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A commonly used model to analyze experiments with normal responses does not distinguish between replicates and repeats.
The same problem arises with binary and count responses where we can use a generalized linear model. In this article, we
propose using models that explicitly allow for two sources of variation, that due to replicates and that due to repeats. In
addition, for experiments carried out on high-volume, existing processes, there are often large amounts of data, collected
in different ways, that are available to aid in the planning and analysis of the experiment. We demonstrate the value of using
these available data with two detailed examples. We finish with a brief summary and raise some further issues. Copyright ©
2016 John Wiley & Sons, Ltd.
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Introduction

I
n planning an experiment to investigate a manufacturing process, we must specify the definition of a run as a number of parts or a
period of time with a fixed treatment. There are replicates in the experiment when there are two or more runs with the same
treatment. There are repeats (also called repetitions) when we set up a run and measure the response on two or more parts within

the run. Freeman and Vining1 refer to repeats as sub-samples in their analysis of a life-testing experiment due to Zelen.2 If a run is not
replicated or if there is a single observation within a run, we are left with the awkward language that there is a single replicate or
repeat.

Suppose we have an experiment in which there are two or more repeats within two or more replicates for each treatment. We
expect the variation in the response among replicates to be different than its variation among repeats within the same run. In the
analysis of data from factorial experiments, many practitioners use a model that does not distinguish between these two sources
of variation. In this article, we propose a model that makes this distinction and consider its implications in analyzing normal and
non-normal data.

In our experience, in the context of experiments on existing processes, replicates are rare but repeats are common. One exception
is the use of replicated center points3 in designs with quantitative factors. Typically, adding an extra repeat to each run is much easier
and cheaper than adding a replicate for one or more treatments. We consider two examples in which there is a single replicate for
each treatment but several repeats.

Experiments on existing processes are seldom run in a vacuum. We may have available statistical process control data or the results
from 100% inspection on the process at the current factor settings. In a variation reduction context, Steiner and MacKay4 recommend
starting the project with a baseline investigation such as a multi-vari study5,6 to quantify the variability and look at its behavior over
differing time scales. In this paper, we propose to use these available data from the process to help define a run and specify the
number of repeats and replicates in the experiment. We can then combine the existing and experimental data in the analysis to
increase efficiency and sometimes avoid untestable assumptions about negligible interactions.

Mistakenly analyzing the repeats as replicates is an example of what the ecology and fisheries literatures have called pseudo-
replication; see Hurlbert7 and Millar and Anderson.8 Millar and Anderson8 propose mixed-effect models to handle the fisheries
examples that they consider. Jones and Nachtsheim9 and Lucas and his colleagues (e.g., Ju and Lucas10) warn about the dangers
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of inadvertent split plotting. Treating repeats as replicates can be viewed as one such case. Practitioners do not seem to be aware of
this problem as demonstrated by a number of such analyses reported in the Taguchi Symposia proceedings (e.g., American Supplier
Institute11 and those that followed; there were at least 12 of these symposia).

In the next section, we consider the implications of not using the correct model in analyzing normal responses in the context of
factorial or fractional factorial designs with replicates and repeats. We then look at a model for repeats and replicates for non-normal
data. In the planning stage, we discuss how the available data may be used to help to specify the definition of a run and to choose the
number of repeats. In the analysis stage, we propose a Bayesian approach to combine the available and experimental data. We
demonstrate the proposed ideas with two examples. We finish with a summary and discussion.

Modeling normal responses with replicates and repeats

Suppose we have a balanced factorial experiment with T treatments, J replicates per treatment, and K repeats per run. For simplicity,
we consider only two-level factors. In the analysis of normal data from such an experiment, many practitioners use the model

yijk ¼ αþ xiβ þ rijk ; (1)

where yijk is the response for the ith treatment, jth replicate, and kth repeat. The vector β, the primary parameters of interest, captures
the main effects and interactions (perhaps confounded), and the row vector xi (xi=± 1) gives the settings for the factors on the ith
treatment and the corresponding interactions. The term rijk captures the residual variation. We assume the residuals are independent
and have a common standard deviation. This model does not distinguish between replicates and repeats.

Alternately, we can add a second random effect to separate the variation among replicates and repeats,

yijk ¼ αþ βxi þ Rij þ rijk : (2)

For normal data, we assume the variation among repeats rijk is normal with 0 mean and standard deviation σr and the variation
among replicates Rij are normal with mean 0 and standard deviation σR. As well, we assume rijk and Rij are independent for all i, j,
and k. One consequence of this model is that the response variates for repeats within a run are positively correlated. The correlation is

corr yij1; yij2

� �
¼ σ2R

σ2R þ σ2r

and is large when the variation among replicates is large relative to the variation among repeats. Note that (2) is a split-plot model
with no sub-plot factors and the repeats are the sub-plot observations; see Robinson et al.12 and Jones and Nachtsheim.9

If there is a single repeat for each run, then models (2) and (1) are equivalent and lead to the same analysis and conclusions. When
there is more than one repeat for each run, then using model (1) when model (2) applies may produce misleading conclusions
depending on the relative sizes of σR and σr. On the other hand, using model (2) when σR=0 leads to a loss of power. To examine

these issues more closely, suppose each factor has two levels so the estimate bθ of any main or interaction effect derived from either
model is the difference of the response averages at the high and low levels of the effect. Under model (2), we have

Var bθh i
¼ 4 σ2R þ σ2r =K

� �
TJ

¼ 4σ2

TJ
; (3)

where σ2 ¼ σ2R þ σ2r =K . Under model (1), we set σR= 0 so that Var bθh i
¼ 4σ2r =TJK .

To test a hypothesis such as θ = 0, we need the standard error of bθ , an estimate of the square root of Equation (3). Under either
model, the estimated residuals br ijk are the same, and we have the three-term decomposition of their sum of squares: within runs,
among replicates, and among treatments, as shown in (4),X

ijk

br2ijk ¼ X
ijk

br ijk �br ijþ� �
2 þ K

X
ij

br ijþ �br iþþ
� �2 þ KJ

X
i

br2iþþ: (4)

Note thatbr ijþ ¼
XK
k¼1

br ijk=K is the average estimated residual within the jth replicate of treatment i, br iþþ ¼
X
j;k

br ijk=JK is the average

residual within treatment i, and the overall average of the estimated residuals is 0.
Suppose that model (1) is appropriate (i.e., σR= 0) with two or more replicates per treatment, but we carry out an analysis using

model (2). We would then use the second term in the decomposition (4) to estimate σ2. Then, we have

bσ2 ¼
K
X
ij

br ijþ �br iþþ
� �2
T J � 1ð Þ ; (5)

an unbiased estimate of σ2 with T(J� 1) degrees of freedom. So substituting the estimate (5) for σ2 in (3) leads to a t-test with the
appropriate size. However, there is a loss of power because of the loss of degrees of freedom. Using model (1) in the analysis produces
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a t-test with T(JK� 1) degrees of freedom. If we have no replicates (i.e., J= 1), then the second term of Equation (4) is 0. To estimate σ2,
we must assume certain effects are negligible and further decompose the third term on the right side of (4). Even if the negligibility
assumption is correct, we have fewer than T degrees of freedom in the t-test, so the loss of power can be substantial.

Now suppose instead that model (2) is appropriate and we carry out an analysis based on model (1). Here, we estimate σ2 (actually
σ2r ) in Equation (3) using the first two terms of Equation (4),

bσ2 ¼

X
ijk

br ijk �br iþþ
� �2
T JK � 1ð Þ ¼

X
ijk

br ijk �br ijþ� �2 þ K
X
ij

br ijþ �br iþþ
� �2

T JK � 1ð Þ :

Under model (2),

E bσ2
� � ¼ J K � 1ð Þ

JK � 1
σ2r þ

K J � 1ð Þ
JK � 1

σ2R þ σ2r =K
� � ¼ σ2r þ

K J � 1ð Þ
JK � 1

σ2R;

and so we have a biased estimate of σ2 for use in Equation (3). Furthermore, under model (2), T JK � 1ð Þbσ2 is a weighted sum of χ2

distributions,

bσ2∼
1

T JK � 1ð Þ σ2r χ
2
TJ K�1ð Þ þ Kσ2χ2T J�1ð Þ

� �
;

and hence, the t statistic for bθ
t ¼

bθ � θ

2bσ= ffiffiffiffiffi
JT

p ¼ Zbσ
no longer follows a t distribution. Both the size and power calculated from the assumed t distribution will be incorrect. We can
examine the size problem quantitatively by simulation. For example, suppose we have a 23 design with J= 2 replicates and K= 5
repeats per run. Let f ¼ σ2R= σ2R þ σ2r

� �
be the fraction of the total variation due to the random replication effect. Table I gives the actual

size of the two-sided test for θ = 0 with nominal size 0.05 as f varies. If σ2R is a significant component of the total variation, we are at
increased risk of deciding that an effect is significant when it is, in fact, negligible.

When we have two or more replicates and repeats for each treatment, the run averages yijþ are sufficient for β and σ2 in model (2).

The within-run estimated residuals are independent of the run averages and can be used to estimate σ2r but provide no information
about the treatment effects or σ2. In the design, increasing the number of repeats K reduces σ2 and can lead to a large increase in
power if σ2r dominates σ2R. We can use the experimental data to estimate and compare σ2r and σ2R, which may be helpful in planning
further experiments; see Example 1: normal data.

Non-normal responses for experiments with repeats and replicates

The response in many experiments cannot be described by a model such as Equation (1) or (2) based on normal residuals. Some
examples are given in Chapter 14 of Wu and Hamada.13 We can determine whether or not an individual unit is defective or, less often,
count the number of defects per unit. We might also measure breaking strength or time to failure where a normal model may be
inappropriate. The generalized linear models for a response yijk (McCullagh and Nelder14), linear on the link function scale,
corresponding to models (1) and (2) are

link ηijk
� �

¼ αþ βxi; (6)

with yijk assumed independent and

link ηijk
� �

¼ αþ βxi þ Rij; (7)

where, for convenience, we suppose Rij~N(0, σR) and, given Rij, yijk are independent, and E(yijk) = ηijk. Model (6) does not distinguish
between replicates and repeats, whereas model (7) accounts separately for both between-run and within-run variability. In an
experiment with replicates and repeats, if we use model (6) when model (7) is appropriate, we cannot expect that the estimates based
on model (6) will behave as predicted.

Table I. Actual size of the t-test assuming model (1) when model (2) is correct

f 0.1 0.3 0.5 0.7 0.9

Size 0.055 0.069 0.087 0.113 0.149
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In the normal case, we saw that if model (2) is appropriate, using model (1), we can analyze the within-run averages (or sums)
without any loss of efficiency. Suppose that yijk is binary and we have a logistic link in model (7). Then, given the random effect Rij,

the within-run sums
X
k

yijk are binomial, but marginally, they are not. That is, unlike the normal case, using model (6) and the

within-run sums with a logistic link leads to an incorrect analysis. We see the same problem if yijk given Rij is Poisson with the log link.
It is possible to analyze experimental data using model (7) with both replicates and repeats using a frequentist approach with the

lmer function in the lme4 package of R.15 However, in this article, we consider a Bayesian approach that provides an easy way to
evaluate functions of the model parameters such as the probability of meeting a specification. We plan to use available process data
to estimate σR to aid in the planning of the experiment and to combine the available and experimental data in the analysis. A Bayesian
approach with vague priors is a convenient way to proceed.

Available process data

We showed that replicates and repeats in a factorial experiment should be differentiated by the model used to describe the response.
Here, we consider some planning and analysis issues for such experiments.

Suppose the goal of the experiment is to find factors that can be used to adjust the process average for the response of interest
that may be continuous, binary, or a count. We consider the issue of deciding on the nature and number of repeats and replicates. We
limit the discussion to experiments on existing processes where the factors under consideration are normally fixed. That is, in the
current process, these factors do not change and hence do not contribute directly to the variation in the output.

We also assume that there are data available collected from the process with the experimental factors held fixed at their current
levels. These historical data for the response of interest can take many different forms. Examples include a control chart with a fixed
sampling plan, 16 inspection records (the results of 100% inspection are the most useful), or a multi-vari study5,6 looking for important
families of variation. These data provide some idea of the pattern of variation in the current process.

For planning purposes, we make the assumption that when the experimental factors are changed to a particular treatment
combination and then left fixed, the process average may shift but the pattern of variation remains the same. Further, we assume that
if the same treatment combination is replicated, re-setting the factor levels makes a negligible contribution to the variation. That is,
when we execute the selected design, we assume changes in factor settings make a negligible contribution to σR.

Under these assumptions and depending on the nature of the available data, for any proposed run definition, we may be able to
obtain some information about σR and, in the case of a normal response, some information about σr as well. We use this information
to help plan the experiment. The pattern of variation in the available data may also suggest possible blocking schemes.

In the analysis, we propose to combine information from the historical data with that provided by the experiment. For
convenience, we take a Bayesian approach.

Example 1: normal data

In order to reduce the proportion of leaking seals in a battery case, an improvement team decided to conduct an experiment to
increase the tensile strength of the seal. The goal of the experiment was to increase the average tensile strength to at least 440 lb.
We have preserved the (incorrect) vernacular for the units of tensile strength; see Steiner and MacKay4 (page 228) for more details.
As part of a preliminary analysis, the team sampled 100 parts over 1week to establish a baseline for the process average and standard
deviation. Based on these data, the estimates of the process average and standard deviation were 389.3 and 44.9, respectively. The
process average strength was well below the target. Other than these summaries, the baseline data played no further part in the
team’s analysis or conclusions.

The team planned a 23 full factorial experiment. Within each of the eight runs, there were five repeats. No reasons were given for
either the design or the number of repeats. The order of the runs was randomized. The data are given in Table II. Because the
experiment had no replication, the analysis was based on a half-normal plot (not shown) of the seven estimable factor effects. The
effect of factor A stood out over all others. After some further simple experimentation to determine an appropriate value, the level
of A was changed in the process with satisfactory results. The average seal strength increased, and the leak rate decreased. The
project was deemed successful.

In hindsight, it was noticed that the baseline data had been collected in 20 subgroups of five consecutive batteries over the 5-day
sampling period. The data are shown in Table III. How might these available data have been used to justify the experimental plan and
to augment the simple analysis?

We start with the analysis. The average and standard deviation Shewhart charts (Figure 1) show that the process is close to being
stable with a single point on the S chart out of control. Given how the experiment was planned with five repeats per run, we can use
the available data to gain information about both σR and σr. Assuming that model (2) applies to the baseline data with a single
treatment (current conditions), we obtain estimates bσR ¼ 15:9 and bσ r ¼ 43:2 from a one-way analysis of variance.

Using (3) and only the baseline data, the estimate of the standard error for any main effect or interaction is 12.5. Instead of
relying on the half-normal plot, we can use this standard error to isolate significant effects. Note that the within-run variation is
dominant here so the repeats are very useful. After the experiment is run, we can obtain an improved estimate of σr by
combining the within-run residuals for both the available and experimental data, although the gain in degrees of freedom is
relatively small in this case.
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Table III. Seal strength baseline data

Subgroup

1 2 3 4 5 6 7 8 9 10

381 406 320 356 368 430 409 396 354 505
457 353 370 378 429 447 433 330 392 443
503 375 391 491 452 383 428 348 379 260
481 433 390 360 393 451 387 339 416 403
405 445 436 406 314 394 371 383 407 351

Subgroup

11 12 13 14 15 16 17 18 19 20

425 379 319 356 329 375 464 407 365 399
406 377 330 391 392 352 343 407 397 469
361 351 367 322 375 433 403 390 288 362
383 350 335 334 373 426 377 384 372 411
368 402 450 391 331 353 442 359 404 421

Table II. Seal strength experimental plan and data

Treatment A B C Tensile strengths

1 Low Low Low 413 505 489 452 465
2 High Low Low 468 493 484 393 423
3 Low High Low 383 368 280 377 370
4 High High Low 383 365 352 389 353
5 Low Low High 440 415 483 395 433
6 High Low High 466 387 505 393 456
7 Low High High 399 294 317 300 337
8 High High High 373 379 383 385 345

Figure 1. Control charts for the available seal strengths
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A Bayesian approach is an alternate way to combine the data. We assume that model (2) is appropriate for both the available
and experimental data. The model has 10 parameters: the mean μ for the baseline; the intercept for the experiment α; six
factor effects (A, B, and C main effects and AB, AC, and BC two-factor interactions denoted by β2 to β7); and two standard deviations
(σR and σr). Although not necessary, we assume that the three-factor interaction is negligible, so that the experiment gives a small
amount of information about σR. We select diffuse priors (assuming independence) as shown in Table IV.

We used WinBUGS17 to analyze the data that produce samples from the posterior distribution through Markov chain Monte Carlo
algorithms like the Metropolis–Hastings algorithm18; see Appendix A for the WinBUGS code for the seal strength example. Table V
displays the median and 95% probability interval of the marginal posterior distributions for the model parameters and confirms that
changing the level of factor B and none of the other factors or interactions effects the seal strength.

To demonstrate the convenience of the analysis, suppose we want to estimate (i.e., find the posterior median and central
95% of the posterior distribution) for λ= P(Y> 440). Here, Y is the seal strength of a randomly selected battery when
factor B is set to its low level and the other two factors are at their original levels (A low, C high). Given α,β2,…, β7, σr, σR, we

have λ ¼ 1�Φ 440� α�β2�β3þβ4þβ5�β6�β7ð Þffiffiffiffiffiffiffiffiffiffi
σ2r þσ2R

p
	 


, where Φ is the standard normal cdf. WinBUGS produces a large number of samples

from the joint posterior distribution of α,β2,…, β7, σr, σR that we can substitute into the expression for λ and hence determine
its posterior distribution. The median is 0.43, and the 95% probability interval is (0.13, 0.79).

We can see the quantitative value of using the available process data by analyzing only the experimental data using the same
priors as before. Table VI shows that the factor B main effect (i.e., β3) is important but with greater uncertainty. For λ= P(Y> 440)
as defined earlier, the corresponding median and 95% probability interval are 0.43 and (0.07, 0.87). Incorporating the available data
into the analysis significantly reduces the uncertainty.

The project team made no explicit use of the available data when they designed the experiment. In hindsight, looking at the
available data, the team could have seen the following:

• substantial benefit in increasing the number of repeats because the within-run variation is dominant, especially if the anticipated
effects are small;

• for the same reason, little benefit in introducing replication; and
• no need for blocking because, as seen in Figure 1, there are no systematic patterns in the response over time.

In this experiment, it was relatively easy to randomize the order of the runs. If randomization had not been possible or exorbitantly
expensive, Figure 1 shows no systematic patterns in the variation, and so these data provide some assurance that there are no lurking
variables that might confound the conclusions of the experiment.

Example 2: experiment with binary data

We received the case study report that contains this example in confidence. Hence, we have provided little detail of the process,
factors, or changes based on the analysis of the data. The experimental description and data are real. The process data that were
available when the experiment was conducted unfortunately no longer exist.

Table IV. Seal strength prior distributions

Parameter Prior

μ, α Normal(0,10002)
β2,…, β7 Normal(0,102)
σR, σr Uniform(0,100)

Table V. Seal strength posterior distribution summaries

Parameter Median 0.95 Probability interval

μ 389.40 (379.10, 399.70)
α 402.20 (386.40, 418.90)
β2 6.20 (�10.17, 22.52)
β3 �45.37 (�61.83, �29.38)
β4 �7.92 (�24.12, 8.41)
β5 7.67 (�8.732, 23.77)
β6 �2.53 (�13.67, 18.95)
β7 6.27 (�10.03, 22.62)
σr 41.97 (37.05, 48.17)
σR 12.0 (0.95, 26.23)
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In an injection molding process, a clear lens is inserted into the mold, and then plastic is added to seal the lens within the rest of
the part. The completed parts are subject to 100% inspection. A screening experiment was planned to identify and change some
normally fixed process factors with the goal of reducing crazing, a stress cracking problem. The degree of crazing was measured
on a three-point ordinal scale. There was fear that the changes to reduce crazing might lead to an increase in other defect types.
For illustration, we concentrate on splay defects, white streaking on the finished part. The team hoped to find factors that could
be changed to reduce crazing without affecting the frequency of splay.

The experiment had 16 runs with 11 factors, labeled A–K, each at two levels. The factors did not change under normal operation.
Each run consisted of 10 shots, that is, repeats. The factors were changed according to the treatment, and then the process was
allowed to settle before the 10 consecutive parts were selected. There was no replication or blocking. The order of the runs was
randomized. The degree of crazing and the presence or absence of splay were determined for each part in the run. The design in
standard order and the data (number of parts out of 10 with splay) for each run are given in Table VII.

The original analysis for the splay data used a half-normal plot (Figure 2) of the 15 effects to see if any main effects stood out. No
factor appeared to be significant.

The crazing response was analyzed separately in a similar naïve way and showed that two of the factors had a significant effect.
The team was happy with these findings because it appeared that changing either of these factors would have little effect on splay
and reduce the average crazing score.

Now we suppose that historical data from the 100% inspection had been considered. For our purposes, we assume that records
were kept for each part in production order. As noted earlier, the data no longer exist. To provide independent information about
σR, we look at a set of pseudo-runs of the experiment. That is, we sample groups of consecutive parts from the historical record so
that each group mimics the definition of a run in the experiment. We limit the sampling to a period of production when there were
no changes to the factors of interest in the experiment. Here, we demonstrate the idea using the realistic but artificial data
summarized in Table VIII based on a sample of 100 pseudo-runs of 10 consecutive parts. A p-chart (not given) shows no evidence
of instability.

Table VI. Seal strength posterior distribution summaries (experimental data
only)

Parameter Median 0.95 Probability interval

α 402.30 (368.10, 436.70)
β2 6.52 (�28.11, 39.34)
β3 �44.93 (�75.41, �8.44)
β4 �7.79 (�40.78, 24.87)
β5 7.44 (�27.22, 40.27)
β6 2.55 (�31.52, 36.06)
β7 6.22 (�28.68, 39.49)
σr 37.68 (29.94, 49.31)
σR 25.07 (1.03, 93.1)

Table VII. Experimental design and number of defects per run

Run A C K D G E B F H I J Number of parts with splay

1 �1 �1 1 �1 1 1 �1 �1 1 1 �1 0
2 �1 �1 1 �1 1 1 �1 1 �1 �1 1 5
3 �1 �1 1 1 �1 �1 1 �1 1 1 �1 0
4 �1 �1 1 1 �1 �1 1 1 �1 �1 1 2
5 �1 1 �1 �1 1 �1 1 �1 1 �1 1 1
6 �1 1 �1 �1 1 �1 1 1 �1 1 �1 1
7 �1 1 �1 1 �1 1 �1 �1 1 �1 1 1
8 �1 1 �1 1 �1 1 �1 1 �1 1 �1 0
9 1 �1 �1 �1 �1 1 1 �1 �1 1 1 1
10 1 �1 �1 �1 �1 1 1 1 1 �1 �1 2
11 1 �1 �1 1 1 �1 �1 �1 �1 1 1 2
12 1 �1 �1 1 1 �1 �1 1 1 �1 �1 3
13 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1 3
14 1 1 1 �1 �1 �1 �1 1 1 1 1 3
15 1 1 1 1 1 1 1 �1 �1 �1 �1 3
16 1 1 1 1 1 1 1 1 1 1 1 5
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We carried out a Bayesian analysis for the combined data in Tables VII and VIII using model (7) and a conditional binomial
distribution with logit link. For the available data in Table VII, there are no treatment effects (but a baseline intercept μ). For the
experimental data, we used model (7) with 12 treatment effects (overall experimental mean α and 11 factor main effects). We assume
that σR is the same for both data sets but that the ‘mean’ levels μ and α may be different. There are 14 parameters in total. We use
WinBUGS17 with the diffuse priors given in Table IX; see Appendix A for the WinBUGS code for this example.

The purpose of the experiment was to screen for large main effects among the 11 factors. We summarize the posterior
distributions of these main effects in Table X. We see that the factor F main effect (β9) is important and likely the factor I main effect
(β11) is as well. These effects were missed in the analysis using only the experimental data.

Now suppose we are in the planning stage for this screening experiment, and we want to make use of the available data. Consider
an experiment with J replicates per treatment and K repeats per run. Select a systematic sample of N pseudo-runs from recent history

Figure 2. Half-normal plot of the splay factor effects

Table VIII. Frequency of splay defects in pseudo-runs

Number of defects 0 1 2 3 4 ≥5

Number of pseudo-runs 56 17 18 7 2 0

Table IX. Prior distributions for the splay example

Parameter Prior

μ Normal(0,102)
α Normal(0,1002)
β2,…, β12 Normal(0,102)
σR Uniform(0,10)

Table X. Posterior distribution summaries for the splay example

Parameter Median 0.95 Probability interval Parameter Median 0.95 Probability interval

α �2.82 (�3.32, �2.44) β7 �5.17 (�18.73, 8.33)
μ 33.63 (16.95, 58.53) β8 5.23 (�18.70, 8.08)
β2 4.65 (�9.23, 18.95) β9 13.36 (0.33, 27.97)
β3 �12.25 (�27.04, 1.73) β10 �3.16 (�17.58, 10.39)
β4 4.47 (�9.41, 19.27) β11 13.33 (�0.14, 28.00)
β5 �5.31 (�18.83, 7.71) β12 �2.99 (�17.45, 10.54)
β6 �5.43 (�18.69, 8.10) σR 1.028 (0.588, 1.557)

M. S. HAMADA ET AL.

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 657–668

6
6
4



when no experimental factor was changed. The time between the pseudo-runs should be the same as the planned time between
runs in the experiment. Plot the proportion of defects per run over time looking for regular patterns of variation that suggest
opportunities for blocking. For example, if there is a systematic shift-to-shift effect, then blocking over shifts should be built into
the experimental design. Next, we fit model (7) augmented by fixed block effects to the available data with the goal of estimating
the extra between-run variation σR. In our example, there was no indication that blocking was necessary, and using the vague priors
in Table IX and the data in Table VIII, we find that median value of the posterior for σR is 1.06 with 95% probability interval (0.60, 1.61).

For simplicity, suppose we decide that blocking is unnecessary. Roughly speaking, for any particular treatment, the more precisely
we can estimate the probability of a defect with that treatment, the more power we will have in the experiment to detect significant
effects. Let y be the number of defects in any particular run. Then, using model (7), we have

Yj R ¼ rð ÞeBinom K ; p rð Þð Þ ; p rð Þ ¼ exp αþ rf g
1þ exp αþ rf g ; ReN 0; σRð Þ;

where α depends on the particular treatment. We further assume independence among the runs. Using the conditional variance
formula, we can show (Appendix B) that for any treatment with J replicates and K repeats, the corresponding variance of the
proportion of defects is

E p Rð Þ½ � 1� E p Rð Þ½ �ð Þ
JK

þ K � 1

JK
Var p Rð Þ½ �: (8)

If among replicate variation σR goes to zero, the second term in Equation (8) vanishes, and only the binomial variation, p(0), the first
term in Equation (8), remains. As the number of repeats K increases, the second term in Equation (8) is almost unchanged. Also, as the
number of replicates J increases, the variance goes to zero. Thus, Equation (8) suggests that, from a statistical perspective, a replicate
is always better than a repeat. On the other hand, replicates are likely to be more expensive than repeats. Using the available data, we
can estimate σR to see which of these two terms dominates as α or the probability of a defect changes. This gives a rough idea of the
relative value of repeats versus replicates.

We quantify the trade-off by comparing the case J= K=1 with either K= 1 and J= a (a replicates with a single repeat) or K= a and
J= 1 (single replicate with a repeats). Using r replicates will reduce the variance in Equation (8) by a factor of 1/a, while using a repeats
will result in a smaller reduction. We are interested in comparing how much smaller a reduction is achieved using repeats rather than
replicates. From Equation (8), the percentage reduction available using a repeats rather than a replicates is 100(1�Var(p(R))/[E(p(R)
(1� p(R)))]). Note that this result does not depend on a.

In our example, using the available data only, we have plausible values for σR in the range (0.60, 1.61). For these values, Table XI
shows the percentage reduction from using repeats rather than replicates, that is, the relative benefit of increasing the number of
repeats compared with increasing the number of replicates as p(0) = exp(α)/(1 + exp(α)) varies.

As mentioned earlier, in all cases, adding an extra replicate rather than a repeat for each treatment will lead to a greater reduction
in the variance of the proportion defective for any treatment. However, in many cases, the benefit of adding repeats is close to that of
adding replicates. For instance, with σR=1.06 and p(0) = 0.20, using repeats results in 84.1% of the reduction in the variance of the
proportion defect we could obtain by instead using replicates.

In general, for other values of σR and p(0) and for any given choice of J and K, we can estimate Equation (8) to examine how
precisely we can estimate a treatment proportion of defects.

The aforementioned analysis breaks down if the number of repeats is large as we do not expect the between-run variation
quantified by σR to stay the same. If we have sufficient inspection data as in the example, we can investigate different choices of K
with appropriate sampling from the records.

Discussion

In this paper, we consider the issue of differentiating between repeats and replicates in factorial experiments conducted on
high-volume, data-rich processes. For normal data, we look at a model with two independent sources of variation and quantify
possible errors resulting from treating repeats as replicates. For more general situations when we model the response with a
generalized linear model, we include an extra source of variation to distinguish between the within-run and between-run variations.

In this context, there are often considerable data available before the experiment. As we show by example, these data may be used
in the planning stage to define blocking schemes and to determine the relative value of repeats and replicates. We also demonstrate

Table XI. Percentage benefit of a repeat versus a replicate (compare relative benefit of J= K= 1 with J= a, K= 1, or J= 1, K= a)

p(0)

σR 0.05 0.10 0.20 0.30 0.50

0.60 97.9 96.3 94.3 93.1 92.3
1.06 91.3 87.7 84.1 82.3 81.1
1.61 78.2 74.2 70.7 69.2 68.3
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the value of the available data when it is incorporated into the analysis with the experimental data. We can increase the sensitivity of
the experiment and sometimes avoid untestable assumptions such as the negligible effects of high-order interactions.

There are many reasons for conducting experiments on existing processes. For example, suppose we want to desensitize the
output to the variation in an identified noise factor z that normally varies in the process. In the experiment, we control z at two or
more levels and vary a number of normally fixed factors with the goal of identifying suitable interactions between z and the control
factors. It is not clear how to use available data in this case. In many experiments, as in the splay example, there are multiple outputs
and data available on all of them. Again, it is unclear how to incorporate the data into the planning and analysis of the experiment.

Models (2) and (7) imply a form of stability for the process with two sources of variation within and between runs. We suggest
using run or control charts to examine the behavior of the process over time. We may be able to deal with other systematic
(over time) sources of variation using blocking. However, if the variation is unpredictable (e.g., say in the splay example, the process
had large unpredictable spikes in the number of splay defects), it is advisable to first bring the process into some semblance of control
before trying to conduct experiments.

We have adopted a pragmatic Bayesian approach to our analyses. WinBUGS17 can easily deal with the combined available and
experimental data.

Appendix A

This appendix provides WinBUGS code for the combined analysis of the available process data and the experimental data for the seal
strength (normal) and crazing (binomial) examples.

Seal strength example

model
{
for(i in 1: NP) {

strength[i] ~ dnorm(muP[i],tauRepeat)
muP[i]< -muP0 + thetaP[subgroup[i]]

}
for(j in 1: NPsg){
thetaP[j] ~ dnorm(0,tauReplicate)
}
for(i in 1: N) {

mu[i]< - beta[1] + beta[2]*x1[i] + beta[3]*x2[i] + beta[4]*x3[i] + beta[5]*x1x2[i] + beta[6]*x1x3[i] + beta[7]*x2x3
[i] + thetaE[run[i]]

Y[i] ~ dnorm(mu[i],tauRepeat)
}
for(j in 1:nRun){
thetaE[j] ~ dnorm(0,tauReplicate)
}

#priors
beta[1] ~ dnorm(0.0,1.0E-6)
for(k in 2:7){
beta[k] ~ dnorm(0.0,1.0E-4)
}
A< -100
sigmaReplicate ~ dunif(0,A)
tauReplicate< - pow(sigmaReplicate, -2)
B< -100
sigmaRepeat ~ dunif(0,B)
tauRepeat< - pow(sigmaRepeat, -2)
muP0~ dnorm(0.0,1.0E-6)
}

Data
list(NP = 100,N = 40,nRun = 8,NPsg = 20) #5 repeats
Inits
list(beta = c(0,0,0,0,0,0,0),sigmaReplicate = 10,sigmaRepeat = 45,

thetaE = c(0,0,0,0,0,0,0,0),muP0 = 389
)

Splay example

model{
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for(i in 1: NP) {
yy[i] ~ dbin(p[i],n[i])
p[i]< - exp(logitp[i])/(1 + exp(logitp[i]))
logitp[i]< -muP0 + thetaP[run[i]]

}
for(j in 1: NP){
thetaP[j] ~ dnorm(0,tauReplicate)
}
for(i in 1: NE) {

logitpp[i]< - beta[1] + beta[2]*A[i] + beta[3]*C[i] + beta[4]*K[i] + beta[5]*D[i
beta[6]*G[i] + beta[7]*E[i] + beta[8]*B[i] + beta[9]*F[i]+

beta[10]*H[i] + beta[11]*II[i] + beta[12]*J[i]+
thetaE[runE[i]]

pp[i]< -exp(logitpp[i])/(1 + exp(logitpp[i]))
y[i] ~ dnorm(pp[i],10)
}
for(j in 1:nRun){
thetaE[j] ~ dnorm(0,tauReplicate)
}

#priors
beta[1] ~ dnorm(0.0,1.0E-4)
for(k in 2:np){
beta[k] ~ dnorm(0.0,1.0E-2)
}
AA< -10
sigmaReplicate ~ dunif(0,AA)
tauReplicate< - pow(sigmaReplicate, -2)
muP0~ dnorm(0.0,1.0E-2)

}
Data
list(NE = 16,nRun= 16,np= 12,NP= 100)
Inits
list(beta = c(0,0,0,0,0,0,0,0,0,0,0,0),sigmaReplicate = 1,

thetaE = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
)

Appendix B

In this appendix, we derive the variance of the proportion of defects for a particular treatment as given by Equation (8). Let Yjk be a
binary random variable corresponding to the jth replicate and kth repeat. Then, denoting p1, p2,…, pJ as the replicate effects for
replicates 1, 2, …, J, and p as the generic replicate effect, we have

Var

XJ

j¼1

XK

k¼1
Yjk

JK

0
@

1
A ¼ 1

J2K2 Var E
XX

Yjk

� �
p1;…; pJj

� �
þ E Var

XX
Yjk

� �
p1;…; pJj

� �� �h i

¼ 1

J2K2 Var K p1 þ⋯þ pJð Þð Þ þ E Kp1 1� p1ð Þ þ⋯þ KpJ 1� pJð Þð Þ½ �

¼ 1

JK
KVar pð Þ þ E pð Þ � E p2

� �� � ¼ 1

JK
K � 1ð ÞVar pð Þ þ E pð Þ 1� E pð Þð Þ½ �
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