi1k � �ð Þ yi2k � �� ��ð Þ

where

b ¼
�2s

1þ r�2s
1
�2
1

þ
�2

�2
2

� �
Because we assume measurements made on different subjects are independent we obtain the full log-
likelihood function by summing the log-likelihood contribution for each subject

l �,�,�, �1, �2, �sð Þ ¼
Xn
i¼1

li

In order to calculate approximate confidence intervals for � sð Þ, we must obtain asymptotic standard
deviations for �,�,�, �1, �2, �sð Þ which are found using the expected Fisher information matrix.
The expected Fisher information matrix is found by taking second partial derivatives of
l �,�,�, �1, �2, �sð Þ, which are performed symbolically by Maple28 to avoid errors, and by
calculating the expected values of the necessary sums of squares. We do not give all of the
formulas here, but note that we use the following results

E
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¼ 0

We then invert the Fisher Information matrix numerically using Matlab.29 This gives the asymptotic
variances of �,�,�, �1, �2, �sð Þ. But because we are interested in � sð Þ and �, we find their asymptotic
variances by applying the delta method; we pre- and post-multiply the inverse of the Fisher
information matrix by a suitable vector of partial derivatives: Ds for the asymptotic variance of
� sð Þ, and D for �.

Ds ¼
@� sð Þ

@ �,�,�, �1, �2, �sð Þ
D ¼

@�

@ �,�,�, �1, �2, �sð Þ

Approximate confidence intervals for � sð Þ and � are calculated using asymptotic standard errors,
which are obtained by evaluating their respective asymptotic standard deviations at the maximum
likelihood estimates ð�̂, �̂, �̂, �̂1, �̂2, �̂sÞ.
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