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A B S T R A C T

Usage-based insurance schemes provide new opportunities for insurers to accurately price and manage risk.
These schemes have the potential to better identify risky drivers which not only allows insurance companies to
better price their products but it allows drivers to modify their behaviour to make roads safer and driving more
efficient. However, for Usage-based insurance products, we need to better understand how driver behaviours
influence the risk of a crash or an insurance claim. In this article, we present our analysis of automotive tele-
matics data from over 28 million trips. We use a case control methodology to study the relationship between
crash drivers and crash-free drivers and introduce an innovative method for determining control (crash-free)
drivers. We fit a logistic regression model to our data and found that speeding was the most important driver
behaviour linking driver behaviour to crash risk.

1. Introduction

Traditional car insurance policies are based on driver demographics
such as age, income, gender and location and on vehicle characteristics
such as make, model and vehicle age (Weidner et al., 2017; Tselentis
et al., 2017). Often annual distance driven is a factor in these policies,
however, it is often an estimate provided by the driver and as noted in
previous studies (White, 1976; Butler et al., 1988), reported values are
usually lower than actual values. Unfortunately, this form of insurance
has several drawbacks. Most notably, the cross subsidies phenomenon
whereby safer drivers with fewer annual kilometres driven subsidize
the insurance costs of more risky drivers with more annual kilometres
driven (Tselentis et al., 2017). One of the implications of this policy is
to increase social inequality since lower income individuals tend to
drive fewer annual kilometres (Litman, 2002). In addition, these po-
licies do not encourage drivers to modify their behaviour leading to
more accidents, congestion and pollution.

Modern vehicles are equipped, or can be retrofitted, with a set of
sensors that can infer information about a vehicle's state and its sur-
rounding environment. The data collected from these sensors, known as
telematics data, can be used to better assess a driver's risk and allow
insurance companies to better individualize policies and mitigate risk.
These policies are often broadly referred to as Usage-based insurance
(UBI) schemes. Tselentis et al. (2017) provide a review of current UBI
research. They divide UBI into two broad categories: Pay-As-You-Drive
(PAYD) insurance and Pay-How-You-Drive (PHYD) insurance. PAYD

insurance is based on what they refer to as travel behaviour, defined as
a driver's strategic choices concerning which type of road to use, what
time of day to drive and how much to drive. PHYD insurance, on the
other hand, is based on what the authors refer to as driver behaviour.
Driver behaviour is defined as a driver's operational choices in handling
their vehicle and includes behaviour such as speeding, harsh braking or
hard acceleration. Often times PHYD insurance is an extension of PAYD
insurance and will include both driver and travel behaviour. In this
paper, we focus on evaluating the impact of driver behaviour on the risk
of a crash.

Much of the research on UBI policies has focused on travel beha-
viour (Tselentis et al., 2017) and in particular the relationship between
distance and accident risk. The interest in distance is partially due to a
number of non-telematics based studies showing a strong relationship
between these two variates (Litman, 2005, 2011) and as mentioned
previously the inaccurate reporting of distance driven by drivers.
However, several recent studies have incorporated driver behaviour in
their analysis. Ayuso et al. (2016) use survival analysis methods to
show differences between the driving and travel behaviour of men and
women. Jin et al. (2018) examine the impact of route familiarity in
determining accident risk and incorporate both travel and driving be-
haviour variates in their analysis. Paefgen et al. (2013) compare dif-
ferent models for classifying drivers according to their accident risk
using both travel and driver behaviours. They note that while neural
networks perform best, logistic regression is best suited for use in ac-
tuarial models given its ease of interpretability. In Paefgen et al. (2014),
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Paefgen, Staake and Fleisch examine the nonlinear relationship be-
tween mileage and accident risk while also incorporating driving be-
haviour in their model. Jun et al. (2011) focus on different measures of
speed and their relationship to accident risk. They find that for different
travel behaviours different measures of speed are relevant. Other stu-
dies have explored ways of classifying different drivers based on their
driving behaviour without directly tying these behaviours to accidents
(Weidner et al., 2017; Vaiana et al., 2014; Ferreira Júnior et al., 2017;
Joubert et al., 2016). While these behaviours cannot be directly tied to
accident risk they do highlight the heterogeneity apparent in driving
styles.

In this paper, we are interested in studying the relationship between
driving behaviour and the risk of a crash. Using a telematics dataset
from a PHYD insurer we conduct a case-control study to compare driver
behaviour between crash-involved drivers and crash-free drivers. We
introduce a novel approach for selecting the controls. For each crash-
involved driver, we select controls (i.e. crash-free drivers) so that their
travel behaviour and location closely matches that of the crash-involved
driver. The matching eliminates confounding due to travel behaviour
and location and leads to more precise estimation of the effects of the
driver behaviour factors on crash risk. Once we have our controls we
use driver behaviour variates from these drivers along with our crash
drivers and evaluate the impact of these variates using a logistic re-
gression model with LASSO regularization. We find that speeding (de-
fined relative to the speed limit) is the most important driver behaviour
in our model.

The remainder of the paper is organized as follows. Section 2 gives a
description of the data set including the trip-based travel and driver
behaviour variates. Section 3 describes the case/control methodology
we develop to reduce the impact of travel behaviour variates in de-
termining the relationship between crash risk and driver behaviour. In
Section 4 we include a description of the logistic regression model we
employ to study the relationship between crash risk and driver beha-
viour as well as our results. Section 5 includes a discussion of the results
and some of the limitations due to the data as well as concluding
thoughts.

2. Data set

The data in our study is a sample from vehicles enrolled in a PHYD
insurance program. There are 28,170,535 trips and 29,416 drivers. The
trips occurred between March 2014 and April 2016, however, 99.94%
of the trips occurred between July 2015 and April 2016. Within this
time frame, drivers both enrolled and dropped-out of the program thus
not all drivers have trips spanning the entire period. The median en-
rolment length is 9 months. Each trip is recorded using an OBD-II de-
vice (Comparing Mobile Apps, 2017), which collects Global Positioning
System (GPS) data and speed data at a frequency of 1 Hz (i.e. collected
once per second). Each GPS record includes latitude, longitude, HDOP
(horizontal dilution of precision), a measure used to determine GPS
accuracy, course over ground (COG) (i.e. the direction of the vehicle),
and vehicle speed using the Doppler shift of satellite signals. The ve-
hicle speed is also recorded directly from the vehicle and for all our
analysis this is the measure of speed we use and not the GPS speed. The
vehicle speed is a more robust measure and not subject to error due to
drift, tunnels, etc. Note that each GPS and speed record in a trip has an
associated timestamp. From the GPS and speed data we can determine a
number of features about the trip. Sections 2.1 and 2.2 describe the trip-
based travel behaviour and driver behaviour variates, respectively.
These trip-based variates are then aggregated to build driver-based
variates. The driver-based travel behaviour variates are used in our
case/control methodology and the driver-based driver behaviour vari-
ates are used in our logistic regression model. Note that given the
nature of the data there are sometimes anomalies in the trip data and
we remove these trips from our analysis which reduces the number of
trips to 28,104,042 and the number of drivers by one. As well, although

we refer to the driver-based aggregates as belonging to one driver they
in fact belong to one vehicle. The OBD-II device is attached to a par-
ticular vehicle and records all trips taken by that vehicle regardless of
driver.

In addition to calculating the different variates, the trip data can
also be used to detect crashes. In fact, the 28 crashes in our dataset are
found using a proprietary trip-based algorithm. The algorithm is a
function of extreme driver behaviour and in addition to relying on GPS
and speed data, it is also based on accelerometer data, (i.e. acceleration
in the x, y and z directions). Although the algorithm we use is pro-
prietary, see Syedul Amin et al. (2014) for a description of how sensor
data including accelerometer data can be used to detect a crash. In our
analysis, accelerometer data is recorded by the OBD-II at 1 Hz and while
used in the determination of crashes it is not used elsewhere in our
analysis. Once the crashes have been detected using extreme values
they are verified using location information and subsequent trip in-
formation including evidence of towing, vehicle change, etc. Given the
nature of the algorithm and the limitations of the data frequency, it
only detects high impact or severe crashes. An additional draw back of
this methodology is that it does not provide at-fault information about
the crash. Thus, for our crash drivers we do not know if the driver was
at-fault. Once we have determined the crash-involved drivers we want
to find control drivers with similar travel behaviour variates. Before
describing the case/control methodology, we first examine the possible
trip-based travel and driver behaviour variates. For a given driver, we
can aggregate their trip-based variates in a number of ways to get
driver-based variates. This then allows us to perform comparisons
across drivers both to find controls and in determining the relationship
between driver behaviour and the risk of a crash. Note that for potential
control drivers we use the entire history of their trips to determine their
driver aggregates however for crash-involved drivers we only use the
trips prior to and not including their crash.

2.1. Travel behaviour variates

As mentioned previously, we define travel behaviour as a driver's
choices concerning which type of road to use, what time of day to drive
and how much to drive. Based on the speed and GPS data and their
associated timestamps, we can determine several travel behaviour
variates for each trip: the duration, the distance, the time of day and the
day of the week. We can also use the location data to determine the
road type. This information is gathered from the Open Source Routing
Machine (OSRM) (OSRM, 2018). The OSRM is a routing engine that
uses OpenStreetMap (OpenStreetMap, 2018) data to find road in-
formation from the GPS coordinates including road type and the posted
speed limit, which we use in Section 2.2 to define a measure of driver
behaviour. For each driver, we can use these trip-based travel beha-
viour variates to build driver-based travel behaviour variates and then
use these aggregates to find our controls. We discuss the exact trip-
based travel variates we use for aggregation in Section 3.

2.2. Driver behaviour variates

We are interested in studying the impact of a driver's operational
choices in handling their vehicle on their crash risk. To do this, we
define four measures of driver performance/behaviour for each trip.
These four measures, which we refer to as penalties, are based on ac-
celeration, braking, speeding and cornering. Note that while accelera-
tion can often be used to describe both positive and negative accel-
eration (i.e. change in speed over time), for the purposes of our
exposition, acceleration refers to non-negative acceleration while ne-
gative acceleration is referred to as braking. The penalties for each of
the four categories are calculated using a similar methodology. To
highlight this methodology, let us focus on the acceleration penalty and
describe how it is determined. To calculate the acceleration penalty, we
use the speed data collected from the trip to calculate an acceleration
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vector. Then using the acceleration vector we can map each value to a
particular penalty and sum up all the penalties to get an acceleration
penalty for the entire trip. Higher penalties imply worse driver beha-
viour. Note, however, that the penalty is normalized by the duration of
the trip, thus a high acceleration value in a shorter trip will imply a
larger penalty than in a longer trip. More formally, let at represent trip
acceleration at time t where t ∈ A and A is a subset of {1, 2, …, n} where
n is the duration of the trip and A contains all timestamps where the
change in speed is non-negative. Then the acceleration penalty is de-
fined as

=p
n

f a1 ( )a
t A

t
(1)

where f is a proprietary function. We can follow the same process to
calculate the braking penalty. To calculate the speed penalty, we use
the vehicle speed data and the speed limit data from OpenStreetMap
(OpenStreetMap, 2018), to determine the amount of speeding at each
point in time and then map each value to a penalty and aggregate for a
trip-wise speed penalty. The cornering penalty is calculated in a similar
manner to the previously described penalties using the COG to calculate
a cornering vector. Note that for the acceleration, braking and cor-
nering penalties, to account for different driving behaviour on different
types of roads, a different penalty function is applied depending on if
the driver is on a regular road or if they are on a ramp or roundabout.
For the speed penalty, a different penalty function is applied for dif-
ferent speed limits. The penalty function f is different between speed
limits 60 km/h and below and speed limits above 60 km/h. The four
penalties we have just defined can be used as measures of driver be-
haviour and aggregated in various ways across all recorded trips for a
given driver to define a driver's driving behaviour.

3. Case/control methodology

To investigate which driver behaviors are correlated with crashes
we employ a case-control methodology. Case–control studies (Porta,
2008) are widely used in epidemiology to study rare diseases due to
their relative cost-effectiveness. In a classic case–control study, we
match each diseased individual with one or more non-diseased in-
dividuals (controls) who are otherwise similar (e.g. same age, gender,
etc.). We then compare the cases and controls to identify exposure
variates that are associated with the disease. Note that because case–-
control studies are observational we need to be careful in drawing
causal conclusions.

In our example, we define our cases as all 28 drivers that were
identified as being involved in a crash. We then find control drivers
(vehicles) for each case that closely matched the crash drivers in terms
of the driver similarity measure as defined below.

To determine control drivers for each crash-involved driver we must
first choose aggregate travel behaviour variates. From our dataset, there
are many different ways to aggregate the trip-based travel features. We
choose aggregates that are less sensitive to outliers. This includes the
median number of trips per week, the median trip distance and the
median trip duration. As well, we include the percentage of trips taken
during the week (i.e. Monday–Friday) and the percentage of trips taken
during the day (i.e. 6:00 am–5:59 pm) where a trip is categorized using
the start time. In addition to the traditional travel behaviour variates,
we are also interested in finding control drivers that are geographically
close to our crash-involved drivers. To do this we use a driver's home
and work locations. We do not know the actual home or work locations
of each driver, so these locations are identified using a clustering al-
gorithm on the trip end location values (i.e. latitude and longitude) for
each trip in the dataset, for a particular driver. We assume the home
location is the center of the largest cluster where the clusters are
weighted according to garaging time which we define in Section 3.2.
Similarly, we can use the same clustering algorithm to identify the work

location. The work location is defined as the center of the second largest
cluster. Section 3.2 includes a detailed description of the algorithm used
to determine the home and work locations. Including the home and
work locations, there are seven variates used to find control drivers,
summarized in Table 1. Note that for each crash-involved driver there
are 29,387 possible control drivers. However, we exclude some drivers
from the set of possible control drivers if they do not have enough data.
We exclude drivers from the potential control set if their enrolment
length (the difference between the date of their first trip and their last)
is less than 30 days. We also want to ensure that the drivers have a
sufficient number of trips in the dataset, so we also impose a restriction
on the minimum number of trips. Drivers must have at least 60 trips in
their datasets. Given some anomalies in the data we also require that
the distance to work is greater than 0 and less than 200 km. As well, we
restrict the number of kilometres driven per year to be greater than 0,
the median trip distance must be greater than 1 km and the median trip
duration must be longer than 60 seconds. The drivers that do not satisfy
these requirement are removed from the set of potential control drivers.
This reduces the number of possible control drivers by approximately
3000 to 26,054. We next define a similarity measure using these vari-
ates to compare drivers.

3.1. Driver similarity measure

One challenge with defining a similarity measure using the travel
variates we have chosen is the inclusion of location data represented by
latitude and longitude. Typically, when defining a distance measure we
standardize the variates (e.g. for each variate subtract the mean and
divide by the standard deviation) so they all have approximately the
same importance in any distance/similarity measure. However, this is
not possible for location data. In fact, when working with location data
we must perform separate calculations for each crash driver. We must
first calculate the distance between the crash-involved driver and all
potential control drivers, then normalize, and finally define a distance
measure on this vector. More formally, let

= … = …x x x x x x x x xx x x(( , ) , ( , ) , , , , ) ( , , , , )c c c c c i i ilat lon 1 lat lon 2 3 4 cl 1 2 3 il (2)

be the feature vector of a crash driver where l=7 is the number of
features and = x xx ( , )c c1 lat lon 1 represents the home location and

= x xx ( , )c c2 lat lon 2 represents the work location. Let

= … = …y y y y y y y y yy y y(( , ) , ( , ) , , , , ) ( , , , , )i i i i i i i ilat lon 1 lat lon 2 3 4 il 1 2 3 il (3)

represent the feature vector for a potential control driver where i=1,
…, n, and n is the number of potential control drivers. For each po-
tential control driver, i=1, …, n, we calculate the following distance
vector di,

=
= …
= …

d d x y x y
d d d

d x y
x y x y( ( , ), ( , ), | |, , | |)

( , , , ),

i c i

h c i h c i c i

i i

1 1 2 2 3 3 cl il

1 2 il (4)

where dh represents the haversine distance function (Van Brummelen,
2013) and dij≥0 ∀ i, j. Note that the distances across features may have
widely different ranges. Suppose, we ignore this problem, then we
could choose control drivers using the distance vector di. We would do

Table 1
Driver travel variates.

Driver travel variates

Home location
Work location
Median number of trips per week
Median trip distance
Median trip duration
Percentage of weekday trips
Percentage of daytime trips
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this by finding the drivers that have the smallest overall “distance” to
the crash driver in terms of di (i.e. we find the drivers that are the most
similar to the crash driver). To do this we define a similarity measure as
follows:

=
=

s d ,i
k

l

1
ik

(5)

where si≥0 and a small similarity value (i.e. a value close to 0) sug-
gests a close relationship between the control driver and the crash
driver. We can use the similarity measure to choose control drivers. For
example, suppose we want 5 control drivers, then we choose as control
drivers, the potential control drivers with the 5 smallest similarity va-
lues. As mentioned above, no standardization of the features has oc-
curred. Thus, for a given i=1, …, n, each distance value, dij, j=1, …,
l, in the similarity function, si, may have wildly different ranges and
thus different features may have varying importance in determining the
control drivers. Since we want the different features to have approxi-
mately the same weight we need to standardize the distance values of
each feature so they are on approximately the same scale. We propose
using a multivariate approach. Let D be the matrix composed of dis-
tance vectors (i.e. = … ×D d d d[ ; ; ; ]n

n l
1 2 ) then,

= µD D 1* ( ) ,T 1/2 (6)

where ×l l is the covariance matrix of D, µ l is the mean of D
and 1 n is a column of all ones. Let di=(di1, di2, …, dil) be the ith
row of D and d*i be the ith row of D*. Thus, d*i represents the standar-
dized distance vector for potential control driver i, i=1, …, n, where
the distances are now on approximately the same scale. Using this
standardized distance vector we can now calculate a similarity metric
for each potential control driver as follows:

=s d* *,i ik (7)

and choose as control drivers the drivers with the smallest standardized
similarity values. Note the similarity value is not longer restricted to
nonnegative values. The same procedure is repeated for each of the
crash drivers to choose control drivers for each of the crash drivers.

In calculating the matrix D* from D we include all of the potential
control drivers. However, the calculation of the mean and covariance
matrix may be affected by outliers which in turn will affect the nor-
malization. To reduce this effect we perform some additional filtering
on potential controls before we normalized the data (i.e. we reduce the
size of D before transforming to D*). We remove potential controls from
D where the distance between their home and the crash-invovled driver
home is greater than 40 km. We also remove all potential control dri-
vers with a distance between work locations (potential control vs.
crash-involved) greater than 50 km. To further reduce the effect of
outliers we also remove all potential control drivers with any one of
their feature values in the top 25% of the distribution for that feature.
Once we have reduced the size of D we then normalize the features,
calculate the similarity value and choose the 20 drivers with the
smallest similarity values as controls or if there are less than 20 drivers
after filtering we choose all of the drivers as control drivers. In fact,
only 1 driver had fewer than 20 controls due to filtering. Thus, the data
set we used in our logistic regression model consists of 576 drivers,
including crash-involved drivers.

The choice of 20 controls is somewhat arbitrary. In typical case/
control studies, the number of controls per case is often up to 5. In our
example, we selected 20 controls for each case (crash driver) because
the cost and effort associated with finding and assessing each control
driver was negligible. We avoided selecting even more cases because we
wanted to ensure that the controls were similar to the cases.

3.2. Home and work determination

In determining control drivers for each crash driver we are

interested in finding drivers who drive in the same geographical area.
To capture this similarity we can use the home and work locations of
each driver. Unfortunately, we do not have the actual home and work
locations for each driver but as mentioned previously we used a clus-
tering algorithm to find them. Using the end trip locations (latitude,
longitude) as inputs we use the DBSCAN clustering algorithm (Ester
et al., 1996) to cluster a driver's end trip locations. DBSCAN is a clus-
tering algorithm designed to cluster together points that are geo-
graphically close to one another. We use the end trip location instead of
start trip location since the GPS reading is more accurate at the end of
the trip vs. the beginning of the trip. Once we have the location clusters
we can then label one cluster as home and another as work. Our la-
beling is based on garaging time. The garaging time of a particular
location is the amount of time spent at that location. We determine the
garaging time of a particular location (i.e. trip end point) by looking at
the time difference between consecutive trips (i.e. the garaging time of
location x is the time difference between the trip that ends at x and the
next trip that starts at x). For each point in a cluster we calculate the
garaging time and the garaging time of the cluster is simply the sum of
all the cluster point garaging times. For each driver, the home location
is the defined as the center of the cluster with the largest garaging time
and the work location is defined as the center of the cluster with the
second largest garaging time. Note, that we do not in fact care if these
points are a driver's actual home and work. We are more interested in
using them as proxies for where the drivers are driving. However, we do
want to avoid capturing two home locations (i.e. the driver moved, so
we have two home locations with a lot of garaging time). So, to avoid
this we only use trips from the most recent 30 days of their history. As
well, we exclude garaging times greater than a day. This is to avoid
assigning high garaging time values to places like airports.

4. Risk analysis

4.1. Model data set

Given the 576 case and control drivers described in Section 3.1 we
want to fit a model using these drivers and their associated driver be-
haviour to identify risky driving behaviours. However, we must first
define aggregate driver behaviour variates for each driver. As described
in Section 2.2 the trip-level driver behaviour variates are four penalties:
acceleration, braking, speeding and cornering. For each of these four
penalties we calculate the mean, median, standard deviation, inter-
quartile range (difference between the 75th and 25th percentiles) and
the 90th percentile value for each driver using their trip-based variates.
As with the aggregate travel behaviour variates, we calculate the ag-
gregate travel behaviour variates using all available trips for non-crash
drivers and all trips prior to the crash for crash drivers. We include the
90th percentile penalty value as one of our aggregates since a large
penalty indicates very undesirable behaviour, and thus the 90th per-
centile penalty value captures information about a driver's most un-
desirable driving behaviour. In addition, since we worried about the
effect of many short trips, we also calculated what we refer to as the
overall penalty. To determine this aggregate we assumed all the in-
dividual historical trips were combined into a single long trip. Thus, the
overall penalty is determined over the total elapsed time rather than the
average by trip. In total, for each driver there are 24 travel behaviour
variates (4 penalties with 6 aggregates each).

4.2. Logistic regression with LASSO regularization

For our analysis, we fit a logistic mixed effect regression model with
the response variate

=Y 1 for crash driver (case)
0 otherwise (for all controls).
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We considered the 24 fixed effects explanatory variates as described
above, denoted as xspeed_m ean, …, xcornering_o verall. We also included a
single random effect, denoted R, defined by each crash driver and their
associated control drivers. The model with P(Yi=1)= pi is thus

= = + + + +p
p

p
x x Rlogit( ) log

1
_ _ ,i

i

i
i0 1 speed m ean 24 cornering o verall

(8)

where Ri∼G(0, σR) represents the random effect for the group.
To fit the model in (8) we used the glmmLasso function in R

(https://cran.r-project.org/web/packages/glmmLasso/index.html).
This function allowed us to fit the mixed effect logistic regression model
with LASSO regularization (Tibshirani, 1994). With the LASSO ap-
proach, we estimate the parameters by maximizing L+ λ∑i|βi|, where L
is the likelihood and λ is a regularization parameter. We added the
LASSO regularization to help us identify the important explanatory
variates and build a parsimonious model (since it tends to force coef-
ficients to zero).

To find a recommended model we used 5 fold cross validation to
choose the best value for the LASSO penalty parameter. Doing this with
the available data and looking at λ=(0, 1, 2, …, 20) we found that
λ=17 provided the model with the smallest sum of the deviance re-
siduals. The model with λ=17 has only two fixed effect explanatory
variates and is summarized in Table 2 (where we suppress all the fixed
effect terms that had a coefficient value of zero).

In the model from Table 2, the variate xaccel_s td is not statistically
significant at the 5% level, so we drop it from the model. The model
with just the variate xspeed_o verall is shown in Table 3.

Note that the random effect term for the group is non-zero.
However, it is not clear if the random effect is important or not. To
assess this we compare the model from Table 3 with another model
without the random effect using AIC (Akaike, 1974).

We found that the model without the random effect had
AIC= 217.9, while the same model with the random effect had
AIC= 221.2. Thus, since smaller AIC is better, the best model appears
to be one without the random effect. Fitting this final simple model
with only a single fixed effect we get the results shown in Table 4.

4.2.1. Interpretation of the final model
Since the drivers included in the regression analysis were chosen

using the case/control method we cannot interpret the model intercept
nor can we make a prediction about how likely it is that a particular
driver will be in a crash. However, we can interpret the coefficient for
xspeed_o verall in terms of how much changes in this explanatory variate
changes the risk of a crash.

In general, we can compare the odds ratio for two different values of
xspeed_o verall. We have

=
+
+

=

p p
p p

x
x

x x

/(1 )
/(1 )

exp( 3.77 1.09 _ )
exp( 3.77 1.09 _ )
exp(1.09( _ _ ))

1 1

2 2

speed o verall,1

speed o verall,2

speed o verall,1 speed o verall,2 (9)

In this case, because we believe the risk of a crash should be close to
zero, p p

p p
p
p

/ (1 )
/ (1 )

1 1
2 2

1
2
. To interpret this we look at the distribution of

values for the overall speed penalty xspeed_o verall across the 29,381 dri-
vers in our data set. The distribution of xspeed_o verall across the popula-
tion of drivers is numerically summarized in Table 5.

The difference between the 25th percentile and 50th percentile of
xspeed_o verall is 0.44–0.20= 0.24. Using our model results, this difference
of 0.24 corresponds to approximately a 30% increase in the risk of a
crash, while similarly going from the 50th percentile driver to the 75th
percentile driver corresponds to roughly a 53% increase in the risk of a
crash. These relatively large differences are important for automotive
insurers to consider when building or refining Usage-based insurance
programs.

5. Discussion and conclusions

Using automotive telematics data from over 28 million trips, we
showed that the overall speeding penalty was the only significant driver
behaviour variate linked to the risk of a crash. The effect was large with
a 75th percentile driver having over a 50% greater chance of a crash
than a 50th percentile driver. However, given the small number of
identified crashes (28), we suggest these results need validation using
other data.

In addition to the need for validation, we could extend or improve
the approach we followed in a number of ways. Through the direct
engagement with an insurance company, we could have avoided the
use of the crash detection algorithm and instead linked directly to in-
surance claims to find crashes. This would have also provided at-fault
information about the crashes. In our crash detection approach, we
were conservative to avoid falsely identifying accidents. With insurance
claims information we would have been able to include more crashes
and this would have increased the precision of the results.
Alternatively, we could have included probable crashes in our analysis
(rather than only very likely crashes). This would have also increased
the number of available crashes at the risk of contaminating the results
if the probable crashes were not actual crashes. We could have tried to

Table 2
LASSO model fit.

Fixed effects Coefficients

Estimate StdErr z.value p.value

(Intercept) −4.03383 0.22857 −17.6482 <2.2e−16
speed_overall 1.13240 0.34729 3.2607 0.001111
accel_std 7.81802 4.53851 1.7226 0.084962

Random effects (StdDev):
Group 0.2642461

Table 3
LASSO model fit (excluding xaccel_s td).

Fixed effects Coefficients

Estimate StdErr z value p value

(Intercept) −3.79177 0.22302 −17.0019 <2.2e−16
speed_overall 1.13331 0.33835 3.3495 0.0008095

Random effects (StdDev)
Group 0.2672874

Table 4
Final model.

Fixed effects Coefficients

Estimate StdErr z Value p Value

(Intercept) −3.76848 0.21717 −17.3527 <2.2e−16
speed_overall 1.09341 0.33172 3.2962 0.0009799

Table 5
Population summary statistics for xspeed_o

verall.

Mean 0.575390

Std 0.485216
Min 0.000000
25% 0.200564
50% 0.441413
75% 0.826429
Max 3.254108
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consider this risk in the analysis by weighting observations using our
confidence that they represent actual crashes.

In our analysis, we used the acceleration, braking, cornering and
speeding penalties as previously defined, i.e. with a predefined function
in (1). It may be possible to use the raw telematics data directly in the
analysis. In this way, we could optimize the penalty functions to im-
prove their connection with the risk of a crash.

We believe another way to potentially improve the analysis is in-
corporate weather information. Clearly aggressive driving is riskier in
poor weather conditions. A challenge here is obtaining precise local
weather and road surface condition information that translates well to
poor driving conditions.

Finally, it would be interesting to see if we could duplicate these
results with sample data obtained from embedded automotive tele-
matics and mobile (rather than OBD) telematics data. Mobile phone
based telematics data is less expensive to collect, but introduces addi-
tional measurement and data quality challenges.
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