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ABSTRACT
Industry uses inspection protocols to protect customers from receiving non-conforming product. The
two error rates of these systems are the chance of shipping non-conforming product (customer’s
risk) and the chance of rejecting good product (producer’s risk). We investigate the properties of two
inspection protocols. In these protocols, the customer uses a gold standardmeasurement system that
determines if received components are conforming. We show that with the first inspection protocol,
we can estimate its error rates using only production data. With the second protocol, we propose
adding a small measurement assessment study to allow estimation of the error rates.

Introduction

Binary measurement systems (BMS) are commonly
used as diagnostic tools in medicine and as part of
inspection systems in industry. Sometimes diagnos-
tic tests are combined into protocols. For example, an
invasive test such as a biopsy is carried out only on
those patients with a positive result on a non-invasive
screening test. There is an enormous effort (see Pepe
2003 for an overview) devoted to the study design and
the subsequent estimation and comparison of the sen-
sitivity and specificity of diagnostic protocols. Sensitiv-
ity is the chance that the test is positive when the sub-
ject has the disease. Specificity is the chance that the test
is negative given the subject does not have the disease.
The error rates of interest here are the complements of
the sensitivity and specificity. One distinguishing fea-
ture of the assessment of a measurement system in an
industrial context is that it is possible to measure the
same unit many times. In a medical context, we may
not be able to test a subject repeatedly because of ethi-
cal or compliance considerations.

In industry, many quality systems require periodic
calibration and assessment ofmeasurement systems for
continuous characteristics that are important to the
customer. The precision of the system is often esti-
mated using a Gauge R&R study that involves repeated

CONTACT R. Jock Mackay rjmackay@uwaterloo.ca Department of Statistics and Actuarial Science, Business and Industrial Statistics Research Group, Uni-
versity of Waterloo, Waterloo, ON NL G, Canada.

measurements of a sample of units. See the AIAG
manual (2003) or Burdick, Borror, and Montgomery
(2005). For the estimation of the properties of a BMS,
many authors have considered various assessment
plans, statisticalmodels and estimation procedures that
involve measuring some units r ≥ 1 times. See Danila,
Steiner, andMacKay (2008, 2010, 2012, 2013); deMast,
Erdmann, and Van Wieringen (2011), Burke et al.
(1995), and Farnum (1994).

This article is motivated by the following exam-
ple from the electronics industry. At an intermedi-
ate process step, a binary measurement system is used
to screen a particular component. A component that
passes inspection at the intermediate step moves to the
next stage of the process. Components that fail inspec-
tion are re-measured with the BMS and, if they pass on
the second attempt, they also move forward. Any com-
ponent that fails both inspections is either scrapped or
reworked. We call this Protocol A or Double Fail. The
reason for the protocol is that the subsequent assem-
bly process steps are expensive and, once completed,
cannot be undone without destroying the entire device.
After the subsequent process steps, each shipped com-
ponent is inspected by an error-free gold standardmea-
surement system (GSS) that determines among other
tests, if the component conforms or not. As we will

©  Taylor & Francis
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330 S. H. STEINER ET AL.

show, we can estimate the properties of the BMS and
the inspection protocol without requiring additional
measurements. Note, unlike the protocol described in
Danila et al. (2010), the GSS is applied only to shipped
components.

In a production environment, it is easy to under-
standwhy the operators repeat the inspection of a failed
component. They selectively trust the BMS. As well,
they do not have to deal with passed components. On
the other hand, they would not consider re-inspecting
a passed component. We have seen Protocol A (and
its extension to even further inspections after multiple
failures) applied in both the electronics and automotive
sectors. In what follows, we also consider the simpler
Protocol B (Single Fail) where a component that fails
the first inspection is scrapped or reworked and only
components that pass initial inspection are shipped to
the customer. We provide a flow diagram of both pro-
tocols in Figure 1. For Protocol B we also show, inside a
dashed box, the additional measurements we propose
to allow assessment of the BMS and the inspection pro-
tocol. The reason for the additional measurements on
the failed components in Protocol B is explained later.

To specify the assessment problem, we introduce
some notation. We denote each component as con-
forming or not by the random variable X where

X =
{
1 if the component is conforming
0 if the component is non - conforming

.

We can determine the value of X using the gold stan-
dard system once the component is part of a completed
assembly. When the component is measured once by
the BMS, we use the random variableY to indicate the
result, where

Y =
{
1 if the BMS passes the component
0 if the BMS fails the component

.

Wemodel the characteristics of the binary measure-
ment system and conforming rate of the process by

α = P(Y = 1|X = 0), β = P(Y = 0|X = 1), π = P(X = 1).

Here, α represents the proportion of non-
conforming components that are passed by the BMS
andβ represents the proportion of conforming compo-
nents that are failed by the BMS. We can also interpret
α as the long run proportion of times that a single non-
conforming component passes repeated inspection
by the BMS (and similarly for β). The parameter π is
the proportion of conforming components produced

Table . Error rates for inspection protocols a (Double Fail) and B
(Single Fail) as shown in Figure .

Protocol θ0 θ1

A: Double Fail
(
1−(1−α)2

)
(1−π)

1−((1−α)2(1−π)+β2π
) β2π

β2π+(1−α)2(1−π)

B: Single Fail α(1−π)
α(1−π)+(1−β)π

βπ
βπ+(1−α)(1−π)

by the production process and does not depend on
the properties of the BMS or the inspection protocol.
In a manufacturing context, we expect π to be large
and α and β to be relatively small. We focus on these
conditions throughout the article.

We characterize any inspection protocol by its error
rates. That is:

θ0 = P(X = 0|passed by the protocol) and
θ1 = P(X = 1|failed by the protocol). (1)

Note that θ0 and θ1 are sometimes referred to as the
consumer’s risk and producer’s risk, respectively. These
error rates are of direct interest to the process man-
agers. In the context of our example, if θ0 is large, there
is a high cost when the GSS detects a non-conforming
component after assembly. If θ1 is large, good compo-
nents may be scrapped or operators may waste time
searching for faults that do not exist. With good esti-
mates of θ0 and θ1, managers can assess the costs asso-
ciated with the protocol. If these costs are substantial,
it may prove useful to improve the BMS (i.e., reduce α

and or β) or to change the overall protocol.
In Table 1, we give the error rates (1) in terms of

α, β , and π for both Protocols A and B, making the
following assumptions.
• The BMS is non-destructive so that components
can be repeatedly measured without changing
their conforming status.
• The subsequent process steps do not change the
conforming status of the component.
• The characteristics α and β of the BMS are the
same for every non-conforming and conforming
component, respectively.
• Given the conforming status of any component,
repeated measurements by the BMS are (condi-
tionally) independent.
• Measurements on different components are inde-
pendent.

The main goal of this article is to design assessment
plans to efficiently estimate the error rates of the inspec-
tion protocols A and B as shown in Figure 1.We choose
assessment plans that first estimate α, β , and π . Then
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Figure . Flow charts for inspection Protocols A (top) and B (bottom).

we derive the estimates of the error rates θ0 and θ1 with
corresponding measures of their precision.

This article is structured as follows. In the next sec-
tion, we investigate the properties of Protocol A and
assess its efficiency for estimating the error rates θ0 and
θ1. We then repeat this exercise for Protocol B in the
subsequent section. We end with a summary and dis-
cussion in the final section.

Protocol A (Double Fail)

With Protocol A, initial failures are re-inspected and,
if they pass the second inspection, are shipped to the
customer. Based on themotivating example, we assume
that components are traceable, i.e., that components
shipped after the second inspection are distinguishable
from those that pass on the first inspection. With this
assumption, we see from Figure 1 that there are five
possible outcomes for any component. Of the m com-
ponents inspected, let u0 be the number of components

that pass initially and are nonconforming, u1 the num-
ber that pass initially and are conforming, v10 the num-
ber that pass the second inspection and are noncon-
forming, v11 the number that pass the second inspec-
tion and are conforming and finally, v00 the num-
ber that fail both inspections. The available data are
(uo, u1, v00, v10, v11)withuo + u1 + v00 + v10 + v11 =
m. Based on the assumptions, we have a multinomial
distribution with five possible outcomes for each part
and three unknown parameters. Ignoring additive con-
stants, the corresponding log-likelihood is

la(α, β, π ) = u0 log[α(1 − π)] + u1 log[(1 − β)π]
+ν10 log[α(1 − α)(1 − π)]
+ ν11 log[β(1 − β)π] + ν00 log[β2π

+(1 − α)2(1 − π)]. (2)

To estimate α, β and π , we numerically maximize
the log-likelihood, given in (2), using the fmincon
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332 S. H. STEINER ET AL.

Table . Results from Protocol A (Double Fail) for one day’s
production.

Outcome

st Pass &
Noncon-
forming
(u0)

st Pass &
Conform-

ing
(u1)

Fail, Pass &
Noncon-
forming
(v10)

Fail, Pass &
Conform-

ing
(v11)

Fail Twice
(v00)

Observed
Frequency

    

function in Matlab (2008). We also derive approx-
imate standard errors using the asymptotic proper-
ties of the log-likelihood. Using Maple (2009) we find
the Fisher Information matrix, the expected value of
the matrix of second partial derivatives of the log-
likelihood (2). The approximate standard errors for
the three parameters are then given by the diagonals
of the inverse after substitution of the estimates. In
the Appendix, using simulation, we demonstrate the
adequacy of this approximation for the smallest sam-
ple size (m = 1000) we consider over a range of the
model parameters (α, β , and π). We estimate θ0 and
θ1 by substituting the estimates of the model param-
eters into the expressions given in Table 1. We use the
delta method (Lehmann and Casella 1998) to find their
approximate standard errors. Matlab code is available
at http://www.bisrg.uwaterloo.ca/software/.

Numerical example

The context and process are real; the data have been
constructed to be realistic. For the example described
in the Introduction, one day’s production was m =
2450 units. The resulting data are given in Table 2.

Table 3 gives the results of maximizing the log-
likelihood given by (2) and applying the analysis proce-
dure described earlier for obtaining approximate stan-
dard errors. We see that in this example all the param-
eters of interest are precisely estimated without any
effort other than organizing the available data and
applying the estimation procedure.

To improve the inspection protocol, i.e., to
simultaneously reduce θ0 and θ1, we need to improve

Table . Parameter estimates and standard errors for Protocol A
(Double Fail) data given in Table .

Parameter Estimate Standard Error

α . .
β . .
π . .
θ0 . .
θ1 . .

the BMS, i.e., reduce α and β . If Protocol B (single
fail) were followed (as the control plan indicated), then
the estimates of θ0 and θ1 are 0.0133 and 0.5559 with
standard errors 0.0041 and 0.1525 respectively, based
on the estimates of α and β given in Table 3. These esti-
mates suggest that by following Protocol B, more than
half the rejected components would in fact be con-
forming. This may explain the behaviour of the oper-
ators who adopted Protocol A contrary to the control
plan.

Note that when comparing Protocols A (Double
Fail) and B (Single Fail), there is always a tradeoff. For
fixed values of α, β and π , θ0 is larger for Protocol A
and θ1 is larger for Protocol B. Over the realistic range
of parameter values for α, β and π considered in this
article, θ0 is generally twice as large and θ1 is about 4
times smaller with Protocol A compared to Protocol B.

With Protocol A, the design of the assessment study
is determined by m, the total number of components
screened by the inspection system over the assessment
period. Since we assume measurements on all compo-
nents are independent, the Fisher informationmatrix is
m times the Fisher information available from a single
component. As a result, the standard errors of the esti-
mates of θ0 and θ1 (and of α, β , and π) are proportional
to 1/

√
m and so increasingm increases the precision of

the estimates in a predictable way.We suggest choosing
m as large as possible, noting that we are assuming no
changes in the properties of the BMS (α, β) nor in the
quality of the process (π) while the data are being col-
lected.

To help in the choice of m, we show in Table 4
the proportionality constants for the approximate stan-
dard deviations for the parameters of interest for all
combinations of the parameters given in Table 5. We
can use the results provided in Table 4 to determine
the approximate standard deviation for any sample
size m by dividing the values in the table by

√
m. We

show in the Appendix that the asymptotic approxima-
tions are reasonable with sample sizes as small as m =
1000. So, for example, from the first row of Table 5, if
(α, β, π ) = (0.01, 0.01, 0.9) and m = 1000, the stan-
dard errors for estimating θ0 and θ1 are 0.049/

√
1000

= 0.0015 and 0.02/
√
1000= 0.0006 respectively. Since

these standard errors are large relative to the corre-
sponding values θ0 = 0.002 and θ1 = 0.001 (given in
columns four and five of Table 4), we need to increasem
accordingly. For combinations of parameter values not
given in Table 5, we interpolate.
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Table . Protocol a (Double Fail) asymptotic standard deviation
form = 1.

Parameter Values Error Rates Asymptotic Standard Deviation m = 1

α β π θ0 θ1 SD (α) SD (β) SD (π ) SD
(
θ0

)
SD
(
θ1

)
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .
. . . . . . . . . .

Protocol B (Single Fail)

Now suppose that Protocol B, as shown in the bot-
tom panel of Figure 1, is in use and that the result
of each inspection is recorded. Of the m components
inspected, we have u0 components that pass inspec-
tion and are not conforming, u1 components that pass
inspection and are conforming and v0 components that
fail inspection. Note that m is under our control and
is one element of the design of the assessment study.
The data (u0, u1, vo) with u0 + u1 + vo = m are avail-
able from the process under normal usage. For Proto-
col B, the log-likelihood for the available data is given
by [3]:

lB(α, β, π ) = u1 log[(1 − β)π] + u0 log[α(1 − π)]
+ν0 log[βπ + (1 − α)(1 − π)] (3)

Here we have a three cell multinomial model and
three unknown parameters α, β , and π to estimate.
Since the multinomial probabilities add to 1, the three
parameters are not identifiable using the available data.

Table . Levels of parameters.

Parameter α β π

Levels ., ., . ., ., . ., ., .

To allow estimation of α, β , and π , we supplement
the available data by re-measuring components (with
the BMS) that fail the initial inspection. That is, we
select a random sample of n components from the ν0

failures (with n ≤ ν0) and re-measure each of these
components r ≥ 1 times. For each component sam-
pled from the initial failures, using the BMSwe observe
t = 0, 1, . . . , r, the number of failures in r additional
measurements. We assume conditional independence.
That is, given the true status of any component (con-
forming or non-conforming), repeated measurements
of the component by the BMS are independent. So, for
any failed component re-measured r times we have

P(T = t )

=

(
r
t

) [
βt+1(1 − β)r−tπ + (1 − α)t+1αr−t (1 − π)

]
βπ + (1 − α)(1 − π)

,

t = 0, . . . , r

and the log-likelihood for the supplemental data,
ignoring additive constants, is

lS(α, β, π ) =
∑n

i=1
log(

βti+1(1 − β)r−tiπ + (1 − α)ti+1αr−ti (1 − π)

βπ + (1 − α)(1 − π)

)
, (4)

where ti is the observed number of failures in the r
additional measurements on the ith i = 1, . . . , n com-
ponent selected from the initial failures. Combining
the available and supplementary data the overall log-
likelihood is the sum of lB and lS as given by (3) and
(4). Now there are r + 3, r ≥ 1 possible outcomes and
the three parameters are estimable. As with Proto-
col A, to estimate α, β and π , we numerically max-
imize the overall log-likelihood using the fmincon
function in Matlab (2008). We also derive approx-
imate standard errors using the asymptotic proper-
ties of the log-likelihood based on the Fisher infor-
mation. For Protocol B, Matlab code is available at
http://www.bisrg.uwaterloo.ca/software/

In planning the assessment study, we have more
choices to make with Protocol B (Single Fail) than with
Protocol A (Double Fail). The study is determined by
m, n, and r. In what follows, we focus on plans that have
r = 1. Increasing r results in more precise estimates.
However, for estimating θ0, increasing r has very lit-
tle impact while for estimating θ1 it is more effective
to increase n than r. In addition using r larger than 1
results in additional logistical work since we have to
keep track of which components pass/fail each of the
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Table . Protocol B (Single Fail) asymptotic standard deviation m = 1.

“Asymptotic”StDev withm= , r=  and n/m= .,.,.

α β π θ0 θ1 SD (α) SD (β) SD (π ) SD
(
θ0

)
SD
(
θ1

)
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .
. . . . . . ., ., . ., ., . . ., ., .

additional measurements so that we can determine the
ti s. Using r = 1, on the other hand, we only need to
count the number of failures in the n repeatedmeasure-
ments.

Regardless of the value of r, for a fixed ratio, n/m,
the asymptotic information is a multiple ofm, the total
number of components screened by the inspection
system. Thus, given the ratio n/m the asymptotic stan-
dard deviation decreases at the rate 1

√
m. Similar to

Table 4 for Protocol A, Table 6 gives the approximate
standard deviations timesm = 1 for the three parame-
ter estimates and the two derived estimated error rates
θ̂0 and θ̂1 for different combinations of (α, β, π ) for
Protocol B. We again use the parameter values given in
Table 5. The standard deviations for α̂ and θ̂0 depend
weakly on the ratio n/m so we give only a single value
in those two columns. We can use these results as with
Table 4. For any reasonablem, we can get the expected
standard deviation of the estimators from Proto-
col B by dividing the results in Table 6 by

√
m. So for

instance, supposewe believe (α, β, π )= (0.1, 0.05, 0.9)
approximately and we select m = 1000 and n = 20
(i.e. n/m = 0.02). Then we expect standard
deviations for θ̂0 and θ̂1 to be 0.11/

√
1000 = 0.0034

and 3.92/
√
1000 = 0.012, respectively. The standard

errors are small relative to θ0 = 0.012 and θ1 = 0.33 as
given in Table 6.

From Table 6, we make the following observations.
For θ̂0, increasingm reduces the relative standard devi-
ation SE(θ̂0)/θ0. The large relative standard deviations
correspond to low values of α and high values of π . For
θ̂1, increasing n with m fixed substantially reduces the
standard deviation.

Summary and discussion

In this article, we investigate two inspection protocols
that are common in industry. Both protocols are used
to decide which components to ship to the customer
and which to scrap or rework. We examine a situation
where shipped components are measured with a gold
standard measurement to determine if they are con-
forming or not. Protocol A ships a component to the
customer if it passes the BMS the first time or after
being given a second chance. Protocol B is simpler and
only ships components to the customer if they pass the
first measurement.

Note that in this context it is not possible to mea-
sure each component with the gold standard since
only components that go through the whole assembly
process can be tested with the gold standard.With gold
standard measurements on all components the assess-
ment of the protocol is straightforward.
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We can supplement Protocol A (Double Fail) with
additional measurements. However, as long as m is
reasonably large, the added information from the
additional measurements is relatively small. We also
explored a version of Protocol A where we did not
assume that conforming and nonconforming compo-
nents found by the customer could be linked to the pool
of first or second time passes.We found that the tracing
information was valuable; without it, the plan did not
perform well.

We made the simplifying assumption that the mis-
classification rates of the BMS are the same for every
component. For some BMSs, this assumption is unre-
alistic since some components are easier to correctly
classify than others. We are concerned that the esti-
mates from the assumed model may not be robust to
varying misclassification rates. This was shown to be
a problem when assessing a BMS without any gold
standard measurements. See Albert and Dodd (2004)
and Danila et al. (2012). However, by assumption, with
Protocols A and B a large proportion of the compo-
nents shipped to the customer is measured by the gold
standard. Albert (2007), Albert and Dodd (2008) and
Danila et al. (2013) found that when the true status of
every component is known, the maximum likelihood
estimates based on amodel with constantmisclassifica-
tion rates are robust against the random effects model.
However, in a small simulation study, using Beta dis-
tributions to model the varying misclassification rates,
we found for both protocols that the proposed estimate
of θ1 was significantly biased. There does not appear
to be a simple remedy. Using a random effects model,
where the misclassification rates vary from component
to component, requires a much more complex assess-
ment study for either protocol and is left to further
work.

We select m to be as large as possible, assuming
the process and inspection protocol are within a stable
period. We assume that the process has high volume
to make this possible. For Protocol B (Single Fail), we
also need m to be large to produce a sufficient num-
ber of failures so that we can select n components to be
repeatedly measured.
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Appendix

In this appendix, we report simulation results to justify
the use of the asymptotic standard deviation based on
the Fisher information for reasonable sample sizes.
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For large sample sizes for both Protocols A and B,
the asymptotic results derived from the Fisher informa-
tion will provide good approximations of the standard
deviation of the MLEs. The question is for how small
a sample size are the results based on the asymptotics
appropriate. To explore this question, for both Protocol
A and Bwe ran a simulation study at the worst case, i.e.,
when the sample size is the smallest we would reason-
ably recommend.

We look atm = 1000 for both protocols and n = 20
for protocol B (Single Fail) and all combinations of α =
(0.02, 0.10), β = (0.02, 0.10), and π = (0.90, 0.95).
For each set of parameter values and each protocol,

we conduct 50,000 simulation runs. We evaluate how
well the asymptotic standard deviation of each esti-
mate works by determining the ratio of the simu-
lated standard deviation (i.e. the sample standard devi-
ation of the 50,000 estimates) divided by the asymp-
totic standard deviation. For protocol A (Double Fail),
the ratios fall in the range 0.99—1.03 for all estimates
except for θ̂1 where the ratio varies from 1.03—1.09.
For Protocol B (Single Fail), the ratio varies between
0.98 and 1.01 for all estimates except α̂ where the ratio
exceeds 1.40 whenβ = 0.10.We need to increase n, say
n ≥ 50 so that the asymptotic approximation for α̂ is
adequate.
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