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David Sprott as a teacher
David Sprott did not make things easy for students. Instead he would

stump us with really hard counter-intuitive puzzles. For instance one

problem had us conditioning on an event of probability zero and getting

contradictory answers. Those lessons stay with you.

Recently there has been much anguish about published findings that

do not replicate. I don’t think this outcome would have surprised him.

University of Waterloo, May 14 2014
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Foundations book 1971

University of Waterloo, May 14 2014
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Foundations book 2014

University of Waterloo, May 14 2014
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Foundations book 2014

(Plus $3.99 shipping)

University of Waterloo, May 14 2014
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Waterloo to Stanford
At Waterloo I learned an approach to statistics that was based on

thinking hard about what the problem meant · · · so that you could come

up with the right likelihood.

When I got to Stanford, the emphasis was on doing everything

nonparametrically. Use the computer instead of strong assumptions.

Empirical likelihood fits both. The spark was an exercise (#6 in

Appendix 2) in the text book by Kalbfleisch and Prentice (1980), which

points to Thomas and Grunkemeier (1979).

It ultimately ties back to estimating equations: Godambe & Thompson

and Qin & Lawless.

University of Waterloo, May 14 2014
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Empirical likelihood provides:
• likelihood methods for inference, especially

– tests, and

– confidence regions,

• without assuming a parametric model for data

• competitive power even when parametric model holds

Like the bootstrap, but no resampling, and it picks the shape of confidence

regions.

University of Waterloo, May 14 2014
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Parametric likelihoods
Data X1, X2, . . . , Xn have known distribution fθ with unknown parameter θ

Pr(X1 = x1, . . . , Xn = xn) = f(x1, . . . , xn; θ)

For continuous data · · · use probability density function.

f(· · · ; ·) known, θ ∈ Θ ⊆ Rp unknown

Likelihood function

L(θ) = L(θ;x1, . . . , xn) = f(x1, . . . , xn; θ)

“Chance, under θ, of getting the data we did get”

University of Waterloo, May 14 2014
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Likelihood examples

Xi ∼ Poi(θ), θ ≥ 0

L(θ) =

n∏
i=1

e−θθxi

xi!

A continuous example

Yi ∼ N (β0 + β1xi, σ
2) xi fixed

L(β0, β1, σ) =
n∏
i=1

1√
2πσ

e−
1

2σ2
(yi−β0−β1xi)

2

University of Waterloo, May 14 2014
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Likelihood inference

Maximum likelihood estimate

θ̂ = arg max
θ
L(θ;x1, . . . , xn)

Likelihood ratio inferences

−2 log(L(θ0)/L(θ̂))→ χ2
(q) Wilks

1) Reject H0 : θ = θ0 if

L(θ0)

L(θ̂)
< exp

(
−1

2
χ2,1−α
(q)

)
2) Confidence set for θ0{

θ | L(θ)

L(θ̂)
≥ exp

(
−1

2
χ2,1−α
(q)

)}
e.g. 95% confidence if α = .05

University of Waterloo, May 14 2014
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Statistical advantages

Typically · · · Neyman-Pearson, Cramer-Rao, . . .

1) θ̂ asymptotically normal

2) θ̂ asymptotically efficient

3) Likelihood ratio tests powerful

4) Likelihood ratio confidence regions small

A disadvantage

Problems with many parameters:

See Kalbfleisch & Sprott (1970) JRSS-B (with discussion)

University of Waterloo, May 14 2014
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Other likelihood advantages
• can model/undo data distortion: bias, censoring, truncation

• can combine data from different sources

• can factor in prior information

• obey range constraints: MLE of correlation in [−1, 1]

• transformation invariance

• data determined shape for {θ | L(θ) ≥ rL(θ̂)}

University of Waterloo, May 14 2014
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Unfortunately
We might not know a correct f(· · · ; θ)

No reason to expect that new data belong to one of our favourite families

Wrong models sometimes work (e.g. Normal mean via CLT) and sometimes fail

(e.g. Normal variance)

University of Waterloo, May 14 2014
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Nonparametric methods
Assume only Xi ∼ F where

• F is continuous, or,

• F is symmetric, or,

• F has a monotone density, or,

• F has log-concave density, or,

• · · · other believable, but big, family

Nonparametric usually means infinite dimensional parameter

Sometimes lose power (e.g. sign test), sometimes not

University of Waterloo, May 14 2014
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Nonparametric maximum likelihood

For Xi
iid∼ F , L(F ) =

n∏
i=1

F ({xi})

The NPMLE is F̂ =
1

n

n∑
i=1

δxi

where δx is a point mass at x

Kiefer and Wolfowitz, 1956

Easy proof based on log(1 + z) ≤ z

University of Waterloo, May 14 2014
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Other NPMLEs
NPMLEs are useful when we want the analogue of the empirical CDF for

nonstandard settings.

Kaplan & Meier (1958) Right censored survival times

Lynden-Bell (1971) Left truncated star brightness

Hartley & Rao (1968) Sample survey data

Grenander (1956) Monotone density for actuarial data

University of Waterloo, May 14 2014
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Censoring and Truncation
The likelihood can be used to compensate for sampling distortions.

Censoring

All we know is that Xi ∈ Ci. For a patient that survived at least≥ 438 days,

Xi ∈ [438,∞].

If observed exactly, then Ci = {Xi}. Conditional on Ci

L(F ) =

n∏
i=1

F (Ci)

Truncation

Xi only observed if Xi ∈ Ti. E.g.: star only seen if it is bright enough.

L(F ) =

n∏
i=1

F ({Xi})
F (Ti)

or
n∏
i=1

F (Ci ∩ Ti)
F (Ti)

University of Waterloo, May 14 2014
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Monotone & unimodal
Grenander (1956) X ∈ [0,∞) density f non-decreasing NPMLE F̂ is ‘least

concave majorant of the ECDF’

piece-wise linear density

Log concave

Recent work Samworth, Cule, Walther, Dumbgen · · ·

log f(x) concave on Rd

MLE computable for small d

No bandwidth to select

University of Waterloo, May 14 2014
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A log concave MLE

Downloaded January 2014 from

http://www.statslab.cam.ac.uk/Statistics/

activities/CSI_RS2.png

University of Waterloo, May 14 2014
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Empirical likelihood (short story)
Let wi = F ({Xi}) the probability under F of getting exactly Xi.

We assume1 that wi ≥ 0 and
∑n
i=1 wi = 1, then

L(F ) =
n∏
i=1

wi Likelihood

L(F̂ ) =
n∏
i=1

(1/n) Maximized likelihood

R(F ) =
n∏
i=1

nwi Empirical likelihood ratio

1A longer story explains these choices

University of Waterloo, May 14 2014
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Empirical likelihood for the mean

Confidence region is

Cr,n =
{ n∑
i=1

wixi | wi > 0,

n∑
i=1

wi = 1,

n∏
i=1

nwi ≥ r
}

Profile likelihood

R(µ) = sup
{ n∏
i=1

nwi | wi > 0,
n∑
i=1

wi = 1,
n∑
i=1

wixi = µ
}

Cr,n = {µ | R(µ) ≥ r}

Multinomial

We have a multinomial on the n data points Xi, hence n− 1 parameters

University of Waterloo, May 14 2014
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Multinomial likelihood for n = 3

Contours of
∏
i nwi MLE at center LR= i/10, i = 0, . . . , 9

University of Waterloo, May 14 2014
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Empirical likelihood theorem
Suppose that Xi ∼ F0 are IID in Rd

µ0 =
∫
xdF0(x)

V0 =
∫

(x− µ0)(x− µ0)T dF0(x) finite

rank(V0) = q > 0

Then as n→∞

−2 logR(µ0)→ χ2
(q)

same as parametric limit

No apparent penalty for using n− 1 parameters.

University of Waterloo, May 14 2014
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Dipper, Cinclus cinclus

Eats larvae of Mayflies, Stoneflies, Caddis flies, other University of Waterloo, May 14 2014
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Dipper diet means

Caddis fly larvae

S
to

ne
fly

 la
rv

ae

0 100 200 300

0
20

0
40

0
60

0
80

0

Mayfly larvae

O
th

er
 in

ve
rt

eb
ra

te
s

0 200 600 1000

0
20

0
40

0
60

0
80

0

Caddis fly larvae

S
to

ne
fly

 la
rv

ae

0 100 200 300

0
20

0
40

0
60

0
80

0

Mayfly larvae

O
th

er
 in

ve
rt

eb
ra

te
s

0 200 600 1000

0
20

0
40

0
60

0
80

0

Top row shows EL; bottom Hotelling’s T 2 ellipses

Data from Iles
University of Waterloo, May 14 2014
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Computing EL for the mean
Start with the convex hull:

H = H(x1, . . . ,xn) =
{ n∑
i=1

wixi | wi ≥ 0,
n∑
i=1

wi = 1
}

µ 6∈ H =⇒ logR(µ) = −∞

If µ ∈ H thenR(µ) <∞
and we will compute it via Lagrange multipliers

University of Waterloo, May 14 2014
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Lagrange multipliers

G =
n∑
i=1

log(nwi)− nλT
( n∑
i=1

wi(xi − µ)
)

+ γ
( n∑
i=1

wi − 1
)

∂

∂wi
G =

1

wi
− nλT(xi − µ) + γ = 0∑

i

wi
∂

∂wi
G = n+ γ = 0 =⇒ γ = −n

Solving,

wi =
1

n

1

1 + λT(xi − µ)

Where λ = λ(µ) solves

0 =
n∑
i=1

xi − µ
1 + λT(xi − µ)

reciprocal tilting

University of Waterloo, May 14 2014
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Convex duality

Let L(λ) ≡ −
n∑
i=1

log(1 + λT(xi − µ)) = logR(F )

∂L
∂λ

= −
n∑
i=1

xi − µ
1 + λT(xi − µ)

Minimizing L sets gradient to 0 and maximizes logR

∂2L
∂λ∂λT

=

n∑
i=1

(xi − µ)(xi − µ)T

(1 + λT(xi − µ))2

L is convex and d dimensional =⇒ easy optimization
Recently: self-concordant convex version O (2013)

University of Waterloo, May 14 2014
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Why χ2?

−2 log(R(µ))
.
= n(x̄− µ0)TS−1(x̄− µ0)

S =
1

n

n∑
i=1

(xi − µ)(xi − µ)T

Taylor expansion plus central limit theorem

Hall shows that the shape of the EL confidence regions is a meaningful

improvement over the ellipsoids from Hotelling’s T 2

University of Waterloo, May 14 2014
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Coverage errors
1) Pr(µ0 ∈ Cr,n) = 1− α+O

(
1
n

)
as n→∞ Hall

2) One-sided errors of O
(

1√
n

)
cancel

3) Bartlett correction DiCiccio, Hall, Romano

Replace χ2,1−α by
(
1 + a

n

)
χ2,1−α for carefully chosen a

and get coverage errors O
(

1
n2

)
same as for parametric likelihoods

University of Waterloo, May 14 2014
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Power
Suppose Xi ∈ R with E(X) = µ and Var(X) = σ2 > 0. Then

−2 log(R(µ0 + τσ0n
−1/2))→ χ2

(1)(τ
2)

noncentral χ2 and so

power = Pr(χ2
(1)(τ

2) ≥ χ2,1−α
(1) ),

same as in parametric setting

Finer print

When a parametric model holds, we may use it to generate an MLE of θ̂. EL

inferences for that estimate are also as efficient as ones based on parametric

likelihood, to a second order analysis in Lazar and Mykland (1998)

University of Waterloo, May 14 2014
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Calibrating empirical likelihood
Plain χ2,1−α undercovers

F 1−α
d,n−d is a bit better

Bartlett correction asymptotics slow to take hold

Bootstrap seems to work best

University of Waterloo, May 14 2014
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Bootstrap calibration
Resample the data to estimate the distribution of−2 logR(µ0) by that of

−2 logR∗(x̄)

Results

Coverage error O(n−2)

Same error rate as bootstrapping the bootstrap

Sets in faster than Bartlett correction

Need further adjustments for one-sided inference

University of Waterloo, May 14 2014
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Bootstrap (and χ2) calibrated Dipper regions

Caddis fly larvae
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Euclidean log likelihood
−
∑n
i=1 log(nwi) is a ‘distance’ of w from (1/n, . . . , 1/n).

Replace loglik by

`E = −1

2

n∑
i=1

(nwi − 1)2

Then−2`E → χ2
(q) too

Reduces to Hotelling’s T 2 for the mean O. (1990)

Reduces to Huber-White covariance for regression

Reduces to continuous updating GMM Kitamura

Quadratic approx to EL, like Wald test is to parametric likelihood

University of Waterloo, May 14 2014
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Exponential empirical likelihood
Replace−

∑n
i=1 log(nwi) by

KL =

n∑
i=1

wi log(nwi)

relates to entropy and exponential tilting

Hellinger distance

n∑
i=1

(w
1/2
i − n−1/2)2

Renyi, Cressie-Read

2

λ(λ+ 1)

n∑
i=1

((nwi)
−λ − 1)

University of Waterloo, May 14 2014
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Renyi-Cressie-Read contours

Top to bottom, left to right, λ: -5 -2 0 1 2/3 3/2
University of Waterloo, May 14 2014
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Estimating equations
More powerful and general than smooth functions

Define θ via E(m(X, θ)) = 0

Define θ̂ via 1
n

∑n
i=1m(xi, θ̂) = 0

Usually dim(m) = dim(θ)

Basic examples:

m(X, θ) Statistic

X − θ Mean

1X∈A − θ Probability of set A

1X≤θ − 1
2 Median

∂
∂θ log(f(X; θ)) MLE under f

−2 logR(θ0)→ χ2
Rank(Var(m(X,θ0))) University of Waterloo, May 14 2014
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Empirical likelihood for a median

Median pounds of milk

2000 3000 4000 5000
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LR is constant between observations

E(1X≤m − 1/2) = 0

α-quantile: E(1X≤θ − α) = 0

University of Waterloo, May 14 2014
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Nuisance parameters
Sometimes we cannot write E(m(X, θ)) = 0 directly, but can by introducing a

few extra (nuisance) parameters,

E(m(X, θ, ν)) = 0

where θ is of interest and ν is the nuisance. IE, we expand the parameter vector

from θ to (θ, ν).

Profile likelihood

R(θ, ν) = max
{ n∏
i=1

nwi | wi ≥ 0,

n∑
i=1

wi,

n∑
i=1

wim(xi, θ, ν)
}

R(θ) = max
ν
R(θ, ν) ≡ profile empirical likelihood

The first optimization is simple. The second may be difficult.

Typically−2 logR(θ0)→ χ2
(dim(θ))

University of Waterloo, May 14 2014
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Example: correlation
Suppose we are interested in ρ = Corr(X,Y ). Then,

0 = E(X − µx)

0 = E(Y − µy)

0 = E((X − µx)2 − σ2
x)

0 = E((Y − µy)2 − σ2
y)

0 = E((X − µx)(Y − µy)− ρσxσy)

Parameter and nuisance

θ = (ρ) and ν = (µx, µy, σx, σy)

E(m(X, θ, ν)) = 0 = 1
n

∑n
i=1m(Xi, θ̂, ν̂)

m(·) has the five components above

University of Waterloo, May 14 2014
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Huber’s robust M -estimate

0 =
1

n

n∑
i=1

ψ
(xi − µ

σ

)
0 =

1

n

n∑
i=1

[
ψ
(xi − µ

σ

)2
− 1
]

Like mean for small obs, median for outliers

ψ(z) =

z, |z| ≤ 1.35

1.35 sign(z), |z| ≥ 1.35.

R(µ) = max
σ

max

{ n∏
i=1

nwi | 0 ≤ wi,
∑
i

wi = 1,
∑
i

wiψ
(xi − µ

σ

)
= 0,

∑
i

wi

[
ψ
(xi − µ

σ

)2
− 1
]

= 0

}

University of Waterloo, May 14 2014
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Newcomb’s passage times of light
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From Stigler
University of Waterloo, May 14 2014
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EL for mean and Huber’s location

Passage time
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Curve for the mean is much more skewed by the outlier.

Robust statistic slightly skewed.

University of Waterloo, May 14 2014



David Sprott Distinguished Lecture 46

Side information
Maybe we know some relevant expectations.

For example, we want E(Y ), we know E(X), and we observe (xi,yi)

i = 1, . . . , n

Then we can restrict our model to wi = F ({xi,yi}) with

n∑
i=1

wi(xi − E(X)) = 0.

The result

−2 logRY |X(µy | µx0)→ χ2
(p)

University of Waterloo, May 14 2014



David Sprott Distinguished Lecture 47

Maximum E. L. estimates

Var

X

Y

 =

Σxx Σxy

Σyx Σyy



MELE µ̃y =

n∑
i=1

wiyi
.
= Ȳ − ΣyxΣ−1xx (X̄ − µx0)

n Var(µ̃y)
.
= Σy|x ≡ Σyy − ΣyxΣ−1xxΣxy

Using known mean reduces variance when Y correlated with X

University of Waterloo, May 14 2014
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General side information
Can be incorporated via estimating equations

Known parameter Estimating equation

mean X − µx
α quantile 1X≤Q − α
Pr(X ∈ A | B) (1X∈A − ρ)1B

E(X | B) (X − µ)1B

Qin has a nice example of Y vs X regression where E(Y ) is known

University of Waterloo, May 14 2014
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Maximum empirical likelihood estimates

Hartley & Rao 1968 means & finite population setting

O. 1991 means IID sampling

Qin & Lawless 1993 estimating eqns IID

University of Waterloo, May 14 2014
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Overdetermined equations
“10 equations in 5 unknowns:”

E(m(X, θ)) = 0, dim(m) > dim(θ)

Popular in econometrics, e.g. Generalized Method of Moments Hansen

Approaches:

1) Drop dim(m)− dim(θ) equations

2) Replace m(X, θ) by m(X, θ)A(θ) where

A a dim(m)× dim(θ) matrix (IE pick dim(θ) linear comb. of m)

3) GMM: estimate the optimal A

4) MELE: θ̃ = arg maxθ maxwi
∏
i nwi st

∑n
i=1 wim(xi, θ) = 0

MELE has same asymptotic variance as using optimal A(θ)

Bias scales more favorably with dimensions for MELE than for Â methods

Newey, Smith, Kitamura

University of Waterloo, May 14 2014
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Qin and Lawless result
dim(m) = p+ q ≥ p = dim(θ) MELE θ̃

−2 log(R(θ0)/R(θ̃))→ χ2
(p) conf regions for θ0

−2 logR(θ̃)→ χ2
(q) goodness of fit tests when q > 0

Uses only differentiability, moment, identifiability and non-degeneracy conditions,

no parametric assumptions.

University of Waterloo, May 14 2014
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Cancer deaths vs population, by county

Population (1000s)
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Nearly linear regression nonconstant residual variance

Royall via Rice

University of Waterloo, May 14 2014
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Estimating equations for regression

E(XT(Y −XTβ)) = 0,
1

n

n∑
i=1

(Yi − xT
i β̂)xi = 0

R(β) = max
{ n∏
i=1

nwi |
n∑
i=1

wiZi(β) = 0, wi ≥ 0,
n∑
i=1

wi = 1
}

Zi(β) = (Yi − xT
i β)xi

need E(‖Z‖2) ≤ E
(
‖X‖2(Y −XTβ)2

)
<∞

Don’t need:

normality, constant variance, exact linearity

University of Waterloo, May 14 2014
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For cancer data

Pi = population of i’th county in 1000s

Ci = cancer deaths of i’th county in 20 years

Ci
.
= β0 + β1Pi

β̂1 = 3.58 =⇒ 3.58/20 = 0.18 deaths per thousand per year

β̂0 = −0.53 near zero, as we’d expect

University of Waterloo, May 14 2014
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Regression through the origin

Ci
.
= β1Pi

Residuals should have mean zero and be orthogonal to Pi

We want two equations in one unknown β1

Equivalently, side information β0 = 0

Least squares regression through origin does not solve both equations

MELE β̃1 = argmaxβ1R(β1)

R(β1) = max
{ n∏
i=1

nwi |
n∑
i=1

wi(Ci − Piβ1) = 0,

n∑
i=1

wiPi(Ci − Piβ1) = 0,
n∑
i=1

wi = 1, wi ≥ 0
}

University of Waterloo, May 14 2014
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Regression parameters

Intercept
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Intercept nearly 0, MELE smaller than MLE

CI based on conditional empirical likelihood

Constraint narrows CI for slope by over half

University of Waterloo, May 14 2014
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Variance modelling
Working model Y ∼ N (xTβ, e2z

Tγ)

0 =
1

n

n∑
i=1

xi(yi − xT
i β) e−2z

T
i γ (weight ∝ 1/var)

0 =
1

n

n∑
i=1

zi

(
1− exp(−2zT

i γ)(yi − xT
i β)2

)
For cancer data

xi = (1, Pi)
T zi = (1, log(Pi))

T

E(Yi) = β0 + β1Pi
√

Var(Yi) = exp(γ0 + γ1 log(Pi)) = eγ0P γ1i

and β0 = 0

University of Waterloo, May 14 2014
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Heteroscedastic model
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Left: solid curve accounts for nonconstant variance

Right: solid curve forces β0 = 0, and,

rules out γ1 = 1/2 (Poisson) and γ1 = 1 (Gamma)

University of Waterloo, May 14 2014
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Bayesian connection
• Use an informative prior on θ

• multiply by an empirical likelihood

• reverses usual non-informative paradigm

See Lazar (2003) also Rao & Wu (2010) (survey sampling)
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MELEs for finite population sampling
1) use side information

(a) population means, totals, sizes

(b) stratum means, totals, sizes

2) take unequal sampling probabilities

3) use non-negative observation weights

Hartley & Rao, Chen & Qin, Chen & Sitter

More finite population results

χ2 limits −2
(
1− n

N

)
R(µ)→ χ2 Zhong & Rao

EL variance ests via pairwise inclusion probabilities Sitter & Wu

Multiple samples varying distortions Zhong, Chen, & Rao
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EL confidence bands
Kolmogorov-Smirnov bands are too wide in the tails.

They are based on dist’n of maxx |F̂ (x)− F (x)|

Equal width is not appropriate. Bands should narrow near the tails. Should also

become skewed, e.g., to avoid 0.01± 0.03.

Replace by max of binomial likelihood ratio and get some large deviations

optimality Berk & Jones

Recent work extends to censored data survivor function Matthews (2013)
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Curve estimation problems

µ(x) ≡ E(Y | X = x) smooth

• Estimate µ by kernel method

• Get confidence set for µ(x)

• x ∈ R, y ∈ R2 =⇒ confidence tube

• x ∈ R2, y ∈ R =⇒ confidence sandwich

Have to contend with bias and pointwise vs simultaneous

Similar confidence sets for densities

Hall & O
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Computation

logR(θ) = max
ν

logR(θ, ν)

= max
ν

min
λ

L(θ, ν, λ), where,

L(θ, ν, λ) = −
n∑
i=1

log
(
1 + λTm(xi, θ, ν)

)
Inner and outer optimizations� n dimensional

Used NPSOL, expensive and not public domain (but it works)
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Algorithmic strategies
Newton’s method to solve for a saddlepoint:

0 =
∂

∂ν
L(θ, ν, λ)

0 =
∂

∂λ
L(θ, ν, λ)

Progress towards a saddle-point is more difficult to define than progress towards

a mode.

Newton’s method to solve

max
ν
R(θ, ν)

deriving gradient and Hessian from L(θ, ν, λ)

These methods usually work well around the MLE.

As n→∞ the region where they work grows.
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Next: research directions
Two main challenges for empirical likelihood are

1) escaping the convex hull

2) profiling out nuisance parameters

Lots of progress on problem 1

Chen, Variyath & Abraham (2008) Emerson & O (2009) Liu & Chen (2010) Tsao

& Wu (2013)

Problem 2 is also difficult for parametric likelihoods; usually we just make a

second order Taylor approximation to the log likelihood around the MLE.

Biconvex optimization methods needed for problem 2.
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