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Summary. We compare two binary diagnostic tests when each subject is measured more than
once with each test and with a gold standard. We introduce a new model that allows the correl-
ation between two measurements on a single subject by the same test to be different from the
correlation between two measurements by different tests. We show that moment estimators of
the population parameters for the mean sensitivities and specificities are virtually identical to
the maximum likelihood estimates from our random-effects model. We apply the model to data
comparing two rapid malaria tests and provide guidance for choosing the number of subjects
and repeated measurements.
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1. Introduction

In medical applications, there are many diagnostic tests such as bacterial cultures, radiographic
images and biochemical tests used to determine the disease status of a subject. Binary diagnostic
tests are used to identify the presence or absence of a disease in subjects who have signs or
symptoms. Breast cancer screening with mammography of women over 50 years of age and
cervical cancer screening with a Pap smear are two examples. A key goal is to avoid false positive
and false negative results. This paper addresses the comparison of the statistical properties of
two such tests when a gold standard system is available to verify the disease status of each subject
in the study and we have repeated measurements for each test on each subject.

The main contribution of the paper is to examine the advantages of making repeated mea-
surements by each test when comparing the sensitivity and specificity. We also show how to
plan and analyse the data from such an investigation. It may be less expensive to measure every
subject multiple times with each test rather than to obtain more subjects, especially if the gold
standard system is expensive or invasive. We quantify this trade-off when we consider planning
a comparison study with the possibility of repeated measurements for each test.
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Table 1. Malaria tests data from Hopkins et al. (2007)†

Number of positive Malaria positive subjects Malaria negative subjects
HRP2 tests for the following numbers for the following numbers

of positive pLDH tests of positive pLDH tests

0 1 2 0 1 2

0 11 (11.2) 1 (1.3) 3 (2.6) 579 (578.8) 1 (1.0) 0 (0.0)
1 4 (3.5) 1 (0.8) 2 (2.5) 9 (9.4) 0 (0.0) 0 (0.0)
2 18 (18.5) 10 (9.5) 239 (239.1) 40 (39.8) 0 (0.0) 0 (0.0)

†Interior values give numbers of subjects; values in parentheses give the expected number for
the eGRE model discussed in Section 5.

Our motivation is the recommendation of Baker et al. (1991) to use replicate observations in
observer agreement studies and the data collected by Hopkins et al. (2007) where the objective
was to compare the sensitivity and specificity of two rapid malaria tests pLDH and HRP2. A
total of 918 subjects were tested two times by each of the rapid tests. In addition, the malaria
status of each subject was definitively determined by using microscopic examination of blood
smears. The data are summarized in Table 1. A key feature of the motivating application is that
each test was repeated twice on each subject. For example, we see in Table 1 that, of the 628
malaria negative subjects, 40 tested positively two times (out of two) with the HRP2 test but
zero times (out of two) with the pLDH test. We explain the expected counts given in Table 1 in
Section 4 where we revisit the motivating application.

We start with some basic assumptions. First, in common with Qu et al. (1996), Fujisawa and
Izumi (2000) and Albert and Dodd (2004), we assume that the sensitivity (or specificity) for either
test varies from subject to subject in the study population. Some subjects are more likely to be
correctly diagnosed because there may be one or more latent covariates that affect the sensitivity
or specificity. For instance, sensitivity could depend on the severity of the disease at the time
of testing. Second, given the disease status, we expect that the results of two tests on the same
subject will be dependent and, furthermore, the dependence between the results of measuring a
subject twice with the same test will differ from the dependence between the results of measuring
a subject once with each test. Third, we assume that, given the disease status for any subject
and the subject test-specific sensitivity (or specificity), the results for repeated measurements
on this subject by either test are statistically independent. We include these assumptions in the
model that is described in Section 2. Albert and Dodd (2004, 2008), Qu et al. (1996) and Pepe
(2003) made similar assumptions when considering the assessment of one or more diagnostic
tests without repeated measurements by the same test.

Many researchers have considered the comparison of two diagnostic tests. See, for example,
DeLong et al. (1988), Pepe (2003) and Zhou et al. (2011), all of whom used models based on
receiver operating characteristic curves that discretize a continuous output that can be measured.
Nofuentes and Del Castillo (2007) proposed a method for comparison of two tests based on a
multinomial model. Biggerstaff (2000) used a graphical approach. None of these methods deals
with multiple measurements by each test on each subject.

We have organized the paper as follows. In the next section, we describe a random-effects
model that allows for varying sensitivities (and specificities) across subjects and induces depen-
dences between the measurements made on each subject. In the following section, we define and
determine the properties of some simple moment estimates of the population-average sensitivity
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(and specificity). We also discuss the estimation of the variance parameters of the random-effects
distribution. Next, in Section 4, we use the methodology to analyse the data in Table 1. Using
simulation, we then show in Section 5 that the moment estimates are virtually identical to
the maximum likelihood estimates (MLEs) obtained from the random-effects model in a wide
variety of situations. We also look at the properties of confidence intervals for the population
averages based on asymptotic results. In Section 6, we consider the advantages and disadvan-
tages of using repeated measurements. In the final section, we summarize the main results and
discuss some additional issues.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. A model for repeated measurements with two correlated diagnostic tests

For ease of presentation, we consider a case–control sampling scheme in which the numbers of
diseased and non-diseased subjects are fixed, i.e. subjects are selected for the study after the gold
standard has been administered. The malaria study is a cohort study in which the numbers of
diseased and non-diseased subjects in the study were dependent on the disease prevalence. We
can use the analysis derived for the case–control study in a cohort study by conditioning on the
number of subjects who are diseased and non-diseased.

To define the notation, we consider only diseased subjects and their corresponding sensitivities.
With a simple change of notation, which is described at the end of Section 3, we obtain similar
results for non-diseased subjects and their specificities. All probability statements are implicitly
conditioned on the disease state. Here, for simplicity, we give results for a study where the
number of repeated measurements is the same for all subjects. In Section 7, we describe how the
results are easily extended to the more general situation where there may be unequal numbers
of repeated measurement on each subject.

If diseased subject i .i=1, :::, n/ is measured rk times by diagnostic test k (1 or 2), we use the
random variable Yijk to indicate the result where

Yijk =
{

1 if subject i tests positively on the jth repeat of test k,
0 otherwise:

Let αik =P.Yijk =1/ be the sensitivity of the kth test for diseased subject i. Here, the sensitivity
αik is subject specific and we interpret it as the proportion of times that the subject would be
correctly diagnosed in a series of many repeats by test k. We assume that the probability of
correct diagnosis may vary from subject to subject because of underlying latent covariates that
affect the properties of the tests. In many cases, it is unreasonable to assume that sensitivity
is constant over all diseased subjects. Some diseased subjects are more difficult to diagnose
correctly than others.

To specify the joint distribution for the results of testing the ith subject given the test subject-
specific sensitivities αi1 and αi2, we assume conditional independence both within and between
tests and write

P.Si1 = si1, Si2 = si2|αi1, αi2/=
(

r1
si1

)(
r2
si2

)
α

si1
i1 .1−αi1/r1−si1α

si2
i2 .1−αi2/r2−si2 .1/

where sik =Σrk

j=1yijk is the number of positive test results for test k on the ith subject and Sik is
the corresponding binomial random variable.
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Note that with model (1), for each subject, we assume conditional independence between all
the measurements made by both measurement systems given the disease status and the subject
test-specific sensitivities. This model avoids the widespread criticism of the assumption of con-
ditional independence given only the diseased status. See for instance Vacek (1983), Fujisawa
and Izumi (2000), Pepe (2003), Van Wieringen and de Mast (2008) and de Mast et al. (2011)
who discussed the conditional independence assumption.

We treat the varying sensitivities as random effects, i.e. we suppose that, for any subject with
the disease, the sensitivities, i.e. αi1 and αi2, are sampled from a joint densityf.α1, α2/. We
discuss some particular choices for f.α1, α2/ in Section 5. Since we assume that the subject-
specific sensitivities are sampled from the same distribution for each subject, in the remainder
of this section we simplify the notation by suppressing the i-subscript and provide results for
any diseased subject. Since the subject-specific sensitivities are not observed, the unconditional
joint probability distribution of S1 and S2 for a diseased subject is

P.S1 = s1, S2 = s2/=
(

r1
s1

)(
r2
s2

)∫ ∫
α

s1
1 .1−α1/r1−s1α

s2
2 .1−α2/r2−s2 f.α1, α2/dα1dα2: .2/

To complete the modelling, we assume that measurements made on different subjects are inde-
pendent.

We expect the subject-specific sensitivities for the two measurement systems to be correl-
ated when the mechanisms that drive the two tests have common elements. The dependence
between repeated measurements on the same subject by the same test is induced by the distri-
bution of the random-effects models. For a diseased (or non-diseased) subject, the correlated
random-effects generate a different dependence between two measurements by the same test
and two measurements by different tests. If we have two measurements by using the first test,
then for any diseased subject P.Y11 =1, Y21 =1/=E[α2

1] depending only on the marginal distri-
bution of α1. If we have two measurements on the same subject, one by each of the tests, then
P.Y11 =1, Y12 =1/=E[α1α2], dependent on the joint distribution of α1 and α2.

Let μk = P.Yjk = 1/ = E[αk], k = 1, 2. The parameters μ1 and μ2 represent the population-
average sensitivities for the two tests. In the comparison study, the ratio μ1=μ2 (or the differ-
ence μ1 − μ2/ is of primary importance. We may also be interested in comparing the varia-
tion of the subject-specific sensitivities since a test with less variation in the sensitivities, all
else being equal, is preferable. We denote σk as the standard deviation of αk for the kth test
and let ρ be the correlation between α1 and α2. In some situations, we may also be inter-
ested in estimating these secondary parameters. Note also that σ2

k =var.αk/=P.Y1k =1, Y2k =
1/ − P.Y1k = 1/P.Y2k = 1/ is a necessarily positive measure of dependence between two mea-
surements by the same test on the same diseased subject. Similarly, σ12 = cov.α1, α2/=P.Y11 =
1, Y12 = 1/ − P.Y11 = 1/P.Y12 = 1/ is a measure of dependence between two measurements on
the same diseased subject by different tests. The parameters .μ1, μ2, σ1, σ2, ρ/ are determined
from the joint densityf.α1, α2/.

3. Estimation

Albert (2007), Albert and Dodd (2008) and Danila et al. (2013) found that simple moment
estimates were efficient relative to the MLEs from several random-effects models when assessing
the properties of a single diagnostic test with repeated measurements on each subject. Here, we
extend this approach to the bivariate case. Suppose that there are n diseased subjects in the
study. For subject i and test k, we estimate the subject-specific sensitivity by α̂ik = sik=rk and the
population-average sensitivity by
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μ̂k =
n∑

i=1
α̂ik=n, k =1, 2: .3/

We explore the properties of the estimators corresponding to equation (3) by using the assump-
tion of independence across subjects and by conditioning on the subject-specific sensitivities.
Recall that Sik is the random variable corresponding to sik. Given .αi1, αi2/, the sensitivities for
subject i, Sik is binomial with parameters rk and αik. By assumption, Si1 and Si2 are (condition-
ally) independent. We have

E[μ̂k] =
n∑

i=1
E[α̂ik]=n=μk,

so μ̂k is unbiased. Also,

var.μ̂k/=

n∑
i=1

{E[var.α̂ik|αik/]+var.E[α̂ik|αik]/}
n2

= μk.1−μk/ =rk +σ2
k .rk −1/=rk

n
.4/

and similarly

cov.μ̂1, μ̂2/= cov.α1, α2/=n=σ12=n: .5/

We estimate the standard deviations σ1 and σ2, the covariance σ12 and the correlation ρ
by using equations (4) and (5) as follows. The estimators α̂1k, : : : , α̂nk are independent and
identically distributed and so the sample variance of these estimates is an unbiased estimator of
the numerator of equation (4). Substituting μ̂k for μk and rearranging, we have

σ̂2
k = rk

rk −1

{ n∑
i=1

.α̂ik − μ̂k/2

n−1
− μ̂k.1− μ̂k/

rk

}
, k =1, 2: .6/

As well, the sample covariance of .α̂i1, α̂i2/, i = 1, : : : , n, is an unbiased estimator of σ12 =
cov.α1, α2/ and we have

σ̂12 =

n∑
i=1

.α̂i1 − μ̂1/.α̂i2 − μ̂2/

n−1
,

ρ̂=

n∑
i=1

.α̂i1 − μ̂1/.α̂i2 − μ̂2/

.n−1/σ̂1σ̂2
:

.7/

If rk = 1 for either test (k = 1 or k = 2), then equation (4) reduces to the binomial variance
and we have no information about σk or ρ. We can estimate μk and σ12 and thus var.μ̂1/

and cov.μ̂1, μ̂2/ by substitution in equation (3) and the first part of equation (5). If we have
no repeated measurements for either test, i.e. r1 = r2 = 1, the model reduces to a multinomial
distribution as studied by Nofuentes and del Castillo (2007).

Using the estimates given by equations (4) and (7), we obtain a standard error for the estimate
of the difference in sensitivities μ̂1 − μ̂2 or, by using the delta method (Casella and Berger, 2002),
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a standard error for the ratio μ̂1=μ̂2 or its logarithm. We illustrate the approach by considering
the ratios of the average sensitivities on the log-scale, i.e. we estimate λ= log.μ1=μ2/. There are
no differences between the population-average sensitivities if λ= 0. We choose a log-scale for
statistical convenience. We can transform the estimates and corresponding confidence intervals
to the ratio scale if desired. We have

var.λ̂/≈ var.μ̂1/

μ2
1

+ var.μ̂2/

μ2
2

−2
cov.μ̂1, μ̂2/

μ1μ2
: .8/

To obtain the approximate standard error, we substitute the estimates (3), (4) and (7) into the
square root of approximation (8). We expect these approximations to work well when the number
of diseased subjects in the sample is large (see Section 5).

Note that, by a simple change in notation, we have similar results for the specificities. For in-
stance, for the ith non-diseased subject we estimate the test subject specificity as β̂ik =.rk − sik/=rk.
We can then use expressions (3), (6) and (7) with α̂ik replaced by β̂ik to estimate the population
average, variance and correlation for the specificities.

4. Application to comparing two rapid malaria tests

In this section we apply the model that was proposed in Section 2 to the study of Hopkins et
al. (2007) conducted to compare two rapid malaria tests HRP2 and pLDH. In this study each
subject was tested two times: once each by two different raters, by each of the two tests. In our
analysis, we ignore any rater effects, treating them simply as repeated measurements. The data
of Hopkins et al. (2007) are given in Table 1.

Since this application involves both sensitivity and sensitivity, we extend the earlier notation
so that β refers to the specificity. Our goal is to compare the average sensitivities μα1 and μa2
(denoted by μ1 and μ2 in Section 3) and average specificities μβ1 and μβ2 for the two malaria
tests.

This was a cohort study in which the number of diseased and non-diseased subjects was
not fixed by design. We can use the results from Section 3 by conditioning on the number of
diseased subjects: a statistic that is ancillary to the parameters of the two bivariate random-
effects distributions. Using equation (3), we obtain the following estimates (denoting HRP2 as
the first test and pLDH as the second test):

μ̂α1 = 0:936 .0:0136/,

μ̂β1 = 0:929 .0:0099/,

μ̂α2 = 0:865 .0:019/,

μ̂β2 = 0:999 .0:0008/:

In parentheses we give approximate standard errors for each estimate derived by substituting
the parameter estimates in equation (4). The point estimates are close to those given in Hopkins
et al. (2007), where they looked at each class of rater separately. With these results, approxi-
mate 95% confidence intervals for λα and λβ are 0.079±0.038 and –0.073±0.021 respectively.
Transforming to the ratio scale gives approximate 95% confidence intervals of (1.04, 1.12) and
(0.91, 0.95) for μα1=μα2 and μβ1=μβ2 respectively. We conclude that the two measurement sys-
tems are statistically different. These results support the conclusions that were made in Hopkins
et al. (2007) that HRP2 had superior sensitivity but inferior specificity when compared with
pLDH.
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We can also estimate the underlying variability of the subject test-specific sensitivities and
specificities and their correlation. We obtain the following point estimates:

σ̂α1 = 0:22 .0:027/,

σ̂β1 = 0:24 .0:018/,

σ̂α2 = 0:31 .0:022/,

σ̂β2 = 0:0008 .0:0004/,

ρ̂α = 0:57 .0:086/,

ρ̂β = −0:29 .0:14/:

The standard errors (in parentheses) are based on 5000 bootstrap samples where we resampled
with replacement from the set of diseased (and non-diseased) subjects.

Other than for the specificity for pLDH (i.e. σ̂β2), there is considerable variability in the
diagnostic rates. There is also substantial correlation between the subject test-specific rates with
a positive correlation between diseased subjects and a negative correlation for non-diseased
subjects.

As an alternative analysis, we may prefer to compare the positive and negative likelihood
ratios (Marshall, 1989) because these ratios correspond to the positive and negative predictive
values and may be easier to interpret clinically than sensitivity and specificity. We can use the
delta method again to obtain approximate standard errors for the likelihood ratios.

5. Efficiency of the simple estimates

In this section, we explore the efficiency of the simple moment estimates given in Section 3
relative to MLEs. Again, we focus on the sensitivities. To define the likelihood, we must specify
the joint density f.α1, α2/ up to some parameters. Then, the likelihood function is the product
of factors given by equation (2) over all n subjects. In the literature, we could find no examples
of the use of bivariate correlated random effects for comparing population-average sensitivi-
ties and specificities. To assess the efficiency of the moment estimates, we limited consideration
to bivariate models in which the marginal distributions of the random effects have been used
for assessing a single diagnostic test. We also required that the model allows for possible large
(positive or negative) correlation between α1 and α2 as seen in the malaria study of Hopkins
et al. (2007). For this reason, we rejected extensions to a bivariate model with beta–binomial
marginal distributions (Danila et al., 2013; Albert and Dodd, 2004), or with Albert and Dodd’s
(2004) finite mixture marginal distributions. We are left with a bivariate extension to a Gaus-
sian random-effects model based on Qu et al. (1996) and Albert and Dodd (2008). We denote
this extended model by eGRE. To specify model eGRE, let Z1 and Z2 be bivariate Gaus-
sian with means 0, standard deviations 1 and correlation c. Then let α1 = Φ.a1 +b1Z1/ and
α2 =Φ.a2 +b2Z2/ define the subject-specific sensitivities where Φ is the cumulative distribution
function of a standard Gaussian random variable. Here

μ1 =E[α1]=Φ{a1=
√

.1+b2
1/} .9/

with a similar expression for μ2 (Qu et al., 1996). There are no simple formulae to express
the standard deviations σ1 and σ2 or the correlation ρ in terms of a1, a2, b1, b2 and c but, if
desired, they can be determined through numerical integration. With this bivariate extension,
the correlation between α1 and α2 is flexible and the marginal distributions follow the proposal
of Qu et al. (1996). For the malaria study from Section 4 we can assess model fit. Table 1 gives
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Table 2. Factor levels for simulations 1 and 2

Parameter Results for simulation 1 to Results for simulation 2 to
compare moment estimates assess moment estimates

and MLEs (768 combinations) (2592 combinations)

Number of subjects 100, 400 100, 200, 400
r .= r1 = r2/ 2, 3 2, 3
μα1 0.7, 0.9 0.7, 0.8, 0.9
μα2 0.7, 0.9 0.7, 0.8, 0.9
σα1 0.02, 0.1, 0.2, 0.3 0.02, 0.1, 0.2, 0.3
σα2 0.02, 0.1, 0.2, 0.3 0.02, 0.1, 0.2, 0.3
ρ −0:5, 0, 0.5 −0:5, 0, 0.5

the expected cell counts by using model eGRE and the parameter estimates presented in Section
4. We see that there is very good agreement—the model fits the data very well. Of course, there
are many other models, which are not considered here, that may fit the data equally well.

We considered two simulation scenarios. For both, we generated data from model eGRE and
restricted our attention to sensitivities. In the first simulation, we compare the simple moment
estimates that were given in Section 3 with the MLEs from model eGRE. We used a full factorial
arrangement of design and parameter values with levels shown in Table 2. We limited the num-
ber of combinations to 768 because finding the MLEs of model eGRE is time consuming. The
number of diseased subjects is 100 or 400, which are comparable with the number of positive
subjects in the malaria study. For each of the 768 combinations, we first determined numerically
the corresponding values of a1, a2, b1, b2 and c. Then, we generated a single set of sample data
from model eGRE and calculated the estimates from equations (3), (6) and (7) as well as the
MLEs for model eGRE (by using numerical optimization). This simulation extended the results
from Albert and Dodd (2008) and Danila et al. (2013) who showed that the moment estimates
are efficient in the univariate (single-test) case. In cases where μ1, μ2, σ1 and σ2 are all simultane-
ously large it is not possible to generate data from model eGRE with a correlation of ρ=−0:5.
In these cases, in the simulation, we increased the desired value of ρ in increments of 0.1 until
we could find values of a1, a2, b1, b2 and c that matched the desired parameter values. In Fig. 1,
we plot the simple moment estimates against the corresponding MLEs. We see that the simple
moment estimates of μ1 and μ2, i.e. the population-average sensitivities, are virtually identical
to the MLEs. This implies that they can be used interchangeably. The relationships between the
two estimates of the other parameters σ1 and σ2 are somewhat noisier, however. We do not show
the estimates for ρ because when the estimate for either σ1 or σ2 equals 0 it is not defined. Note
that the estimate from equation (6) for σ2

k can be negative. Because of this problem, the moment
estimates and MLEs for σk did not agree that well. However, the estimates of cov.α1, α2/ from
the two approaches are similar. These simulation results suggest that the moment estimates from
Section 3 (at least for the sensitivity, specificity and covariance) are efficient relative to the MLEs
based on model eGRE. The moment estimates (3) for the parameters of primary interest are
simple to calculate and have an easy-to-calculate measure of precision. In contrast, the MLEs
and standard errors based on observed and expected information are difficult to calculate and
we have not investigated in detail for different parameter values how large the sample size must
be for the standard errors based on asymptotic results to be approximately correct.

In the second simulation, we considered only the moment estimates to see how well they
estimate the true parameter values. For each of the 2592 combinations of the parameter values
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Fig. 2. Moment estimate standard deviations for simulation 2
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Fig. 3. Boxplots of coverage for the approximate 95% confidence interval for λα from simulation 2

in Table 2, we generated 1000 samples from the corresponding eGRE model and calculated
the moment estimates for μk, σk, k = 1, 2, ρ, λα (as defined in Section 4) and an approximate
95% confidence interval for λα by using the standard error derived from equation (8). Just as
in the first simulation study, in cases where μ1, μ2, σ1 and σ2 are all simultaneously large when
the desired ρ = −0:5, we increased the desired value of ρ in increments of 0.1 until we could
find values of a1, a2, b1, b2 and c that matched the desired parameter values. This happened in
about 5% of the runs. The simulation results suggest that the moment estimates are unbiased
for μ1, μ2, σ12, ρ and λα, whereas the biases for estimating σ1 and σ2 can be large with worse
results when the true σ1- and σ2-values are small. This is because of our decision to set negative
estimates to 0. Fig. 2 shows the standard deviations of the estimators corresponding to the three
parameters μ1, μ2 and λα stratified by sample size and number of repeated measurements from
1000 runs for each of the combinations. We see that the mean sensitivities and log-ratio of the
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mean sensitivities are well estimated across all combinations of parameter values considered.
In addition, as expected, the standard deviations decrease with larger sample sizes and more
repeated measurements.

Fig. 3 illustrates the performance of the approximate 95% confidence interval for λα. We see
that coverage of the confidence interval (i.e. the proportion of confidence intervals created in
each of the 1000 runs that include the true parameter value) is very close to the desired 0.95
across all parameter combinations.

On the basis of these simulation results, we recommend using the simple moment estimates.
The moment estimate for the correlation is poorly behaved unless we use very large samples
sizes and many repeated measurements. However, the approximate confidence intervals for the
comparison based on the logarithm of the mean sensitivities (or specificities) are well behaved
even for small sample sizes and few repeated measurements.

6. Advantages of using repeated measurements

Here we want to discuss the advantages and disadvantages of repeating the tests on each subject.
The disadvantages seem to be ethical or logistical. In many cases, the tests may be invasive and
we cannot then repeat each test. However, from a statistical and planning perspective, there are
advantages to repeating the tests on each subject. Again we consider only the sensitivities with
similar conclusions about the specificities. Qualitatively, it may be difficult to acquire subjects
for the study, especially if the gold standard test is expensive or invasive. If repetition is possible,
we can increase precision of the comparisons by repeating the tests. Suppose that each of the n

subjects is measured r times with each test (i.e. r1 = r2/. With a little algebra using equations (4)
and (5), we obtain

var.μ̂1 − μ̂2/= 1
n

{
μ1.1−μ1/

r
+σ2

1
r −1

r
+ μ2.1−μ2/

r
+σ2

2
r −1

r
−2ρσ1σ2

}

= constant+ r var.α1 −α2/

nr
:

If we hold n, the number of subjects, fixed, increasing r reduces the variability of the estimate.
However, if we hold 2nr, the total number of tests, fixed, increasing r increases the variance of
the estimate of μ1 −μ2 regardless of the correlation between α1 and α2. As expected, a repeated
measurement is less valuable in terms of precision than is an extra subject. For var.λ̂/, we
obtain a similar expression (the constant is changed and αi is replaced by αi=μi/ and the same
conclusions. If we do not replicate, we cannot estimate the secondary parameters σ1, σ2 or ρ and
so we would have no idea about the variation of the sensitivities within the study population. We
temper this statement recognizing that we require very large samples to estimate these parameters
well.

In the above discussion, we assumed that r1 = r2. In other cases, it is not clear how var.μ̂1 − μ̂2/

or var.λ̂/ depend on n, r1 and r2 since these measures of precision also depend on the underlying
parameter values. For example, suppose that μα1 = 0:9, μα2 = 0:8, σα1 = 0:05, σα2 = 0:075 and
ρα = 0:5. Then, for different combinations of r1 and r2, using approximation (8), we construct
Table 3 to give the minimum number of diseased subjects n so that the standard deviation of
λ̂α is as large as possible but less than or equal to 0.05. Because n is large, all of the displayed
plans have Stdev.λ̂α/ very close to 0.05. We see, for example, that if we measured 95 subjects
once with the first test and twice with the second (r1 = 1 and r2 = 2/ we obtain a substantial
reduction in the number of subjects required compared with the case r1 = r2 = 1 (no repeated
test measurements). Furthermore, the total number of test measurements is almost the same.
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Table 3. Minimum number of diseased subjects (and total
number of test measurements in parentheses) to achieve
StDev.λ̂α/ � 0.05 under various combinations of r1 and r2
(replications by tests 1 and 2 respectively) when μα1 D 0.9,
μα2 D 0.8, σα1 D 0.05, σα2 D 0.075 and ρα D 0.5

r2 Results for the following values of r1:

1 2 3 4

1 143 121 114 110
(286) (363) (456) (550)

2 95 73 66 62
(285) (292) (330) (372)

3 79 57 50 46
(316) (285) (300) (322)

4 70 49 42 38
(350) (294) (294) (304)

Table 4. Optimal cost plan that achieves StDev .λ̂α � 0.05) for
values of c when μα1 D0.9, μα2 D0.8, σα1 D0.05, σα2 D0.075 and ραD0.5

c Results for the optimal plan Cost for Cost for
r1 = r2 =2 r1 = r2 =1

n r1 r2 Cost

1 3 4 5 330 365 429
2 22 6 8 352 438 572
3 22 6 8 374 511 715

There is a substantial reduction in the number of required diseased subjects that comes from
using multiple measurements by the second test in this example. Remember that we assess
each selected subject with the gold standard which may be expensive and invasive. If making
repeated measurements is less expensive than selecting additional subjects, using repeated tests
may substantially reduce the overall cost of the study. In the example given in Table 3, we can
meet the precision criterion by using only 57 subjects with r1 =2 and r2 =3 without an increase
in the required total number of test measurements.

The benefit of repeated measurement is more pronounced if we consider a model in which
the cost of a gold standard measurement (including subject recruitment) is greater than that
of measurement by either of the two tests. Suppose that we scale the cost so that a repeated
measurement by either diagnostic test costs 1 monetary unit and a single measurement by the
gold standard costs c monetary units. We expect c > 1. Then, the cost of measurement of the
proposed study is n.c+ r1 + r2/, where n is the number of subjects and r1 and r2 are the numbers
of repeated measurements by tests 1 and 2. For simplicity, we assume that measurements by the
two diagnostic tests cost the same. We now consider plans that minimize this cost for various
values of c, subject to a constraint on the precision of the comparison. Table 4 provides results
for the parameter values that were considered in Table 3. Again, we look only at the required
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number of diseased subjects (n in Table 4) for plans with StDev.λ̂α/ as close as possible but less
than or equal to 0.05.

Since the optimal number of repeated measurements rises rapidly, we also include the more
plausible case with r1 = r2 =2 to demonstrate the value of using repeated measurements.

In planning a comparison study when repeated measurements are possible, we recommend
setting precision requirements and then investigating var.λ̂/ or var.μ̂1 − μ̂2/ (and the corres-
ponding quantities for specificities) for various values of n, r1 and r2 and a range of plausible
values of the underlying parameters. The approximate variance var.λ̂α/, given by approximation
(8), applies directly to the case–control study where the numbers of diseased and non-diseased
subjects are prespecified. If we instead select a random sample of m subjects (i.e. use a cohort
study) then we replace n by mθ in expressions (4) and (5) where θ is the prevalence of disease in
the study population.

7. Summary and discussion

We examined the analysis and planning of a study to compare two diagnostic tests when a gold
standard is available and it is possible to make repeated measurements by each test on individual
subjects. We can apply the results when we select the subjects for the study at random from the
target population (i.e. use a cohort study) or when we randomly select a fixed number of diseased
and non-diseased subjects from the population premeasured with the gold standard (i.e. use a
case–control study). We propose a bivariate random-effects model that incorporates varying
subject test-specific sensitivities (and separately specificities). For each diseased or non-diseased
subject, the models include a correlation between the sensitivities or specificities for each test.
We showed that simple closed form moment estimates of the average sensitivity and specificity
are virtually identical to the MLEs for a particular random-effects model based on the bivariate
normal distribution.

We give simple expressions that can be used to derive standard errors of the moment estimates,
regardless of the underlying random-effects models. These lead to estimates and approximate
standard errors for the ratio of the average sensitivities (and specificities) between the two tests
under study. For the estimates of the secondary parameters σ1, σ2 and ρ, we suggest using
bootstrapping to obtain approximate standard errors, as performed when comparing two rapid
malaria tests in Section 4.

We use these results to aid in planning a comparison study in terms of the number of subjects
and number of repeated measurements per subject for each test. Depending on the parameter
values, we may see a large reduction in the number of subjects required and the total cost if we
measure each subject more than once with each diagnostic test. We can achieve this reduction
without increasing the total number of test measurements.

We considered study plans in which the number of repeated measurements for a particular
test was the same for each subject. If this number varies from subject to subject, we can use
the moment estimates of the average sensitivities (or specificities), but we need to adjust the
estimates of the variances (4) and covariance (5). In the case where we denote the number of
measurements by test k on subject i as rik the numerator of equation (4) becomes

μk.1−μk/
n∑

i=1
1=rik +σ2

k

n∑
i=1

.rik −1/=rik

n
:

This result allows derivation of a result similar to equation (6) when there are unequal measure-
ments per subject for either test.
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We have presented results for comparing two diagnostic tests. We can extend the moment
estimates given in equations (3), ( 6) and (7) to the comparison of k�3 tests. The joint distribution
of the estimates of the average sensitivities is approximately multivariate normal with variances
and covariances given by equations (4) and (5). We can use this approximation to construct a
test of the hypothesis that there are no differences between the population-average sensitivities
for the k tests.

We examined studies where the true disease status of every subject is verified through the use
of a gold standard. If there is partial verification (Albert and Dodd, 2008), then the moment
estimates are no longer available and we must resort to selecting a specific model and using
maximum likelihood estimation. If no gold standard system is available, then we must use a
cohort study and maximum likelihood estimation for the latent class model generated by the
underlying random-effects distribution. We have not investigated the extended Gaussian random
effects model eGRE in these cases. However, Albert and Dodd (2004) showed that, with latent
class models, we need to exercise extreme caution since the MLEs of the primary parameters
can be severely biased if we fit the wrong model. Unfortunately, in such cases, there is little
information to assess any assumed model.

In industry, manufacturers inspect product with go–no-go gauges (i.e. gauges that check a
part against its allowed tolerances) and functional gold standard tests that provide a pass or fail
determination. The key goal is to protect the customer from receiving non-conforming product.
The results in this paper can be directly applied in the manufacturing context.
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