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We recommend an approach to estimate a process performance measure (or parameter) at the present

time from a stream of data where the performance may drift slowly over time. It is common practice to

estimate current process performance using either present-time data only or including all historical data.

When sample sizes by time period are small, an estimate based only on present-time data is imprecise.

When the performance changes over time, including historical data in estimation trades more bias for less

variability. We propose to regulate the bias/variance trade-off using estimating equations that down-weight

past data. We derive approximations for the variance of the estimator and the distribution of a test statistic

involving the estimator. The work is motivated by estimation of a customer loyalty measure where realistic

data demonstrates the proposed approach.
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1. Motivation and General Problem

D
ECISION MAKERS responsible for managing the
performance of a process often monitor an es-

timate of a process parameter such as the mean or
a rate over time. For example, one popular business-
management philosophy prioritizes actions for driv-
ing growth around improving a mean value of a
customer loyalty measure (Reichheld and Markey
(2011)). Customer loyalty data are observed on sub-
groups of customers at regular time intervals and
managers need an estimate of the measure summariz-
ing the present performance. Commonly there is one
or more subject-level covariates that have an effect on
the subject-level outcome that is observed. We may
want to divide the subjects into multiple subgroups
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of interest, which we refer to as streams. Based on
the data observed over time, a manager may want to

• monitor estimates of the current mean value of
performance over time. For example, the man-
ager tracks the trend in the customer loyalty
measure for customers across various versions
of their product in order to validate the impact
of design enhancements or to track the measure
relative to competitive benchmarks.

• monitor a test of a statistical hypothesis in-
volving present estimates of performance across
multiple streams. For example, the manager as-
sesses differences in the present customer loy-
alty measure between customers from various
geographic regions in order to plan future mar-
keting efforts.

In a further example, an agency responsible for
the quality of laboratories that perform medical test-
ing monitors estimates of present performance by lab
(which we could refer to as a stream) based on data
observed from regular operation of the various labs.
The agency assesses the proficiency of a lab by track-
ing the trend in its mean measure of performance and
tests hypotheses to compare its performance to its
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#

FIGURE 1. Best Practice Customer Loyalty Measure Chart.

peers. Present estimates of the mean performance by
lab and a suitable test statistic drive ratings of lab
noncompliance, which have important implications
for lab operations.

In both examples, the current practice is to se-
lect a time period of importance and compare esti-
mates of the parameter or test statistical hypotheses
by usual methods based on the observed data from
that time period stratified by streams. For example,
a consulting company that specializes in best prac-
tices in customer loyalty analytics advises companies
to estimate present performance through an interface
like Figure 1 (Satmetrix (2015)).

Figure 1 shows estimates of the customer loyalty
measure known as net promoter score (NPS) based
on data observed over one year (2014-02-01 to 2015-
01-31) in multiple streams defined by region (APAC:
Asia-Pacific, EMEA: Europe/Middle East/Africa,
LATN: Latin America, NA: North America). The
values under the Distribution heading are the ob-
served proportions of customers who are classified
as detractors, passives, and promoters, respectively,
based on their response to a customer loyalty survey.
The values under the NPS heading are the differences
between the observed proportions of promoters and
detractors which are the present estimates by region.
Sample sizes are given and we see that there are more
than six times the number of respondents in APAC
relative to either EMEA or LATN. Uncertainty in-
tervals related to size of the samples and bias related
to possible changes in performance within the year
are not considered. The interface allows the user to
change the time period of interest; doing so changes
the estimates of the present performance (NPS) and
the bias and uncertainty of these estimates. Esti-
mates based on data over a shorter time period have

higher uncertainty due to the smaller sample, but
less bias when performance drifts over time. There is
a bias/variance trade-off in selecting the time period
for the data, which is not considered in the current
best practice for estimating the performance mea-
sure.

These are different problems than usual statisti-
cal process monitoring applications where a mean
measure or a hypothesis test statistic is monitored
relative to an in-control period determined by prior
data (Montgomery (2013)). In the problems at hand,
decisions are based on an updated estimate of a pa-
rameter rather than a comparison to control limits.

We consider the following general data and model.
At each time period t, we observe data dt from a
sample of nt subjects. The complete dataset is d =
{d1, . . . , dT }. Each of the nt data points in dt includes
a subject-specific outcome response (e.g., the cus-
tomer’s survey response) and may include subject-
specific covariates (e.g., the customer’s region). We
specify a likelihood function Lt(dt; θt) to describe the
probability of data dt given the p-dimensional model
parameter θt. Based on the log-likelihood function
lt(θt) = logLt(θt), we have a p-dimensional vector of
score functions for the parameter θt, which we denote
by

ψt(θt; dt) =
∂lt(θt; dt)

∂θt
. (1)

The elements of the model parameter vector θt

capture the mean performance and the effects of the
covariates. We assume that the elements of the pa-
rameter θt describe the same attributes of the process
across time periods t = 1, . . . , T . We expect that the
unknown true value of one or more of the p elements
in θt may drift slowly over time in an unpredictable
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way. For example, the mean customer loyalty mea-
sure may drift slowly over time as competitive prod-
ucts are introduced to the market. We purposefully
do not attempt to specify how the model parameter
might change over time because the change is hard
to predict and we want our approach to be flexible.

To effectively monitor the process, we want an ac-
curate and precise estimate of the current (at time
T ) parameter, θT . There are two näıve approaches.
We may estimate θT using data dT observed in the
most recent time period; however, a small present-
time sample size nT results in an imprecise estimate.
Alternatively, we may use all of the data assuming
θt = θT for all t; however, we introduce bias if any of
the elements of the parameter drift over time peri-
ods. We propose an approach to combine present and
historical data that sets up a bias/variance trade-off
for an estimate of the present value of the parameter.

In Section 2, we propose estimating equations that
are better suited for the general problem than ei-
ther näıve approach. We derive approximations for
the variance of the estimator and the distribution of
a hypothesis test statistic at time T . We study the
suitability of these approximations in a simple ana-
lytic example. We illustrate the proposed approach
with the problem of monitoring a customer loyalty
measure in Section 3.

A state-space approach could be applied to this
problem whereby we combine an estimate from
present data dT with another estimate based on
previous data d1, . . . , dT−1. One possibility is the
Kalman filter (Grewal and Andrews (2014)). In Sec-
tion 4, we provide a qualitative comparison of the
differences between the proposed approach and the
Kalman filter as well as a summary and further dis-
cussion.

2. Weighted Estimating Equations

The work of Steiner and MacKay (2014) is the ba-
sis of the proposed approach involving weighted esti-
mating equations (WEE). Their motivating surgical
performance example involves a binary observation
at each time period and a single covariate with known
effect. Here, we generalize the approach for the setup
described in Section 1. Based on asymptotic theory
and the assumption that, in fact, θt is constant over
time, we derive approximations for the variance of
the WEE estimator and the distribution of an appro-
priate test statistic for inference in a problem requir-
ing a hypothesis test. When θt changes slowly over

time, we found these approximations are reasonable.

Suppose we have a set of weights {wt; t = 1, . . . ,
T}. We define the p weighted estimating equations
by

ψ(θ̂; d,w) = w1ψ1(θ̂; d1) + · · · + wtψt(θ̂; dt) + · · ·
+ wT ψT (θ̂; dT ) = 0. (2)

The terms in ψ(θ̂; d,w) are the score functions at
time t = 1, . . . , T given in Equation (1) evaluated at
the solution of the corresponding weighted estimat-
ing equation, which we denote as θ̂. We call θ̂ the
WEE estimate of θT and let θ̃ be the corresponding
estimator.

The WEE approach is similar to relevance
weighted likelihood (Hu and Zidek (2002)) where
contributions to likelihood from similar populations
are weighted by a relevance measure. These authors
suggest data-based methods to select weights based
on relevance measures and an optimization criterion.
In the general problem of this paper, the score func-
tions by time period have a natural ordering and we
expect that one or more of the p elements of model
parameter θt drifts slowly with time. Accordingly, we
use weights that decrease (exponentially) for time pe-
riods further in the past. In particular, we propose a
weight parameter, λ, 0 ≤ λ ≤ 1, to define the weights
as

wt = λ(1 − λ)T−t (3)

for each t = 1, . . . , T . Other definitions of decreas-
ing weights are possible. With Equation (3), the
weight for the most recent time period is propor-
tional to λ, the time period before that has weight
proportional to λ(1−λ), the time period before that
λ(1−λ)2, and so on. For convenience, we divide each
weight by the same constant

∑T
t=1 λ(1 − λ)T−t so

that
∑T

t=1 wt = 1. Note that this rescaling does not
change the WEE estimate θ̂ or its properties. Un-
der Equation (3), increasing the value of λ increases
the relative weight of present data, which reduces
bias and increases variance of the estimator. There
is subjectivity in the selection of λ, but the value
λ = 0.1 is reasonable in applications we have con-
sidered where we assume the parameter of interest is
changing slowly relative to the defined time interval.

Note that the two näıve approaches involving ei-
ther present time data only or the aggregate of his-
torical data weighted equally are particular cases of
Equation (2) at the two limiting values of the weight
parameter λ.

• As λ approaches 1, wT approaches 1 and wt,
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t < T approaches 0. The estimating equa-
tion involves the present-time data only; i.e.,
ψ(θ̂; d,w) = ψT (θ̂; dT ) = 0.

• As λ approaches 0, wt approaches 1/T for all
t = 1, . . . , T . The estimating equation involves
the aggregate of data weighted equally; i.e.,
ψ(θ̂; d,w) = (

∑T
t=1 ψt(θ̂; dt))/T = 0.

Next, we derive approximations for the variance of
θ̂ and the distribution of a given test statistic involv-
ing θ̂ using the usual asymptotic properties of the
information and score functions in the model based
on data by time period. For these derivations, we as-
sume that the model parameter θt does not change
over time t = 1, . . . , T . So there are two sources of
error in the approximations; first, the usual error due
to the asymptotics and a second error due to the fact
that the parameter may have drifted.

2.1. Estimate of Variance

A specific problem of interest may require an es-
timate of the uncertainty of the WEE estimate θ̂.
For example, a manager may want to assess whether
the mean performance measure based on θ̂ is sig-
nificantly different than the competitive benchmark.
We assume that the model Lt(θ̃;Dt) holds for each
t = 1, . . . , T and that the random data Dt are inde-
pendent over t. In the case where the model depends
on covariates, then we assume that Dt are indepen-
dent over t, conditional on the values of the covari-
ates. Note that we do not model changes in the co-
variates. For θ, the unknown model parameter,

It(θ) = −E

(
∂2 logLt(θ;Dt)

∂θ2

)
,

is the matrix of expected information about θ at time
t, it(θ) = −l′′t (θ; dt) is the observed information ma-
trix, and the two are related by E(it(θ)) = It(θ)
(Small (2010)). Because the weighted estimating
equations combine the usual score functions by time
period, we consider an estimate of var(θ̃) through
the known asymptotic properties of the correspond-
ing information and score functions.

We consider the asymptotic properties of the in-
formation and score functions in the case where the
total sample size N =

∑T
t=1 nt approaches infinity

and the number of time periods T remains fixed. In
order to preserve the usual asymptotic properties of
these functions by time period as N → ∞, we need
to preserve some uniformity in the relative distribu-
tions of It(θ) by time period t = 1, . . . , T . We require
that the relative sample size defined by ct = nt/N re-

mains constant for each t so that nt → ∞ as N → ∞.
In the case where the model does not depend on co-
variates, then each individual subject has the same
expected information and so, for fixed ct, the relative
distributions of It(θ), t = 1, . . . , T , stay the same as
N → ∞. In the more general problem where the
model depends on covariates, then some uniformity
in the distribution of samples across the covariate
space must be maintained as each nt → ∞ so that
It(θ))/nt → gt(θ) for some constant matrix gt(θ).
We derive an approximation for var(θ̃) under this
asymptotic paradigm.

In Appendix A.1, we sketch a proof to show that
θ̃ is a consistent estimator of the true value θ under
usual regularity conditions and under the condition
that θ does not change over time. In Appendix A.2,
we derive the estimate of the variance of θ̃ for the
case of a model that does not depend on covariates.
This extends to the general case where there may be
covariates in the model and we refer to the result as
the weighted information (WI) estimate of variance,

v̂arWI(θ̃) =

(
T∑

t=1

wtIt(θ̂)

)−1 T∑
t=1

w2
t It(θ̂)

×
(

T∑
t=1

wtIt(θ̂)

)−1

, (4)

given weights {wt} and expected information ma-
trices evaluated at the WEE estimate, {It(θ̂), t =
1, . . . , T}. We use this approximation for the variance
of the random variable θ̃ to estimate the standard er-
ror of the WEE estimate θ̂.

Note that Equation (4) at the two special cases
of weight values described previously gives the usual
estimates of variance. In the case where wT = 1 and
wt = 0 for all t < T , then

v̂arWI(θ̃) = I−1
T (θ̂)IT (θ̂)I−1

T (θ̂)

= I−1
T (θ̂).

In the case where wt = 1/T for all t, then

v̂arWI(θ̃) =

(
T∑

t=1

It(θ̂)
T

)−1 T∑
t=1

It(θ̂)
T 2

(
T∑

t=1

Itθ̂)
T

)−1

=

(
T∑

t=1

It(θ̂)

)−1

.

We can show that the weighted information esti-
mate of variance is the same result as the sandwich
estimate of variance used in Steiner and MacKay
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(2014). The sandwich estimate of variance was pro-
posed for maximum-likelihood estimates of a mis-
specified model or under missing covariate data
(White (1982)). The key contribution of the work of
this section is that we justify its use as an estimate
of the variance of the WEE estimator relative to the
specified asymptotic paradigm.

2.2. Distribution of Hypothesis Test Statistic

A specific problem of interest may require a test
of hypothesis involving the WEE estimate at the
present time T . For example, a process-quality man-
ager responsible for checking the consistency of mul-
tiple parallel gauges may want to monitor a test
statistic for the hypothesis that the parameters of the
model describing the gauge effects are the same. This
activity requires an approximation for the distribu-
tion of a test statistic involving the WEE estimate
under a null hypothesis versus a specified alternative
hypothesis.

Here, we consider a test statistic based on a likeli-
hood ratio (LR), though a Wald or score test statis-
tic could also be constructed (Lehmann and Romano
(2005)). Consider a partition of the parameter vector
θ into θ = [δ, α], where δT is the vector of parameters
of interest for testing and αT is the vector of unre-
stricted parameters. Let the number of independent
restrictions on parameters in δT be r. For example,
when monitoring the consistency of M binary gauges,
suppose the parameter α represents the pass rate for
a baseline gauge and parameters δ = (δ1, . . . , δM−1)T

represent the pass rates of the other gauges relative
to the baseline. To test for consistency across the
M gauges, we use a test of the null hypothesis H0:
δ1 = · · · = δM−1 = 0 versus the alternative HA: at
least one of δ1, . . . , δM−1 �= 0.

The general null hypothesis of interest is H0:
δ = δ0. To construct an LR test statistic, we esti-
mate θ = (δT , αT )T under the unrestricted model
and α0 when δ is restricted to δ0. The weighted es-
timating equation in Equation (2) gives WEE esti-
mates θ̂ and α̂0. The WEE approach extends the
usual LR test statistic by comparing the weighted
log-likelihood contributions by time under the un-
restricted and restricted models. The WEE LR test
statistic is

Ŝ = 2

(
T∑

t=1

wtlt(θ̂; dt) −
T∑

t=1

wtlt(δ0, α̂0; dt)

)
(5)

at WEE estimates θ̂ and α̂0. We consider the distri-
bution of the corresponding random variable S̃ under

the null hypothesis and the asymptotic paradigm dis-
cussed in Section 2.1. In Appendix A.3, we derive an
approximate distribution for S̃ when dim(θ) = 1, as
is the case where there are no covariates in the model
and a single parameter. We show that the result holds
when the model has covariates and It(θ)/nt → g(θ);
i.e., the average expected information in the limit is
the same for all t. We extend this result to the multi-
parameter case where dim(θ) = p ≥ 1, which gives∑T

t=1 wtnt∑T
t=1 w2

t nt

S̃
approx∼ χ2

p

under the simple null hypothesis. For testing r < p
restrictions on θ, then∑T

t=1 wtnt∑T
t=1 w2

t nt

S̃
approx∼ χ2

r (6)

under the null hypothesis. Note that, at the two
special cases of weight values described previously,
Equation (6) gives the usual results using present-
time data only or all data weighted equally. The
extension of Equation (6) to the most general case
where dim(θ) ≥ 1 and the average expected informa-
tion in the limit is not the same for all time periods
is not straightforward. This remains as future work.

Note that the estimate of variance of Equation (4)
and the weight-adjusted test statistic of Equation (6)
do not change if we scale each wt by the same con-
stant. The argument for consistency and the deriva-
tions of the approximate results of Equations (4) and
(6) assume that the true value of parameter θt is the
same across the t = 1, . . . , T time periods. The gen-
eral problem of this research expects that the param-
eter may drift over time and so these results do not
hold exactly. Because we restrict our focus to slow
changes in the parameter over time, we expect that
these results are reasonable approximations. In Sec-
tion 2.3, we show an example where the parameter
changes slowly over time. Here, the WEE approach
with an appropriate weight parameter gives an es-
timate with lower mean-squared error than a näıve
approach where no weights are used. This property
holds for a wide variety of problems.

2.3. Analytic Example

We look at an example of a simple process with
multiple streams to look at properties of the WEE
parameter estimate, the WI estimate of variance,
and the WEE LR test statistic. The simple process
generates binary observations over time from units
in two streams. The observations are the quantities
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of passed units y1,t, y2,t at time t arising from two
gauges (streams) performing the same test. The ob-
jective is to monitor the difference in the pass rates
from the gauges over time. The simplicity of the
example is convenient for demonstration purposes.
Similar demonstrations can be made over a wide class
of models.

We consider random variables

Ym,t ∼ Binomial(nm,t, πm,t)

for m = 1, 2 that we assume are each independent
over t = 1, . . . , T . For π = π2 − π1, the difference
of the mean pass rates at the two streams at the
present time, the objective requires us to test the
null hypothesis H0: π = 0 versus the alternative HA:
π �= 0. We expect that one or both of the true values
of the elements of θt = (π1,t, π2,t) may change slowly
over time.

Replacing the πm,t for t = 1, .., T by the common
parameter πm for each m = 1, 2, closed-form expres-
sions for π̂, v̂ar(π̃), and Ŝ are possible for this simple
example,

π̂ = π̂2 − π̂1

v̂ar(π̃) =
2∑

m=1

π̂m(1 − π̂m)
∑T

t=1 w2
t nm,t(∑T

t=1 wtnm,t

)2

Ŝ = 2
2∑

m=1

T∑
t=1

wt

(
log

π̂m

π̂0
ym,t

+ log
(

1 − π̂m

1 − π̂0

)
(nm,t − ym,t)

)
based on estimates

π̂m =
∑T

t=1 wtym,t∑T
t=1 wtnm,t

for m = 1, 2 and

π̂0 =
∑2

m=1

∑T
t=1 wtym,t∑2

m=1

∑T
t=1 wtnm,t

.

In general, closed-form expressions for the estimates
by the WEE approach are possible for those mod-
els where closed-form expressions for the MLE esti-
mates are possible. The usual maximum-likelihood
estimates (MLEs) involving the historical observa-
tions are special cases of these estimates with wt = 1
(or wt = 1/T ) for all t.

We further consider this simple example to
demonstrate three properties of the WEE approach:

(i) the estimate of var(θ̃) in Equation (4) is appro-
priate.

(ii) the WEE estimator θ̃ and WI estimate of var(θ̃)
in Equation (4) are suitable with small changes
in θt over time periods t = 1, . . . , T .

(iii) the distribution of the weight-adjusted random
variable S̃ in Equation (6) is approximately χ2

r.

The three properties are demonstrated for the simple
example in Appendix B.

3. Estimate Net Promoter Score with
a Bias/Variance Trade-Off

As discussed in Section 1, the customer loyalty
measure is commonly used to focus process and
product improvements to drive customer loyalty and
achieve business success across many industries. The
measure known as net promoter score (NPS) is highly
recommended by leading customer experience man-
agement firms such as Bain & Company and Sat-
metrix. The estimate of this measure is based on
customer responses to a survey asking the loyalty
question, “On a scale of 0–10, how likely is it that
you would recommend this company or product to a
friend or colleague?” The customer’s response classi-
fies them into one of the three categories

• detractors who respond 6 or below,

• passives who respond 7 or 8, and

• promoters who respond 9 or 10.

The quantity NPS is defined as the difference be-
tween the proportions of customers who are promot-
ers and detractors. Increasing the proportions of cus-
tomers who are promoters, decreasing the proportion
of detractors, or doing both simultaneously increases
the value of NPS. Publicly available information such
as NPS Benchmarks (n.d.) shows that many diverse
companies report NPS quantities as a measure of
business performance. Efficient estimation of NPS is
thus a topic of importance.

The current industry practice is a näıve estimate
for NPS based on sample proportions of data in
streams from an arbitrary time period (Markey et
al. (2013)). Estimates by time period are compared
with benchmarks and targets and tracked in a trend
chart over time. Little or no attention is paid to the
impact of sample size, covariate effects, and changing
populations over time. Depending on the survey de-
sign and fluctuations in response rates, small samples
are likely in some time periods. Often, the analysis
draws on data from multiple time periods to reduce
uncertainty. In the common situation where perfor-
mance drifts over time, a present-time estimate that
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FIGURE 2. Customer Loyalty Dataset: Sample Size by Time Period.

uses present and historical data is biased. We illus-
trate the application of the WEE approach to set up
a bias/variance trade-off in the present-time estimate
of NPS with a realistic dataset of observations over
time.

We consider data observed on covariates in ad-
dition to observations of the process output. These
are factors that we expect have an influence an in-
dividual’s loyalty response. The data are observed
from different individuals among a changing cus-
tomer population. In order to reliably compare es-
timates of mean NPS across time, we adjust the
present-time estimate for the different covariate val-
ues among the samples. Further, we illustrate a hy-
pothesis test to compare NPS estimates across levels
of a covariate of interest.

The dataset includes customer responses to the
survey asking the ultimate question. There are sam-
ple responses from 19,981 customers over 42 weeks.
The number of customers responding by week over
this period, nt, t = 1, . . . , 42, is given in Figure 2.

Figure 2 shows that the number of customer re-
sponses by week varies considerably. There are as
few as 4 customer responses and as many as 2000
responses in one week. There are 175 customer re-
sponses in the current week. For each sample, we
observe the categorized customer response to the ul-
timate question taking a value from y = {1 (de-
tractor), 2 (passive), 3 (promoter)}. In addition to
the response, we also observe two covariate values

for each customer: their product variant and the
amount of time since their purchase of the prod-
uct (tenure). The nominal variable x1 = {1, 2, 3, 4}
describes the product variant and the interval vari-
able x2 = {0, 2, 6, 12, 17, 24} describes the tenure in
months. We define an arbitrary baseline level of the
covariates as x1 = 1, x2 = 0. Under the notation in-
troduced in Section 1, at time period t, we observe
data dt = {yjt, x1,jt, x2,jt; j = 1, . . . , nt} from the
sample of nt customers.

We estimate NPS at the present time for cus-
tomers with baseline levels of the covariates (base-
line customers) through estimates of two parameters
of interest, α1 and α2. The parameters α1 and α2

represent the mean proportions of baseline customers
who are detractors and promoters, respectively. We
estimate covariate effects because we are interested
in estimating NPS for customers at all possible levels
of the covariates. The effects of the other three prod-
uct variants relative to the baseline are modelled by
β1, β2, β3 and product tenure is modelled as a linear
change with the term β4x2. The unknown parameter
that we want to estimate is

θT = (α1,T , α2,T , β1,T , β2,T , β3,T , β4,T )T .

For customer j observed at time t having covariate
values x1,jt and x2,jt, we assume that their response
yjt is modelled by Yjt ∼ Multinomial(1, π1,jt, 1 −
π1,jt − π3,jt, π3,jt) and that the random variables
Yjt are independent across j = 1, . . . , nt and t =
1, . . . , T , conditional on the values of the covariates.
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TABLE 1. Present-Time Field Population

Distribution by Covariate Group at T = 42

Product tenure [months]
Product
variant 0 2 6 12 18 24

1 5 21 95 92 289 1,071
2 20 67 353 490 557 743
3 64 228 1,188 931 522 227
4 524 1,379 1,133 1 0 0

The multinomial rate parameters π1,jt and π3,jt re-
late to model parameter θt at time t and values of
covariates x1,jt and x2,jt through the link functions
and linear predictors

π1,jt(θt) = {exp(α1,t + β1,tI[x1,jt=2]

+ β2,tI[x1,jt=3] + β3,tI[x1,jt=4]

+ β4,tx2,jt)}
÷ {1 + exp(α1,t + β1,tI[x1,jt=2]

+ β2,tI[x1,jt=3] + β3,tI[x1,jt=4]

+ β4,tx2,jt)}
π3,jt(θt) = 1 ÷ {1 + exp(α2,t + β1,tI[x1,jt=2]

+ β2,tI[x1,jt=3] + β3,tI[x1,jt=4]

+ β4,tx2,jt)}
for indicator variables I[x1,jt=2], I[x1,jt=3], and
I[x1,jt=4]. The log-likelihood function describing the
probability of data dt = {(x1,jt, x2,jt, yjt) for j = 1,
. . . , nt} including observations from all customers
observed at time period t is

lt(θt; dt) =
nt∑

j=1

(
I[yjt=1] log π1,jt

+ I[yjt=2] log(1 − π1,jt − π3,jt)

+ I[yjt=3] log π3,jt

)
for indicator variables I[yjt=1], I[yjt=2], and I[yjt=3].

With an estimate θ̂ for the model parameter θT

and select covariate values x1 and x2, we compute
the present estimates for the probabilities that a
customer with these covariate values is a detrac-
tor or a promoter, which we denote as π̂1(θ̂, x1, x2)
and π̂3(θ̂, x1, x2), respectively. An estimate of NPS
for a set of customers with these covariate levels is
N̂PS = π̂3(θ̂, x1, x2) − π̂1(θ̂, x1, x2). An estimate of
NPS is possible at any of the possible levels of the
two covariates. We define a standard population that

is a known, fixed set of the covariate values represent-
ing subjects in a population of importance. Then,
estimates of NPS are made for each customer in the
standard population and we report the mean. The
standard population adjusts for differences among
covariate levels observed in samples over time. To
reliably compare estimates to look for trends across
time, it is important that the same standard popula-
tion be used at each time period. In this application,
the sizes of the covariate groups are known in the
population of all present customers, which we call
the field population. These are given in Table 1.

We summarize the variables, the model, the pa-
rameters, and the assumptions for this application
in Table 2.

In Table 2, we state the assumption that one or
more elements of θt = (α1,t, α2,t, β1,t, β2,t, β3,t, β4,t)T

may drift slowly in an unpredictable way over t =
1, . . . , T . In this application, changes to the elements
of θt over time may occur due to many complex fac-
tors; e.g., continuous improvement in the product or
manufacturing process, new competitive products in
the market, and changing media views of the prod-
uct. We do not want to assume a stochastic or deter-
ministic model to describe the change in θt because
it may be difficult to model the contributing factors
and the model may only be useful for a short period
of time. Instead, we prefer to estimate θT assuming
that the changes to θt over t = 1, . . . , T are relatively
slow and so past data dt have relevance to estima-
tion of θT related to their proximity to the current
time. We estimate the single parameter θ̂ through
the weighted estimating equation in Equation (2)
with weights based on the weight parameter λ = 0.1
and Equation (3). We know that the estimate θ̂ is
a biased estimate of θT assuming that θT �= θt for
t = 1, . . . , T − 1, but θ̂ has less uncertainty than if
we estimate it based on dT alone. Because the sam-
ple size in the current time period is small, reducing
uncertainty by incorporating past data becomes im-
portant. This is the bias/variance trade-off that is
the motivation for using the WEE approach.

Through Equation (4), we calculate the weighted
information estimate of variance of θ̃ involving

It(θ̂) = −E

(
∂2�t(θ;Dt)

∂θ2

)∣∣∣∣
θ=θ̂

,

which is the expected information matrix at each
time period evaluated at the WEE estimate. Esti-
mates of the variance of the mean values of π1, π3,
and NPS are computed from v̂arWI(θ̃).
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TABLE 2. Model for Net Promoter Score Application

Data, dt yjt ∈ {1, 2, 3}: response to ultimate question in one of 3 categories
t = 1, . . . , T x1,jt ∈ {1, 2, 3, 4}: nominal variable representing product variant

x2,jt ∈ {0, 2, 6, 12, 17, 24}: interval value representing tenure for customer
j = 1, . . . , nt at week t = 1, . . . , 42

Parameters of interest π1(θT ), π3(θT ): proportions of customers who are detractors, promoters at current
time T for a fixed standard population of customers, and then NPS = π3 − π1.

Distribution of Dt Yjt ∼ Multinomial(1, π1,jt, 1 − π1,jt − π3,jt, π3,jt)

GLM π1,jt(θt) =
exp(α1,t + β1,tI[x1,jt=2] + β2,tI[x1,jt=3] + β2,tI[x1,jt=4] + β4,tx2,jt)

1 + exp(α1,t + β1,tI[x1,jt=2] + β2,tI[x1,jt=3] + β2,tI[x1,jt=4] + β4,tx2,jt)

π3,jt(θt) =
1

1 + exp(α2,t + β1,tI[x1,jt=2] + β2,tI[x1,jt=3] + β3,tI[x1,jt=4] + β4,tx2,jt)

Model parameters θt = (α1,t, α2,t, β1,t, β2,t, β3,t, β4,t)T with p = 6

Objectives 1. Estimate θT , the model parameter at the current time
2. Estimate π1, π3, and NPS at the current time for a fixed standard population of

customers
3. Track estimates of NPS over time

Assumption One or more elements of θt = (α1,t, α2,t, β1,t, β2,t, β3,t, β4,t)T may drift slowly in an
unpredictable way over t = 1, . . . , T .

We compare the WEE estimate for NPS to those
by the näıve approaches discussed in Section 2. For
the two näıve approaches, estimates π̂3(θ̂, x1, x2) and
π̂1(θ̂, x1, x2) and estimates of their variances are cal-
culated through the WEE approach with one of the
limiting values of the weight parameter. The näıve
approach commonly used in practice (Markey et al.
(2013)) estimates NPS based on present-time data
only without attention to the values of the covari-
ates among customers in the sample. Here, estimates
π̂3(θ̂, x1, x2) and π̂1(θ̂, x1, x2) are sample proportions
based on those customers having the particular co-
variate vector (x1, x2) among the present sample.
Variances of the sample proportion estimates are es-
timated by usual methods. The estimate of variance
is large when there are few observations for a se-
lect combination of covariate levels and the approach
is infeasible when no customers are observed at a
particular combination. Another näıve approach in-
volves sample proportions estimates based on the ag-
gregate of historical data weighted equally.

Figure 3 gives mean estimates N̂PS and the
corresponding 95% confidence intervals based on
v̂ar(N̂PS) assuming normality for the standard pop-
ulation in Table 1 by the various approaches.

Figure 3 shows that the estimate by the recom-
mended WEE approach (λ = 0.1) has less uncer-
tainty than either of the estimates using present-time
data only. Its uncertainty is comparable with that of
the näıve WEE estimate that uses all historical data.
There are some differences between the estimates by
the various approaches, but we are unable to assess
bias because the true value is unknown. The advan-
tage of the recommended WEE approach over the
other approaches depends on the sample sizes and
the drift in the parameter over time. Future work
will investigate the advantage of WEE over a wide
variety of cases through simulation.

Decision makers track the NPS estimates over
time to regularly assess and plan improvement activ-
ities. In Figure 4, we compare the trends in the cur-
rent field population estimates between the common
näıve approach involving sample proportions based
on present-time data only and the WEE approach.
Note that there is a difference in the scales of the two
vertical axes.

Figure 4 shows a vast difference in the trend of
NPS estimates by the two approaches over time.
The estimates by the WEE approach are much more
precise and show a trend that is not apparent on
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λ=0.1

λ 1
λ 0

FIGURE 3. Estimates of Field Population NPS by Various Approaches.

the other graph. The WEE approach could have an
important impact on the decisions taken by busi-
ness managers to drive loyalty and growth through
a trade-off in bias and variability in population-
adjusted NPS estimates and reliable comparisons
across time.

In this application, a decision maker may also
want to compare NPS estimates across subgroups
of the customer population. For example, superior
results for a particular product variant may encour-
age decision makers to target sales of this variant or
focus efforts to bring the NPS of other product vari-
ants to comparable levels. We consider the test of

the hypothesis that NPS for customers with product
variant 4 is the same as NPS for customers with prod-
uct variant 3. In terms of the parameters, we state
the null hypothesis for this test as H0: β3 − β2 = 0
versus the alternative HA: β3 − β2 �= 0. The WEE
estimates and relevant quantities to test H0 versus
HA are given in Table 3.

Table 3 gives evidence to reject the null hypothesis
H0: β3 − β2 = 0 in favor of HA: β3 − β2 �= 0 for a
size 0.05 test. The estimates of the proportions are
π̂1,x1=3 = 0.30, π̂3,x1=3 = 0.44, π̂1,x1=4 = 0.25, and
π̂3,x1=4 = 0.51. As such, the estimates of NPS for
customers at the baseline level of tenure (x2 = 0)

(a) (b)

FIGURE 4. Trends in Field Population NPS Estimates. (a) Sample proportion estimates using present data only; (b) WEE

approach, λ = 0.1.
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TABLE 3. Hypothesis Test Quantities for H0: β3 − β2 = 0 vs. HA

Unconstrained model WEE estimate of θ θ̂ = [−0.695, 0.380,−0.0928,−0.147,−0.414,−5.84E-6]T

Weighted log likelihood
∑T

t=1 wtlt(dt; θ̂) = −486.218

Constrained model WEE estimate of θ θ̂0 = [−0.899, 0.173,−0.0514,−0.144,−0.144, 0.0100]T

Weighted log likelihood
∑T

t=1 wtlt(dt; θ̂0) = −486.754

WEE LR test statistic (5) Ŝ = 1.072

Weight-adjusted test statistic (
∑T

t=1 wtnt/
∑T

t=1 w2
t nt)Ŝ = 17.2

p-value for H0 under (6) Pr[χ2
1 > (

∑T
t=1 wtnt/

∑T
t=1 w2

t nt)Ŝ] < 0.01

with the two model variants are N̂PSx1=3 = 0.14
and N̂PSx1=4 = 0.26. Decision makers have evidence
that NPS of product variant 4 is superior to that of
product variant 3.

A decision maker may track the estimate of the
difference between NPS of the two product vari-
ants over time in order to monitor their similar-
ity. The graph of N̂PSx1=4 − N̂PSx1=3 based on
data over the range T = 10, . . . , 42 is given in Fig-
ure 5. The 95% confidence interval of each estimate
N̂PSx1=4 − N̂PSx1=3 is based on the WI estimate of
variance for θ̂ at that point in time assuming normal-
ity. The dotted line shows the p-value for H0 under
Equation (6) at each point in time.

Figure 5 shows that the estimate of NPS for prod-
uct variant 4 is consistently larger than that of prod-
uct variant 3 and there is evidence to reject the size
0.05 test of no difference between the two at all points
in time except T = 15. The earliest customers using
product variant 4 are observed in week 10 and so the
uncertainty of N̂PSx1=4 − N̂PSx1=3 decreases after
week 10 as more data on this variant are observed.
There is a decrease in the estimate of the difference
in NPS of the two product variants from week 10
to week 14. The difference between the two prod-
uct variants is stable from week 16 to week 42. Al-
ternatively, we could monitor the similarity between
the mean NPS at the two covariate levels through
a graph of the weighted WEE LR test statistic over

FIGURE 5. WEE Estimates of Difference in NPS for Product Variants 3 and 4.

Vol. 49, No. 4, October 2017 www.asq.org



312 PATRICIA L. COOPER BARFOOT, STEFAN H. STEINER, AND R. JOCK MACKAY

time. Liu et al. (2008) discuss control limits for a
likelihood ratio test statistic that could be adapted
in order to formally monitor the weighted WEE LR
test statistic.

4. Summary and Discussion

We propose a weighted estimating equation
(WEE) approach that offers a trade-off between es-
timation of a performance measure using present-
time data only or historical data over time weighted
equally. This trade-off is especially important when
sample sizes at some time periods may be small and
the parameter in the model for the performance mea-
sure may be drifting slowly in an unpredictable way
over time. This approach addresses motivating prob-
lems with the objective to compare a parameter with
a target, over levels of the covariates, across multi-
ple streams, and over time. Specifically, through a
realistic dataset, we show the potential of this ap-
proach to have an important impact on the ongoing
use of the NPS measure based on customer responses
to the ultimate question. The WEE approach down
weights the contributions of historical data to esti-
mating equations involving scores of the observed
data at a common value of the parameter.

We derive an estimate of the variance of the WEE
parameter estimator and an approximation for the
distribution of a WEE likelihood-ratio test statistic
based on asymptotic properties of the score and in-
formation functions. For the simple analytic example
in Section 2.3, we show the recommended approach
has lower mean-squared error than either of the two
näıve approaches when there are small changes in the
parameter over time and present-time sample size is
small. We also show that the given approximation
to the distribution of the hypothesis test statistic is
suitable for the particular simple example. The WEE
approach is straightforward to implement in SAS and
the necessary data setup and code are provided in
Appendix C.

In this work, we assume that one or more of the
elements of the p-dimensional parameter θt may drift
slowly over time; however, it is possible that the co-
variate effects may either be known or assumed to
be fixed over time. In the case where elements of θt

are known, we can substitute the known values and
reduce the number of estimating functions appropri-
ately. In the case where elements of θt are assumed
to be fixed over time, an alternative set of estimating
functions could be selected without weights for those
estimating functions relating to the fixed parameters.

Other methods of analysis are possible. Reviewers
of this paper have suggested that we can compare the
WEE approach to the Kalman filter (Grewal and An-
drews (2014)). Both approaches seek to produce an
estimate of θT with greater precision by using both
current and past data. Each sacrifices unbiasedness
for additional precision if one or more parameters
change over time.

The usual application of the Kalman filter (KF)
assumes an appropriate system model describing the
evolution of the state vector (here the parameter)
that can be used to estimate the parameter at time
T given θ̂T−1. Here, we have no such model so it
would be logical to use the current estimate θ̂T−1 to
estimate the parameter at time T . Further, to imple-
ment the KF, we need to assume a known parameter
covariance vector. It is not clear how to select this.
We take the weighted average of the two estimates
θ̂T−1 and θ̂T with dynamic weights based on their
precision. If the parameter changes over time, then
there is a bias in θ̂T−1.

Unlike the KF, the WEE approach does not com-
bine the current and past estimates. Instead, it cre-
ates an estimating function through the weighted av-
erage of the likelihood-based score functions across
time. The weights are fixed by the choice of λ. Note
that the score functions based on dt, t = 1, . . . , T
are sufficient statistics for the data at each time pe-
riod and hence contain all of the available informa-
tion about the parameter. For most models, includ-
ing the nonlinear model used in our example, the KF
estimates θ̂1 . . . , θ̂T−1 are not sufficient statistics and
hence information is lost by using θ̂T−1 to summarize
the historic data.

In terms of computation for the nonlinear mod-
els considered in this paper, both methods require
the solution of estimating equations with p unknowns
(presuming the KF uses the maximum-likelihood es-
timate at time T ) and similar calculations to find the
standard errors. The WEE approach is motivated by
applications with small samples in the latest time
period. If there are insufficient data at time T to
estimate all the parameter components, then a stan-
dard implementation of the KF is not applicable. The
standard KF implementation could be adapted but
it is not obvious how to proceed. With small amounts
of data and no system model, present data will have
less and less impact on the KF estimate as time goes
by and bias in θ̂T−1 is important to consider. In the
realistic dataset studied in this paper, there are in-
sufficient data to estimate all of the parameter com-

Journal of Quality Technology Vol. 49, No. 4, October 2017



BIAS/VARIANCE TRADE-OFF IN ESTIMATES OF A PROCESS PARAMETER BASED ON TEMPORAL DATA 313

ponents in 20 of the 42 time periods where data are
observed and no obvious system model. Thus, in this
case, a standard implementation of the KF is not
reliable for updating the NPS estimates over time.

It is not easy to compare quantitatively the per-
formance of the WEE and KF approaches through
a simulation study because there are many possible
parameter and covariate values and ways that the pa-
rameter might drift over time. We suspect that one
approach is not uniformly better than others. How-
ever, based on the qualitative comparison, we feel the
mixed parametric/nonparametric nature of the WEE
is a more flexible approach for the estimation prob-
lem at hand. Additionally, to implement a change to
the usual, näıve method of analysis in practice, de-
cision makers need to be made aware of the reason
for the change and the basic premise of the new ap-
proach. The WEE approach is an intuitive solution
to the bias/variance trade-off problem.
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Appendix A
Asymptotic Results

A.1. Consistency of WEE Estimator

A rigorous proof of consistency of the WEE esti-
mator would follow the method in Wald (1949) for
an MLE estimator. Here we outline the main ideas of
this proof. We denote θ0 as the true value of θ that
we assume does not change over t = 1, . . . , T time
periods.

Lemma

For any θ �= θ0, we have E(lt(X, θ))<E(lt(X, θ0)),
where X is a random variable having distribution
f(x, θ0) and lt(x1, . . . , xnt), θ) =

∑nt

j=1 log f(xj , θ).
See Wald (1949) for proof.

Theorem

Under usual regularity conditions on the family of
distributions, the WEE estimate θ̂ is consistent; i.e.,
θ̂

p→ θ0 as N → ∞.

The sketch of the proof is based on the following
facts:

• θ̂ is a maximizer of
∑T

t=1 wtlt(x, θ) by defini-
tion.

• θ0 is the maximizer of E(lt(X, θ)) by the
Lemma. It follows that θ0 is also the maximizer
of E(

∑T
t=1 wtlt(X, θ)).

By the Law of Large Numbers,
∑T

t=1 wtlt(x, θ)
p→

E(
∑T

t=1 wtlt(X, θ)) for all θ as N → ∞. Because two
functions are getting closer, the points of maximum
should also get closer, which means that θ̂

p→ θ0 as
N → ∞.

A.2. Estimate of Asymptotic Variance

We consider the case where the model does not
depend on covariates. For I(θ), the expected infor-
mation from a single sample, and It(θ) = ntI(θ), the
expected information from all samples at t, then

var(ψt(θ;Dt)) = It(θ) = ntI(θ) = NctI(θ)

because ct = nt/N for all t. Then by the Central
Limit Theorem,

ψt(θ;Dt)√
nt

D→ Np(0, I(θ)),

because ψt is the sum of nt terms each with mean
vector 0p and covariance matrix I(θ) for each t as
nt → ∞. Because Dt are assumed to be independent
across time t = 1, . . . , T and wt and ct are constants,
then

1√
N

T∑
t=1

wtψt(θ;Dt)
D→ Np

(
0,

T∑
t=1

w2
t ctI(θ)

)
.

We consider the first-order Taylor series approxima-
tion of ψ(θ̂) for θ̂ near θ,

(θ̂ − θ) ≈ [−ψ′(θ)]−1ψ(θ),

because ψ(θ̂) = 0. We extend this to an approxima-
tion for the corresponding random variable (θ̃ − θ)
with observed information at time t, it(θ) = −ψ′

t(θ),
so

√
N(θ̃ − θ) ≈

(
1
N

T∑
t=1

wtit(θ)

)−1

1√
N

T∑
t=1

wtψt(θ)

because θ̃ is consistent. Then, by Slutsky’s theorem,

√
N(θ̃ − θ) D→

(
T∑

t=1

wtctI(θ)

)−1

Z

as N → ∞, because E[it(θ)] = It(θ) = NctI(θ)
and Z is the asymptotic distribution of (1/

√
N)×
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∑T
t=1 wtψt(θ;Dt). Then, with the previous result for

Z,

√
N(θ̃ − θ) D→ Np

⎛⎝0,

(
T∑

t=1

wtctI(θ)

)−1

×
T∑

t=1

w2
t ctI(θ)

×
(

T∑
t=1

wtctI(θ)

)−1
⎞⎠ .

Then, an estimate for the asymptotic variance of θ̃ is

v̂arWI(θ̃; θ̂) =

(
N

T∑
t=1

wtctI(θ̂)

)−1

N
T∑

t=1

w2
t ctI(θ̂)

×
(

N
T∑

t=1

wtctI(θ̂)

)−1

.

More generally, in the case where the model depends
on the covariates and (It(θ))/nt) → gt(θ) as nt →
∞ for gt(θ) a matrix of constants, we extend this
estimate as

v̂arWI(θ̃; θ̂) =

(
T∑

t=1

wtIt(θ̂)

)−1 T∑
t=1

w2
t It(θ̂)

×
(

T∑
t=1

wtIt(θ̂)

)−1

.

We refer to this as the weighted information (WI)
estimate of variance.

A.3. Distribution of Hypothesis Test Statistic

The likelihood-ratio test of the simple null hypoth-
esis H0: θ = θ0 against the alternative HA: θ �= θ0 is
based on the likelihood-ratio random variable

S̃ = 2

(
T∑

t=1

wtlt(θ̃) −
T∑

t=1

wtlt(θ0)

)
.

Consider the second-degree Taylor series approxima-
tion of

∑T
t=1 wtlt(θ0) for θ0 near θ̂,

T∑
t=1

wtlt(θ0) ≈
T∑

t=1

wtlt(θ̂) + (θ0 − θ̂)T
T∑

t=1

wtl
′
t(θ̂)

+
1
2
(θ0 − θ̂)T

T∑
t=1

wtl
′′
t (θ̂)(θ0 − θ̂).

Because
∑T

t=1 wtl
′
t(θ̂) = 0 and observed information

matrix it(θ) = −l′′t (θ), then

Ŝ = 2

(
T∑

t=1

wtlt(θ̂) −
T∑

t=1

wtlt(θ0)

)

≈
√

N(θ̂ − θ0)T 1
N

T∑
t=1

wtit(θ̂)
√

N(θ̂ − θ0).

We extend this result for Ŝ to the random variable S̃.
We consider the case where the model does not de-
pend on covariates. Then, S̃ has the same asymptotic
distribution as

√
N(θ̃ − θ0)T

T∑
t=1

wtctI(θ̃)
√

N(θ̃ − θ0)

because E[it(θ)] = NctI(θ). In Appendix A.2, we
show that, under regularity conditions and consis-
tency,

√
N(θ̃ − θ0)

D→ Np

⎛⎝0,

(
T∑

t=1

wtctI(θ̃)

)−1

×
T∑

t=1

w2
t ctI(θ̃)

×
(

T∑
t=1

wtctI(θ̃)

)−1
⎞⎠

as N → ∞. It follows that

√
N(θ̃ − θ0)T

(
T∑

t=1

wtctI(θ̃)

)(
T∑

t=1

w2
t ctI(θ̃)

)−1

×
(

T∑
t=1

wtctI(θ̃)

)√
N(θ̃ − θ0)

D→ χ2
p

as N → ∞. With this asymptotic result, we state an
approximation for the distribution of

S̃ ∼
√

N(θ̃ − θ0)T
T∑

t=1

wtctI(θ̃)
√

N(θ̃ − θ0)

in the case that dim(θ) = 1. Because I(θ) is a scalar,
then(

T∑
t=1

w2
t ct

)−1 ( T∑
t=1

wtct

)
S̃

D→ χ2
1 as N → ∞

under the null hypothesis.

More generally, where the model depends on the
covariates, we consider the case where It(θ)/nt →
g(θ); i.e., the average expected information in the
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limit is the same for all t. In the limit as nt and N
get large, then

It(θ) ≈ ntg(θ) ≈ Nctg(θ)

for each t = 1, . . . , T . The previous results in Appen-
dices A.1 and A.2 involving I(θ) extend to results in-
volving g(θ). Then, in the case where g(θ) is a scalar,
it follows that(

T∑
t=1

w2
t ct

)−1 ( T∑
t=1

wtct

)
S̃

D→ χ2
1 as N → ∞

under the null hypothesis. These results extend to
the more general case where dim(θ) = p ≥ 1,(

T∑
t=1

w2
t ct

)−1 ( T∑
t=1

wtct

)
S̃

D→ χ2
p as N → ∞

under the simple null hypothesis. For testing r <
p restrictions on θ, then we can show by a similar
argument that(

T∑
t=1

w2
t ct

)−1 ( T∑
t=1

wtct

)
S̃

D→ χ2
r as N → ∞

under the null hypothesis. In practice, we replace ct

by nt/N and use these results to approximate the
distribution of the weight-adjusted test statistic∑T

t=1 wtnt∑T
t=1 w2

t nt

Ŝ.

Appendix B
Analytic Example

Based on the random variables

Ym,t ∼ Binomial(nm,t, πm,t),

m = 1, 2 with θ̃t = {π̃1,t, π̃2,t}, the log-likelihood
function for observations y1,t, y2,t at time t is

lt(yt | θt) =
2∑

m=1

ym,t log πm,t

+ (nm,t − ym,t) log(1 − πm,t).

Assuming that πm,t = πm, m = 1, 2 for each t, the
WEE estimate θ̂ is found by solving

∑T
t=1 w(t)ψt(yt |

θ) = 0, which gives

π̂m =
∑T

t=1 wtym,t∑T
t=1 wtnm,t

.

Because

It(θ) =

⎡⎣ n1,t

π1(1 − π1)
0

0
n2,t

π2(1 − π2)

⎤⎦ ,

then the estimate of variance of θ̃ by Equation (4) is

v̂ar(π̃m) =
∑T

t=1 w2
t nm,tπ̂m(1 − π̂m)(∑T
t=1 wtnm,t

)2 , m = 1, 2.

The parameter of interest to compare the present
pass rates between the two streams is π = π2 − π1.
Based on the preceding estimates,

π̂ =
∑T

t=1 wty2,t∑T
t=1 wtn2,t

−
∑T

t=1 wty1,t∑T
t=1 wtn1,t

,

v̂ar(π̃) =
2∑

m=1

π̂m(1 − π̂m)
∑T

t=1 w2
t nm,t(∑T

t=1 wtnm,t

)2 .

To test the null hypothesis H0: π0 = 0 versus the
alternative HA: θ0 �= 0, the WEE LR test statistic of
Equation (5) is

Ŝ = 2
2∑

m=1

T∑
t=1

wt

(
log

π̂m

π̂0
ym,t

+ log
(

1 − π̂m

1 − π̂0

)
(nm,t − ym,t)

)
for π̂1 and π̂2 as previously stated and

π̂0 =
∑2

m=1

∑T
t=1 wtym,t∑2

m=1

∑T
t=1 wtnm,t

under the null hypothesis. Based on the parameter
and test statistic estimates for this simple problem,
we consider three properties as follows.

i. the estimate of var(θ̃) in Equation (4) is appro-
priate.

Given the simple model, we estimate var(π̃) di-
rectly by the distributions of the random variables
{Y1,t, Y2,t, t = 1, . . . , T}. The WI estimate of variance
by Equation (4) is the same as the closed-form ex-
pression of variance derived directly from the distri-
butions of the random variables. Because no asymp-
totic assumptions are required for the latter formu-
lation, the weighted information estimate of variance
is a suitable estimate even when there are small sam-
ples for this simple example.

ii. the WEE estimate and WI estimate of var(θ̃)
in Equation (4) is suitable with small changes
in θt over time periods t = 1, . . . , T .
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We study the effect of a change in true value π
on the bias(π̃) = E(π̃) − π and estimate of variance
v̂ar(π̃). For this study, we choose arbitrary values:

• T = 10 time periods of data observed.
• sample sizes n1,t = n1 = 100 and n2,t = n2 =

60 for all t = 1, . . . , T .
• stream 2 experiences a positive step change in

rate π2,t of size Δ at time t = 6.

Streams 1 and 2 have the same initial pass rates,
so π1,1 = π2,1. We vary initial values π1,1 = π2,1 and
Δ = π2,6−π2,5 to compare the properties of the WEE
estimator over various profiles. Note that, under a
change in pass rate at stream 2, the true value of
π2,t is π2,1 for t < 6 and π2,1 + Δ for t ≥ 6. Then,
the quantity E(Y2,t) in E(π̃) and It(π̃) depends on t
and the size of the change Δ for t ≥ 6. At the present
time T = 10, the expected value of estimator π̃ is

E(π̃;Δ) = E

(∑T
t=1 wtY2,t∑T
t=1 wtn2,t

−
∑T

t=1 wtY1,t∑T
t=1 wtn1,t

)

= π2,1 + Δ
10∑

t=6

wt − π1,1,

and its true value is π2,1 + Δ − π1,1. The bias in
estimator π̃ at time T is

bias(π̃;Δ) = Δ

(
10∑

t=6

wt − 1

)
.

The weighted information estimate of variance of π̃
based on Equation (4) is

v̂arWI(π̃;Δ) =
a
∑10

t=1 w2
t

n1

+
b
∑5

t=1 w2
t + c

∑10
t=6 w2

t

n2

(
b
∑5

t=1 wt + c
∑10

t=6 wt

)2 .

with

a = π1,1(1 − π1,1),

b =
1

π2,1(1 − π2,1)
,

and

c =
1

(π2,1 + Δ)(1 − π2,1 − Δ)
.

We study the bias and variance of the WEE esti-
mator through root-mean squared error given by

MSE(π̃,Δ) =
√

(bias(π̃,Δ))2 + v̂ar(π̃,Δ).

We calculate MSE(π̃,Δ) for values of π1,1 = π2,1

in the range of 0.02 to 0.20 and values of Δ in the

FIGURE 6. Contour Plots of Relative MSE vs. Pass

Rates π1,1 = π2,1 and Size of Step Change. (a) Rela-

tive MSE = MSEWEE/MSEnäıve,λ→1; (b) Relative MSE =

MSEWEE/MSEnäıve,λ→0.

range of 25% to 100% of each of the starting values
π1,1 = π2,1. Figure 6 gives contour plots of the rela-
tive values of MSE for the values of π1,1 = π2,1 and
Δ. The relative values compare MSE for the WEE
estimator with weight parameter λ = 0.1 to that of
each of the two näıve estimators having limiting val-
ues of the weight parameters.

Figure 6 shows that the WEE estimator has lower
MSE than either of the näıve estimators for most of
the values of π1,1 = π2,1 and Δ. The advantage of the
WEE estimator over the estimator based on present-
time data only is more important when the change
in the parameter is small and present-time sample
size is small. The advantage of the WEE estimator
based on all historical data weighted equally is more
pronounced for larger changes in the parameter. We
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FIGURE 7. Contour Plot of e (π̃,Δ) by π1,1 = π2,1 and

Δ.

see that the WEE estimator provides a trade-off be-
tween bias and variance relative to the two näıve ap-
proaches for this simple example.

For this simple example, we also calculate vari-
ance by the distributions of the random variables
{Y1,t, Y2,t, t = 1, . . . , T}. At the present time T = 10,
the variance of estimator π̃ is

vardist(π̃,Δ)

= var

(∑T
t=1 wtY2,t∑T
t=1 wtn2,t

−
∑T

t=1 wtY1,t∑T
t=1 wtn1,t

)

=
∑T

t=1 w2
t π1,1(1 − π1,1)

n1

+
∑5

t=1 w2
t π2,1(1 − π2,1)

n2

+
∑10

t=6 w2
t (π2,1 + Δ)(1 − π2,1 − Δ)

n2
.

We compare the two variances by the ratio of stan-
dard deviations, which we denote as e(π̃,Δ) =√

varWI(π̃,Δ)/
√

vardist(π̃,Δ). Figure 7 gives a con-
tour plot of the values of e(π̃,Δ) for the WEE esti-
mator with weight parameter λ = 0.1.

Figure 7 shows that varWI(π̃;Δ) and the variance
based on the distributions of {Y1,t, Y2,t, t = 1, . . . , T}
are close for these values of π1,1 = π2,1 and Δ. We see
that the weighted information variance using WEE
estimates is a good estimate of variance for this sim-
ple example, especially when there is a small change
in the parameter.

iii. the distribution of the weight-adjusted random
variable S̃ in Equation (6) is approximately χ2

r.

At time t, consider a test of null hypothesis H0:
π = 0 versus the alternative HA: π �= 0. To follow,
we show by properties of the random variables that

E

(∑T
t=1 wtnt∑T
t=1 w2

t nt

S̃

)
= 1

under the null hypothesis, which agrees with the first
moment of the distribution in Equation (6). We val-
idate the second and third moments and 95th per-
centile of the distribution in Equation (6) through
comparison with approximate distributions based on
simulated data. Table 4 confirms that the approxi-
mate distribution∑T

t=1 wtnt∑T
t=1 w2

t nt

S̃
approx→ χ2

1

is suitable when N is very large (N = 1 × 107) and
a useful approximation when N is small (N = 100).

We approximate a distribution for S̃ in order to
test a hypothesis based on test statistic Ŝ. The ran-
dom variable S̃ in terms of random variables Ym,t,
sample sizes nm,t, and weights wt, t = 1, . . . , T ,
m = 1, 2 is

S̃ = 2
2∑

m=1

T∑
t=1

wt

(
Ym,t log

π̃m

π̃null

+ (nm,t − Ym,t) log
(

1 − π̃m

1 − π̃null

))
.

We approximate S̃ through second-order Taylor se-
ries approximations for those terms involving loga-

TABLE 4. Moments of Approximate Distributions of Weight-adjusted Hypothesis Test Statistic

Approximate distribution Mean Variance Skew 95th percentile

(
∑T

t=1 wtnt/
∑T

t=1 w2
t nt)S̃ ∼ χ2

1 1.000 2.000 2.828 3.841
Simulated distribution with N = 1 × 107 1.000 2.008 2.852 3.860
Simulated distribution with N = 100 1.019 2.086 2.869 3.914
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FIGURE 8. SAS Code for WEE Analysis of an Example Dataset.

rithms of the random variables:

• log(x) for
∑T

t=1 wtYm,t around
∑T

t=1 wtπmnm,t

for m = 1, 2.
• log(x) for

∑2
m=1

∑T
t=1 wtYm,t around [(π1 +

π2)/2]
∑2

m=1

∑T
t=1 wtnm,t.

We find the expected value of the approximation for
S̃ based on the assumptions

Y1,t ∼ Binomial(n1,t, π1),
Y2,t ∼ Binomial(n2,t, π2),

and Y1,t, Y2,t independent for each t. Under the null
hypothesis with π = π1 − π2 = 0, then

E[S̃] ≈
∑T

t=1 w2
t nt∑T

t=1 wtnt

and

E

[∑T
t=1 wtnt∑T
t=1 w2

t nt

S̃

]
≈ 1.

We validate higher moments of the distribution of
Ŝ through simulation. We consider the empirical dis-
tribution of Ŝ for 100,000 datasets that are generated
with T = 10, π1 = π2 = 0.04, λ = 0.1, and n1,t = n1,
n2,t = n2 for all t. We repeat the simulation study
for large N =1×107 and small N =100. Table 4 gives
the empirical moments of the distributions of Ŝ.

Table 4 shows that the empirical distributions
based on simulation are close to the approximate
distribution for this simple example under the select
conditions.

Appendix C
SAS Implementation

The weighted estimating equations in Equation
(2) can be solved in most regression programs that
allow for weights. In SAS, the weighted estimating

equations can be solved using PROC GENMOD. De-
tails on this procedure and other resources to use
SAS are available at “Resources to help you learn and
use SAS” (n.d.). Consider an example dataset called
SAMPLE DATA with one row for each subject that
is observed. The dataset contains fields for an index
‘case’, covariate values ‘x1, x2’, {wt} ‘weights’, and
outcome ‘y’. The parameter to estimate includes el-
ements for the mean outcome for a baseline subject
and two covariate effects, θT = (αT , β1,T , β2,T ). The
SAS statements to estimate θ = θT by the WEE ap-
proach assuming a binomial generalized linear model
with a logit link function for SAMPLE DATA are
given in Figure 8. The SAS PROC GENMOD rou-
tine also provides the weighted information estimate
of the variance of θ̂ given in Equation (3).

The convenience of the existing software function-
ality for solving the weighted estimating equations
makes it convenient to implement the WEE approach
and update the estimates over time.
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