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Suppose we plan to assess a binary measurement system when the misclassification probabilities vary

from part to part. We consider the estimation of the average error probabilities of such a system when a

gold standard (error-free) system is available to verify the status of any part. We examine plans where we

first measure a sample of n parts r times each with the binary measurement system. Then we study the

impact on the precision and robustness of the estimates if we use the gold-standard system to verify the true

status of none, some, or all of the sampled parts. We show that a partial verification plan has comparable

performance to full verification in terms of the precision and robustness of the estimates while requiring

as few as 10% of parts to be verified. When the gold-standard system is expensive or time consuming,

eliminating the need to verify all parts dramatically reduces the cost of the assessment study.
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1. Introduction

I
N THIS PAPER, we propose a new, efficient plan

for assessing the average misclassification-error
probabilities of a binary measurement system (BMS).
We use the term “assessment” to replace “measure-
ment system analysis” for a BMS. Many BMSs are
used for 100% inspection to reduce the risk that a
customer receives nonconforming product. For exam-
ple, a vision system inspects fascias for ghosting, a
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surface defect that is either present or absent. In a
second example, discussed in more detail later, an au-
tomated gauge measures a large number of continu-
ous characteristics on a camshaft. A camshaft is con-
forming if all the characteristics meet specifications.
A camshaft passes the inspection if the gauge deter-
mines that every measured characteristic is within
specification; otherwise, the part fails the inspection.
In both of these cases, the BMS is nondestructive
and we can measure the same part repeatedly if we
choose.

A BMS makes an error if it passes a non-conform-
ing part or fails a conforming part. For any part, let
X be 1 if the part is conforming and 0 otherwise.
We denote by πC the probability that a randomly
selected part is conforming. Also, let Y be 1 if the
part passes inspection and 0 otherwise. For many
binary measurement systems, some parts are more
difficult to classify correctly than others (De Mast
et al. (2011)). For any particular part, we denote
the part-specific error probability as α for a non-
conforming part and β for a conforming part. We
interpret α and β as the long-run error probabilities
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for that particular part if it is measured repeatedly.
Following Danila et al. (2012), we treat α and β as
random effects, varying from part to part, and char-
acterize the performance of the BMS by the aver-
age error probabilities μA = E[α] and μB = E[β].
Given that a part is nonconforming, we interpret
μA = P (Y = 1 | X = 0) as the probability that
a randomly selected part passes an inspection by the
BMS and μB similarly. To assess the BMS, our goal
is to estimate μA and μB. Throughout, we assume
that μA and μB are small, i.e., the BMS is reason-
ably good, and that πC is large to reflect the overall
high performance of most industrial processes.

We assume that a gold standard-measurement sys-
tem (GSS) is available so that the true conforming
status of any part can be verified. The GSS is some-
times called a perfect reference system and the true
status of a part is called the reference value. As noted
by a referee, there are many BMSs where a GSS is
not available. In that case, to estimate μA and μB,
a sample of parts is measured repeatedly and the
data are modeled treating the true status of each
sampled part as a latent variable. See, for example,
Danila et al. (2012), Van Wieringen and De Mast
(2012), Beavers et al. (2011), and Boyles (2001). In
the medical literature, repeated measurements by the
BMS are often replaced by multiple diagnostic tests.
See, for example, Qu et al. (1996), Albert and Dodd
(2004), and Pepe and Janes (2007). When a GSS is
available, the simplest assessment plan is to measure
a sample of n parts r ≥ 1 times and then determine
the true status of each part with the GSS. We call
this full verification. For example, see Danila et al.
(2008), Farnum (1994), and Burke et al. (1995) in
an industrial setting and Pepe (2003) in the medical
context.

The GSS may be destructive or expensive and
time consuming, as is the case in the camshaft ex-
ample. To avoid the burden of measuring every part
with the GSS, we propose a class of partial verifica-
tion plans:

Phase I: Measure a randomly selected sample of n
parts r times with the BMS under consid-
eration.

Phase II: Use the GSS to determine the conforming
status of a subsample of these parts delib-
erately selected based on the frequency of
passes in phase I.

Partial verification of subjects in the assessment
of diagnostic tests has been considered in the medi-

cal literature. The paper by De Groot et al. (2011)
has many references. A major concern is bias in the
estimates that can occur if the subjects verified are
self-selected or chosen for ethical reasons. These con-
siderations are not relevant in the industrial context
where verification is strictly controlled by the inves-
tigator.

The remainder of the paper is laid out as follows.
In the next section, we describe the model assumed
for generating the data and develop the likelihood for
the observed data for the general two-phase partial-
verification plan. In Section 3, we provide an exam-
ple and show numerically the benefits of employing a
partial-verification plan. In Section 4, we show that,
if the subsample of parts selected for verification in
phase II is well chosen, the proposed plan provides
estimates of μA and μB that are almost as precise as
the estimates from the plan with complete verifica-
tion and much more precise than the estimates from
the plan with no verification. In addition, we discuss
planning of both phase I and II and look at the ro-
bustness of the proposed plan. Finally, in Section 5,
we summarize the proposed plan and discuss some
additional issues.

2. Modeling and Likelihood

We assume that measurements made on different
parts are independent. To describe the results of the
repeated measurements of each part in phase 1, let
Y1, . . . , Yr represent the output of the BMS for a sin-
gle part. If the part is nonconforming with error prob-
ability α, we assume that Y1, . . . , Yr are conditionally
independent so that

P (Y1 = y1, . . . , Yr = yr | X = 0, α) = (1− α)sαr−s,

where s =
∑r

1 yi is the number of times the part
passes inspection. Similarly, if the part is conforming
with error rate β and the repeated measurements are
conditionally independent, we have

P (Y1 = y1, . . . , Yr = yr | X = 1, β) = (1− β)sβr−s.

In both cases, the number of passes S is a sufficient
statistic. As in Danila et al. (2012), we suppose the
part-to-part variation in the error probabilities α or
β are described by beta distributions parameterized
to have means μA and μB, the parameters of interest,
and γA and γB, nuisance parameters related to the
standard deviation of the random effects. The density

Vol. 48, No. 2, April 2016 www.asq.org



130 DANIEL E. SEVERN, STEFAN H. STEINER, AND R. JOCK MACKAY

function for the random effect α is
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) , 0 < α < 1,

where Beta(u, v) is the beta function. If γA ap-
proaches 0, the random effects becomes constant
at μA. As γA increases, the standard deviation
of the random effects increases to its maximum√

μA(1− μA). We make similar assumptions for β.
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Similarly, for any conforming part,

P (S = s | X = 1)
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In phase I, we observe the number of passes and not
the conforming status of any part, so the probability
that a phase I part passes s times is

P (S = s) = P (S = s | X = 0)(1− πC)
+ P (S = s | X = 1)πC

= ps + qs, 0 ≤ s ≤ r,

where ps = P (S = s | X = 0)(1 − πC) and qs =
P (S = s | X = 1)πC .

To construct the phase I likelihood, recall that we
assume measurements on different parts are indepen-
dent and, for each part, the number of passes S is suf-
ficient. Let ns be the number of phase I parts with
s passes out of r repeated measurements. We say
these parts are in bin s. If θ = (μA, μB, πC , γA, γB),
the phase I log likelihood based on a multinomial
distribution for the observed data (n0, n1, . . . , nr) is

lI(θ) = c +
r∑

s=0

ns ln(ps + qs), (1)

where c is a constant not depending on θ.

In phase II, we select parts for verification by the
GSS using stratified random sampling from the bins

TABLE 1. Data Summary

Number of passes (bin #) 0 1 . . . r
Number of parts (phase I) n0 n1 . . . nr

Number verified v0 v1 . . . vr

Number conforming among
verified parts (phase II) u0 u1 . . . ur

of parts with s = 0, 1, . . . , r passes. That is, we ran-
domly select vs parts for verification from bin s,
where 0 ≤ vs ≤ ns. If vs = 0, no parts are ver-
ified from bin s, and, if vs = ns, all parts from
bin s are verified. We discuss good choices for vs,
s = 0, 1, . . . , r later.

Because measurements on different parts are in-
dependent, we need only to record us the number of
the vs parts sampled from bin s that are conform-
ing. The data and notation are summarized in Table
1. Note that the two-phase plan includes as a spe-
cial case full verification where all parts are verified,
i.e., vs equals ns for all s. The plan also includes the
no-verification plan presented in Danila et al. (2012),
where vs is set to 0 for all s.

The probability of us conforming parts from the
vs parts in bin s is

P (Us = us | S = s)

=
(

vs

us

)
P (x = 1 | S = s)usP (x = 0 | S = s)vs−us

=
(

vs

us

)(
ps

ps + qs

)us
(

qs

ps + qs

)vs−us

, 0 ≤ us ≤ vs.

So, the phase II log likelihood is

lII(θ) = d +
r∑

s=0

[
us log

(
ps

ps + qs

)
+ (vs − us) log

(
qs

ps + qs

)]
, (2)

where d is a constant. Combining phases I and II, the
overall log likelihood, ignoring additive constants, is
the sum of Eqs. (1) and (2),

�(θ) =
r∑

s=0

(ns − vs) log(ps + qs) + us log ps

+ (vs − us) log qs. (3)

We maximize Eq. (3) numerically to find the
maximum-likelihood estimates (MLEs). We derive
approximate standard errors using the asymptotic
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TABLE 2. Camshaft Data

Number of passes (s) 0 1 2 3 4 5
Number of camshafts (ns) 29 9 7 33 132 290
Number verified (vs) 0 0 7 33 0 0
Number conforming among

verified camshafts (us) 0 0 5 33 0 0

properties of the log likelihood from the diagonal ele-
ments of the inverse of the observed information ma-
trix. Matlab code (2008) to find the MLEs and ap-
proximate standard errors is available upon request
from the authors. See the Appendix for a justifica-
tion of the asymptotic approximations based on the
expected information matrix.

3. Camshaft Example

The context is real, but we constructed the data to
be realistic. An automated gauge determines whether
or not the lobes on a camshaft are within specifica-
tion with respect to their geometry. Each of the 12
lobes is checked for six continuous critical charac-
teristics. If one or more of these characteristics are
out of specification for any lobe, the camshaft is re-
jected for scrap or rework. The binary measurement
system is used for 100% inspection. Individual gauge
R&R studies on specific continuous characteristics
are conducted by lobe on a regular basis. It is known
that these characteristics are correlated. To assess
the overall performance of the BMS, 500 camshafts
were measured 5 times each with the automated
gauge and the number of times that each passed was
recorded. The geometry of each of the 40 problem-
atic camshafts that passed 2 or 3 times out of the 5

repeated measurement made in phase I was also mea-
sured using a high-precision coordinate-measuring
machine, here taken to be the gold standard. Five
of the seven camshafts that passed twice in phase I
were found to be nonconforming on one or more of
the 72 characteristics. None of the 33 camshafts with
three initial passes were out-of-specification for any
characteristic. The data are given in Table 2.

We show the maximum-likelihood estimates and
their associated asymptotic standard errors in Ta-
ble 3. For comparison, Table 3 also gives the esti-
mates obtained without using the verification data
(i.e., maximizing the phase I likelihood of Eq. (1)).
In Table 3, we also quantify the benefits of using
the verification data in terms of reduced standard er-
rors. With the partial verification plan, the primary
parameters μA, μB, and πC are estimated with good
precision but the nuisance parameters γA and γB are
poorly estimated.

Compared with the no-verification plan, using
partial verification (here the GSS measured only 8%
of the phase I parts) results in a large reduction in the
standard errors of all the parameter estimates, par-
ticularly those relating to nonconforming parts, i.e.,
μA and γA. Of the three primary quantities of inter-
est, μA is estimated with the least precision. Note
that μA affects the customer, making it perhaps the
most important characteristic of the BMS.

4. Proposed Two-Phase
Partial-Verification Plan

We have many options in defining a two-phase
plan. We do not look for an optimal choice that
would depend on the relative costs of making mea-
surements with the BMS and GSS and the values of

TABLE 3. Camshaft Example Estimation Summary

Parameter μA μB πC γA γB

Without verification
Estimate 0.0661 0.0935 0.9208 0.0483 0.0301
Std. error 0.0690 0.0093 0.0181 0.3032 0.0336

With Partial verification
Estimate 0.0902 0.0896 0.9141 0.0886 0.0103
Std. error 0.0239 0.0061 0.0126 0.1081 0.0177

Reduction of std. err.
with partial verification 65.4% 33.8% 30.4% 64.3% 47.2%
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FIGURE 1. One Bin Verification Example: n = 500, r = 5, μA = 0.0902, μB = 0.0896, πC = 0.9141, γA = 0.0886,

γB = 0.0103. Dashed lines represent the standard errors of full verification (lower) and no verification (higher) plans.

the unknown model parameters. Instead we propose
a generic plan that we show to have good properties
over a wide range of situations. The recommended
two phase plan is

Phase I: Measure a random sample of n parts r = 5
times each with the BMS. Based on the
number of times passed, separate the parts
into six bins to determine n0, n1, . . . , n5.

Phase II: Verify with the gold standard the con-
forming status of all n2 + n3 parts in the
bins 2 and 3 and five randomly selected
parts from each of the other bins (where
possible).

So we have vs = min(5, ns) for s = 0, 1, 4, 5 and
v2 = n2, v3 = n3. We denote bins 2 and 3 as the
“middle” bins and the others as the “outside” bins.
We investigate the following issues for the recom-
mended plan:

• Selection of parts to verify in phase II.

• Sample size n and the number of replicated
measurements r in phase I.

• Performance relative to the complete (vs = ns,

s = 0, 1, . . . , r) and no verification plans (vs =
0, s = 0, 1, . . . , r).

• Robustness against model misspecification.

More details on the justification and performance of
this recommended plan and some extensions are pro-
vided in Severn (2016).

4.1. Planning Phase II

After phase I, parts are selected for verification
based on the number of times they passed inspec-
tion. Given the assumption that the error probabili-
ties are small for all (or almost all) parts, we expect
parts that always pass to be conforming and those
that always fail to be nonconforming. This suggests
that there is little value in verifying such parts. The
example also suggests that we can get a large im-
provement over the no-verification plan using only a
few verifications in phase II from the middle bins.

To demonstrate that selecting from the middle
bins is an effective strategy and results in precise pa-
rameter estimates, we carried out a study where we
verify all parts in one and only one bin. We present
the results in Figure 1 for the case where the param-

Journal of Quality Technology Vol. 48, No. 2, April 2016



ASSESSING BINARY MEASUREMENT SYSTEMS 133

eter values (μA = 0.0902, μB = 0.0896, πC = 0.9141,
γA = 0.0886, γB = 0.0103), sample size (n = 500)
and number of repeated measurements (r = 5) are
based on the estimates and plan in the camshaft
example. The results are based on the asymptotic
standard errors derived from the Fisher information
matrix with the phase I data given by the expected
values of ns for this set of parameter values. The
number of parts in each bin in phase I data are dis-
played in the lower right subplot of Figure 1. The
remaining three plots show the standard errors of
μ̂A, μ̂B, and π̂C when all the parts from only one bin
are verified. Each of these plots has two dashed lines
for reference; the higher line represents the standard
error of the corresponding no-verification plan while
the lower line represents the standard error for the
full-verification plan.

We see in Figure 1 that verifying the relatively few
parts with two passes reduces the standard errors of
the estimates for all primary parameters more than
verifying the 300+ parts that always passed inspec-
tion. We also see in Figure 1 that verifying all parts
with two passes in phase I gives standard errors al-
most as small as full verification.

Figure 1 shows results for only one set of param-
eter values. To obtain more general conclusions, we
conducted a factorial experiment for each combina-
tion of parameter values in Table 4. We chose the lev-
els of the parameters to correspond to likely ranges
for a BMS in practice. We repeated the calculations
as in the previous paragraph and chose the optimal
bin for each of the three model parameters of primary
interest. For example, for the set of parameters used
in Figure 1, bin 3 was optimal for μA because verify-
ing all parts in bin 3 resulted in the lowest standard
error for μ̂A. Similarly, bin 2 was optimal for μB and
πC . A summary of the results is displayed in Table 5.
As in Figure 1, standard errors are calculated using
the asymptotic results as described in the Appendix.

Table 5 shows that, with five repeated measure-
ments verifying all parts in either bin 2 or bin 3 is
best in all 32 cases tested. Bin 2 seems the best over-

TABLE 4. Factorial Experiment Levels

Factor μA μB πC γA γB

Levels 0.05 0.05 0.90 0.05 0.05
0.10 0.10 0.95 0.20 0.20

TABLE 5. Optimal Bin Factorial Experiment with r = 5.

Percentage of time a bin is optimal for reducing

standard error by parameters μA, μB = 0.05, 0.1;

πC = 0.9, 0.95; γA, γB = 0.05, 0.2 (see Table 4)

bin # μA μB πC

0 0 0 0
1 0 0 0
2 43.8 100 87.5
3 56.2 0 12.5
4 0 0 0
5 0 0 0

all when considering all three parameters. It is clear
that selecting from the middle bins is the good strat-
egy for verification over the selected range of param-
eter values that were chosen to represent typical val-
ues for a BMS in industry. Through further investiga-
tion (details not given here), we found that choosing
parts from the middle bin(s) is effective with other
values of r. Note also that the results from Table 5
do not depend on the sample size (n) because they
are based on the Fisher information matrix and the
log-likelihood function is approximately linear in n.

Verifying from the middle bins is optimal for many
extreme scenarios as well. The only exception we
found is when the parameters γA and γB are large
enough so that the distribution of misclassification
probabilities is U shaped and clustered around 0%
and 100% as opposed to the average misclassification
rate. This situation seems unrealistic.

In the recommended plan with r = 5, we select all
parts from bins 2 and 3 for verification. We explain
the additional verifications from the other bins when
we discuss robustness of the estimates.

To see how increasing the number of parts verified
from the middle bins reduces the standard errors, we
again use the phase I plan and parameter values as
estimated in the camshaft example. We start with a
single verification from bin 2 and increase the num-
ber of verifications from that bin until it is exhausted.
Then, we additionally sample from bin 3 until it is
exhausted and continue to verify parts in increas-
ingly outlying bins. We see the results in Figure 2.
The vertical axis is the ratio of the standard error
for the partial-verification plan over the standard er-
ror of the no-verification plan. The standard errors
in Figure 2 are calculated using the asymptotic ex-
pressions.

Vol. 48, No. 2, April 2016 www.asq.org



134 DANIEL E. SEVERN, STEFAN H. STEINER, AND R. JOCK MACKAY

FIGURE 2. Verification Proportion Plot: n = 500, r =

5, μA = 0.0902, μB = 0.0896, πC = 0.9141, γA = 0.0886,

γB = 0.0103. Relative standard error is SE (partial verifica-

tion)/SE (no verification). Vertical dotted lines show when

bins 2 and 3 are exhausted.

Figure 2 shows that the majority of the benefit
of selective verification occurs very quickly. Once the
parts in the middle two bins have been verified (the
vertical dotted lines show when bins 2 and 3 are ex-
hausted), the improvement in standard errors is neg-
ligible.

In summary, we propose in the recommended plan
that, in phase II, we verify all parts in the middle bins
from phase I corresponding to two and three passes.

4.2. Planning Phase I

To plan Phase I, we specify the sample size n and
the number of repeated measurements r.

We start by considering the choice of n. The rec-
ommended plan has r = 5 and, in phase II, v2 = n2

and v3 = n3. Based on the results in Section 4.1,
the contribution to the information matrix of the
20 verifications in the four outside bins is small. If
we ignore this contribution, then the phase II log-
likelihood function of Eq. (3) becomes

l∗II(θ) = d +
3∑

s=2

[
us log

(
ps

ps + qs

)
+ (ns − us) log

(
qs

ps + qs

)]
.

The modified log likelihood lI(θ) + l∗II(θ) is linear in
n0, . . . , n5, u2 and u3. For the modified likelihood, the

expected information matrix is n times a 5 × 5 ma-
trix J(θ) that depends only on θ. The approximate
standard deviation of the MLEs is the corresponding
diagonal element of J−1(θ) divided by

√
n. We can

investigate various values of n for a reasonable range
of values for the unknown parameters. For any par-
ticular value of θ, we provide software to calculate
the diagonal elements of J−1(θ).

If we hold n fixed, given the assumptions that
μA and μB are small and that the variability of
the part-specific error probabilities for conforming
and nonconforming are not too large, we can decide
whether or not each part is conforming or not with a
small chance of error as r increases. So the informa-
tion in the phase I plan with r large corresponds to
complete verification, i.e., the additional information
from phase II becomes negligible. There is then no
need to use the gold-standard system.

To compare different r values, we conducted an
experiment where we fixed nr, the total number of
measurements in phase I. The verifications are allo-
cated using the proposed rule described at the begin-
ning of Section 4 that includes verifying five parts in
each bin. For an even value of r, the two middle bins
are defined as the middle bin and the bin with one
pass less in phase I.

The experiment is first conducted with the param-
eter values taken from the camshaft example. For
each value of r between 3 and 9, we calculated the
asymptotic standard deviation of the estimates of the
primary parameters. The results are found in Table 6.

For the set of parameter values used in Table 6,
r = 5 is best for estimating μA, while r = 4 is best
for estimating μB and πC . Note that μA is the most
poorly estimated parameter and the most important
to the customer. Table 6 shows the results for μA, μB,
and πC but not the nuisance parameters, γA and γB,
because they are poorly estimated in all cases. The
precision of the estimates of the nuisance parameters
improves when we increase r.

More generally, we conducted the same experi-
ment over the grid of parameter values in Table 4.
For each value of r, Figure 3 shows a boxplot of the
standard deviation of the estimate for μA relative to
the optimal value of r for each of the 32 combina-
tions of parameter values. For example, if the results
in Table 6 were included in Figure 3, the value for
r = 5 would be 0.0239/0.0239 = 1, whereas the value
for r = 6 would be 0.0241/0.0239 = 1.0086. In Fig-
ure 3, we do not give the results for r = 3 because
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TABLE 6. Optimal n Experiment. Asymptotic standard deviations as n and r vary with nr = 2,500 fixed

μA = 0.0902, μB = 0.0896, πC = 0.9141, γA = 0.0886, γB = 0.0103

r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 8
n = 833 n = 625 n = 500 n = 416 n = 357 n = 312 n = 277

SE(μ̂A) 0.0596 0.0265 0.0239 0.0241 0.0244 0.0248 0.253
SE(μ̂B) 0.0063 0.0061 0.0061 0.0061 0.0062 0.0062 0.0062
SE(π̂C) 0.0122 0.0114 0.0126 0.0138 0.0148 0.0159 0.016

they are so far from optimal that they would make
differences between the other choices for r difficult
to observe.

We see from Figure 3, using r = 5 is optimal or
close to optimal for estimating μA in all cases con-
sidered. Using five repeated measurements is opti-
mal in 53% of cases tested, within 2% of optimal in
97% of cases, and is always within 3% of optimal.
Using 6 repeated measurements also works well but,
with 4 repeated measurements, we lose quite a lot
of precision for estimating compared with the opti-
mal choice. Looking at similar results for the other
parameters suggests that, for estimating μB and πC ,
r = 4 is best but r = 5 also works well. Generally, the
optimal choice of r depends on the unknown parame-
ter values. Because we feel μA is the most important
parameter and typically the worst estimated, we rec-
ommend r = 5. We see similar results for other values
of nr.

4.3. Performance

To test the performance of the proposed plan as
described in Section 4, we conducted another fac-
torial experiment with the levels of the parameters
given in Table 4. For each combination of model pa-
rameter values, the standard deviations were calcu-
lated for the full-verification plan, the no-verification
plan, and the proposed plan. From these three quan-
tities, two performance measures are calculated as
detailed in Figure 4. One compares the proposed
partial-verification plan with the no-verification plan
and the second compares the proposed plan with the
full-verification plan. The performance for estimat-
ing μA is shown in Figure 5 using boxplots calculated
over the 32 different combinations of parameter val-
ues. Asymptotic standard deviations were used for
the full-verification plan and the proposed plan while
standard deviations for the no-verification plan were
estimated using simulation. In the simulation, for
each combination of the parameter values, we gen-
erated 1000 phase I data sets and found the MLEs

from the log likelihood lI(θ) of Eq. (1). Then we cal-
culated the sample standard deviations of the 1000
values of each estimate. In Figure 5, we stratify the
results by γA because changing the level of that pa-
rameter makes the most difference.

We see from Figure 5 that the proposed plan offers
a large percentage reduction in standard deviation
of μ̂A compared with the no-verification plan (left
panel) and that it attains the majority of the poten-
tial improvement we could achieve by verifying all
parts with the gold standard (right panel). The im-
provement in standard deviation with the proposed
plan compared with the no-verification case is dra-
matic, with most cases seeing more than the 65%
improvement obtained in the camshaft example. The
standard deviation of μ̂A under the proposed plan is
typically reduced to less than a third of that same
standard deviation under the no-verification plan.
Furthermore, on average, 97% of the possible reduc-
tion available through verification was attained using
the proposed plan. The number of parts verified us-

FIGURE 3. Optimal r Experiment: Factorial Experiment

nr = 2,500 Run at All Combinations of μA, μB = 0.05,

0.1; πC = 0.9, 0.95; γA, γB = 0.05, 0.2 (see Table 4).
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FIGURE 4. Performance Measures Summary.

ing the proposed plan varies and is affected by all five
model parameters. However, because πC is assumed
large, μB plays the dominant role in determining how
many parts fall into the two middle bins to be ver-
ified. For the grid of parameters values specified in
Table 4, the proportion of parts verified averaged 9%
when μB was 0.05 and 15% when μB was 0.1.

For the other parameters μB and πC , the improve-
ment is not as large but still dramatic. For the same
experiment, the average improvement for estimating
μB was 32%, which represented on average 96% of
the possible improvement available through complete
verification and for πC the average improvement was
50%, which represented on average 99% of the im-
provement possible through full verification.

To summarize, the proposed plan gives large gains
in precision over the no-verification plan for little ad-
ditional cost. At the same time, it attains comparable
performance to the full-verification plan while elimi-

nating the majority of the cost and effort associated
with using the gold standard. We expect these con-
clusions to be somewhat better as n increases because
then relatively less effort is devoted to verifying parts
from outside bins.

4.4. Robustness

One of the problems with the no-verification plan
is that it is not robust to model misspecification. See
Albert and Dodd (2008), who showed that, under
two different random effects models, the plan with
no verification had significant bias in estimating μA

and μB.

In the recommended plan, five parts are verified
from the four outside bins in addition to all parts in
bins 2 and 3. These extra verifications were added to
remove oddities in the likelihood surface that some-
time occurred in our simulation when we did not in-
clude the additional parts from outside bins. When
no verifications were taken from the other groups,

FIGURE 5. Proposed Plan Performance. Factorial experiment run at all combinations with n = 500 using proposed plan

μA, μB = 0.05, 0.1; πC = 0.9, 0.95; γA, γB = 0.05, 0.2 (see Table 4). Left panel compares with no-verification plan, right

panel compares with full-verification plan.
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FIGURE 6. Gaussian Random Effect Model Bias Experiment Results. Factorial experiment run at all combinations with n

= 500, μA, μB = 0.05, 0.1; πC = 0.9, 0.95; γA, γB = 0.05, 0.2 (see Table 4).

sometimes the MLE estimates would correspond to
U-shaped beta distributions when this was not ap-
propriate. Verifying a few observations from each
of the bins makes the likelihood surface better be-
haved and eliminates these undesirable situations.
This also improves the robustness properties of the
recommended plan.

We conducted another simulation to demonstrate
that the proposed plan has robustness properties
similar to that of the full verification plan. Rather
than use the beta-binomial random-effects model
for the misclassification probabilities, we generated
phase I and II data from the proposed plan using the
Gaussian random effects (GRE) model developed by
Qu (1996) over all combinations of the parameters
in Table 4. The parameter values for the GRE were
chosen to match the mean and variance of the cor-
responding beta distributions for each combination
of parameter values. We calculated the MLEs from
the log likelihood of Eq. (3) for 1000 replicates and
the bias for each estimate. We also looked at the
MLEs from the phase I data corresponding to the
no-verification plan. The results are summarized in
Figure 6.

We see large bias for the no-verification plan and
negligible bias for the proposed plan. The proposed
plan performs similarly to the full-verification plan
that provides unbiased estimates of μA, μB, and πC .
At least for the GRE model, the proposed partial-
verification plan is much less sensitive to model mis-
specification than the no-verification plan.

5. Summary and Discussion

The proposed plan has comparable performance
and robustness to the full verification plan while
eliminating the majority of the cost inherent in us-
ing the gold standard. This is possible because the

amount of information gained in verifying different
parts is not the same. It is better to repeatedly mea-
sure parts with the BMS and then verify only parts
that have roughly equal number of passes and fail-
ures. The proposed plan is effective for a wide range
of different parameter values.

While this plan stands on its own, there is room
for further study and possible extensions. One possi-
ble extension is to include baseline information and
use conditional sampling as in Danila et al. (2012).
This can be an especially useful alteration to the plan
when the conforming rate πC is very high.

Appendix:
Justification of Asymptotic Results

The purpose of this appendix is to assess the re-
liability of the asymptotic results for the proposed
plan at different sample sizes and sets of parameter
values. Determining a closed-form expression for the
maximum-likelihood estimates or their standard de-
viations is not feasible. This paper uses asymptotic
variance results due to Fisher (1925). We conducted a
factorial experiment with six factors: sample size, n,
and all 5 model parameters. For each of the 3·25 com-
binations, we generated 1000 data sets (phase I and
phase II) using the beta-binomial model described in
Section 2. Parts were selected and verified accord-
ing to the proposed plan described in Section 4. For
each data set, the parameters were estimated using
maximum likelihood. The bias and standard devia-
tions of the 1000 values of the estimates were calcu-
lated and recorded for comparison with the asymp-
totic approximation of the standard deviations based
on the inverse of the expected information matrix.
Figure A1 shows the ratio of the simulated standard
deviations to the asymptotic approximation of the
standard deviation for each combination of parame-
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FIGURE A1. Ratio of Simulated and Asymptotic Standard Deviations for μ̂A (left), μ̂B (centre) and π̂C (right). μA, μB

= 0.05, 0.1; πC = 0.9, 0.95; γA, γB = 0.05, 0.2 (see Table 4).

ter values. The results are separated by sample size,
n. Thus, each box represents 32 combinations of pa-
rameter values.

The ratios are typically close to 1, indicating that
the asymptotic variance is a reasonable approxima-
tion. Only in the case of μ̂A does the asymptotic ap-
proximation underestimate the simulated standard
deviations. The approximations are sufficiently ac-
curate for the manner in which they are used; that
is, to make broad conclusions, not to calculate precise
standard error estimates.
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