
using R: an introduction

Adrian Waddell

University of Waterloo
Departement of Statistics and Actuarial Science

September 8, 2010

About these Slides

These slides were written on behalf of the Departement of Statistics and
Actuarial Science at the University of Waterloo, Canada.

At the time of writing, the current software versions are

I GNU Emacs 23.1.1

I Eclipse SDK Version: 3.5.2

I R version 2.11.1

I ESS 5.11

There are more slides like these on our homepage.

http://www.stats.uwaterloo.ca/stats_navigation/StatSoftware/Essential-Software

About R

S is a statistical high-level and interpreted programming language
developed at the Bell laboratories around 1975 by John Chambers (see
history of S). The commercial implementation of S is called S-PLUS and
appeared in 1988. R is an open-source implementation of S and was
created in the early nineties by Ross Ihaka and Robert Gentleman at the
University of Auckland, New Zealand. These days, R is maintained by
the R core team.

Since R and S-PLUS have their own flavor they are considered to be two
different dialects of the S language.

R has become very popular particularly in academia but also in industry
(see NY Times article and follow up). Much of Rs success story is due to
all the packages written for R by the R-community.

http://en.wikipedia.org/wiki/S_(programming_language)
http://en.wikipedia.org/wiki/High-level_programming_language
http://en.wikipedia.org/wiki/Interpreted_language
http://www.stats.uwaterloo.ca/~rwoldfor/software/R-code/historyOfS.pdf
http://www.r-project.org/contributors.html
http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html?_r=3&ref=business
http://bits.blogs.nytimes.com/2009/01/08/r-you-ready-for-r/

What you will Learn from these Slides

Due to the popularity of R, many good manuals, tutorials and books
have been written on R. We will referee some of these resources and then
focus on conceptual aspects of the language and parts we believe lack
easily available documentation (such as the tcltk package).

R is a powerful data analysis tool. R distinguishes itself in my opinion
from other statistic packages like SAS and SPSS by offering many of the
features and flexibilities programming languages like Python, Ruby and
Perl have.

You can of course use R just to run predefined statistical procedures like
linear regression or analysis of variance, however due to the very nature
of good data analysis practises, you probably will experience the need to
analyze aspects of your data according to your own ideas. Therefore it is
good to have a grasp of Rs programming capabilities so you can acquire
the details once you need to know them.

More about these Slides

Because of Rs flexibility in coding, it is easy to acquire a bad
programming style. I therefore will try to give good practise hints.

My subjective good practice hints will be highlighted with this symbol:

Vocabulary

You might find some terms confusing in the slides that follow:

CRAN (short for Comprehensive R Archive Network) stands for
an international network of servers that store the R
software and all submitted packages (sometimes called
CRAN packages). (see CRAN website and server list).

R prompt once R is started, the R prompt is indicated with a > at
the beginning of a (command) line. The R prompt is
where you can send code to R to be evaluated.

http://cran.r-project.org/
http://cran.r-project.org/mirrors.html

Where to Start
I Download and install R.

I Browse the R website to get an overview of the R project.
I Especially the category Documentation in the navigation bar links to

many great resources.

I At first, use R through the R prompt >. Once you understand some
R basics, familiarize yourself with an IDE (like Emacs or Eclipse).

I Familiarize yourself with R using one of the many guides or tutorials.
For example:

I Official R introduction
I simpleR, – Using R for Introductory Statistics by John Verzani
I University of Waterloo R tutorial

http://cran.r-project.org/
http://cran.r-project.org/doc/FAQ/R-FAQ.html#How-can-R-be-installed_003f
http://www.r-project.org/
http://cran.r-project.org/other-docs.html
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf
http://www.stats.uwaterloo.ca/stats_navigation/StatSoftware/R/

Books

R in a Nutshell
Joseph Adler (O’Reilly)
This book is a good reference for R users and program-

mers. It covers the following four parts: R basics, the

R language, working with data and statistics with R.

Modern Applied Statistics with S
W.N. Venables & B.D. Ripley (Springer)

Books: Springer Use R series

Springer started a book series called Use R. Each book in this series is
aimed to cover the applied part of some statistical topic using R. These
books can be downloaded for free by UW students here.

At the time of writing this text, there were already 23 books in this series.

http://www.springer.com/series/6991
http://www.springerlink.com.proxy.lib.uwaterloo.ca/content/t83625/?p=cea7187e68ac4bee9f115c96cd3de1c1&pi=0

Before you continue reading these slides...

We will continue with the slides assuming that you understand the very
basics of R. That is, you should understand

I how to start and end an R session

I how to assign a value to a variable: a <- 2

I check what variables you have in your workspace with ls()

I do simple math calculations: sqrt(aˆ2)

I create a vector with c(): myVec <- c(3,4,5,6)

I access elements of a vector: myVec[3] and myVec[c(1,3)]

I how to create a simple scatterplot with plot(): plot(1:4,4:7)

I import a data file with read.table()

I whats the difference between a vector, matrix, data.frame and a list
data structure.

If these tasks seem alien to you, follow the instructions on the this slide.
You can also get an R book. It is key that you know some source where
you can look up the most common R tasks.

Working with R

There are many ways to interact with R. Some people just write all their
code directly into the R prompt without saving their steps. More
commonly however is to save your R code for later use or just as
documentation of your work. It is generally a good idea to organize your
code in some text file whether you finally choose to save the file or not.
If you save your text file, you should name the file with an .R ending by
convention. You can, however, save your code in any plain text file.

Any plain text - text editor such as, Notepad, Wordpad or gedit is
sufficient to organize your code. Once you copy your code into the
clipboard, you can either paste the code directly to the R prompt, or
better enter

> source("clipboard")

because “Since the complete file is parsed before any of it is run, syntax
errors result in none of the code being run.” [?source].

Finally, however, I suggest to use a good integrated development
environment (IDE) due to reasons I already gave in earlier slides.

http://en.wikipedia.org/wiki/Clipboard_(software)

Emacs Speaks Statistic (ESS)

We assume that you read and understood the slides on IDEs in this series.

ESS is an Emacs add-on package that enhances Emacs in many ways to
make your R experience better and more productive. See the ESS project
page for more information. We will focus on showing how to perform the
most common tasks.

I In Emacs, open or create some R source file with an .R ending.
Your major mode should be ESS[S].

I Split the window in two using Emacs’s keystroke C-x 2.

I Switch to the lower window: C-x o. Start an R process: M-x R RET.
I the minibuffer asks you for the starting data directory which is the

path to your working directory.

I Write R code in the source buffer. Execute a selection with C-c C-r.

http://ess.r-project.org
http://ess.r-project.org

Emacs Speaks Statistic (ESS)

Emacs Speaks Statistic (ESS)

Notice that the tool bar has special icons for R. Try the following Emacs
keystrokes in the source file buffer:

C-c C-j send line to R

C-c C-n send line to R and move to next line

C-c C-r send selection to R

C-c M-j send line and return to the ESS process buffer

C-c C-f send the R function containing point to the ESS process

M-? or C-c TAB list all possible completions of the object name at point

C-c C-v show help for some function

– inserts <-

For automatic code indentation use TAB for each individual line. For single
line comments use #, you can indent the comment correctly with M-;.
For a header comments use ##.

For more information read section 7.4, 7.5 and 7.6 of the ESS manual.

http://ess.r-project.org/Manual/ess.html#Evaluating-code
http://ess.r-project.org/Manual/ess.html#Indenting
http://ess.r-project.org/Manual/ess.html#Other-edit-buffer-commands
http://ess.r-project.org/Manual/ess.html

ESS: Using a Remote Connection

If you have ssh access to a remote server running R, you can use your
local Emacs and ESS installation to interact with R on this remote server.

The official documentation to do this can be found here. However I will
summarize the steps.

1. You need to install ssh.el, download it from here and save it in
some folder, e.g. (under UNIX) /usr/share/emacs/site-lisp/ssh

2. Start Emacs and add the line

(add-to-list ’load-path "/usr/share/emacs/site-lisp/ssh")

to the .emacs file where the path has to be adjusted. See the
slides on Customizing Emacs.

3. Restart Emacs. Enter: M-x load-library RET ssh RET

4. Then enter M-x ssh, a login prompt will show up. (e.g. use
username@cpu119@math.uwaterloo.ca)

5. Start R. Then enter M-x ess-remote and specify some name in the
promt like r.

6. Now open your R file. Use ESS as usual.

http://www.xemacs.org/Documentation/packages/html/ess_3.html#SEC15
ftp://ftp.splode.com/pub/users/friedman/emacs-lisp/ssh.el

The StatET Plugin for Eclipse
I Read the instructions in the StatET documentation.

I Execute R code (selection or single line) with the key combination
C-r C-r.

I Code completion with C-SPC

I Repeatedly pressing C-SPC goes through different namespaces.

I Use the context menu (right click with mouse).

I Try the window maximization mode.

I Note the object browser.

http://www.splusbook.com/R_Eclipse_StatET.pdf

Other IDEs

Other working environments and text editors exist which offer special
functionality for R. A comprehensive list exists here.

Rkward (url) is an IDE which runs on Linux systems (KDE native).
A windows port exists.

JGR (url) is another popular R editor.

Rcmdr see library(Rcmdr).

WindEdt (url) is a popular but commercial text editor for Windows.
WinEdt also provides some latex functionality. See Edt
text editors.

So which IDE should you choose?

I suggest you should learn how to use Emacs in any case. Most
importantly, Emacs really provides a productivity boost. Also Emacs’s
power will come in handy once you have to run some simulations on a
UNIX server or you need to start R over an ssh connection.

http://www.sciviews.org/_rgui/
http://rkward.sourceforge.net/
http://jgr.markushelbig.org/JGR.html
http://www.winedt.com/
http://en.wikipedia.org/wiki/EDT_text_editor
http://en.wikipedia.org/wiki/EDT_text_editor

Packages

Packages are a collection of functions, their documentation and data
sets. The CRAN servers mirror a large list of packages made publicly
available by the community.

You can load a package with the library() command. Check which
packages get loaded automatically with getOption("defaultPackages").

You can install packages from the CRAN mirrors using
install.packages("RnavGraph", dependencies=TRUE), if you want to
install the RnavGraph package.

To get a list of all installed packages use installed.packages() or
.packages(all.available=TRUE). The currently loaded packages can be
listed with (.packages()).

The require() function, like library(), also loads a package. However
it is designed to be used within a function and will return TRUE or FALSE

and a warning, rather than an error, if the package is not installed.

> require(tcltk) || stop("library ’tcltk’ is not installed")

http://cran.r-project.org/

Other Package Repositories

Next to CRAN, there are some other R package repositories.

Bioconductor (url) focuses on genomic analysis.

Omegahat (url) mainly packages which define APIs to web services
and programming languages.

R-Forge (url) is mainly intended to help developers to collaborate.

http://www.bioconductor.org/
http://www.omegahat.org/
http://r-forge.r-project.org/

Workspace and Working Directory
Two terms you should not confuse

The workspace is the collection of R objects in your current R session.
You can list all your objects using the ls() command and delete them
using the rm() command.

> a <- 1; x <- seq(1, 10, by = 1); fit <- lm(x˜I(xˆ2))
> ls()
[1] "a" "fit" "x"
> rm(x)
> ls()
[1] "a" "fit"
> rm(list = ls())
> ls()
character(0)

R usually asks you whether you want to save your current workspace or
not when you leave R with q(). You can save your workspace manually
for later use with the save() or save.image() command. Load your
saved workspace in a new R session with the load() command.

If needed, only save a few selected objects. Don’t save your whole
workspace for continuing working from it in your next R session: this will
almost certainly cause problems. Better re-run your code.

Workspace and Working Directory
Two terms you should not confuse

The working directory is an absolute path to a directory. This directory
can be used to access and save files from within R by specifying relative
paths to your files of interest.

> getwd()
[1] "/home/adrian/Documents/R/"
> setwd("/home/adrian")

so if you want to save your current workspace, you could either use

> save.image(file = "test/myWorkspace.Rdata")

or

> save.image(file = "/home/adrian/test/myWorkspace.Rdata")

Both cases save the workspace to the same physical location on your
hard drive, assuming the folder test exists.

Absolute paths in Windows differ from those of the UNIX, Linux and
OSX world. You will have to use something like

> setwd("C:/Users/adrian/")

http://en.wikipedia.org/wiki/Absolute_path

The Search Path

The search path is where and the order of how R “looks” for variables
and functions when you type their names at the prompt. You can display
your search path with

> search()

Notice that most of the entries are packages. Every time you use the
library() command, your search path gets expanded by one element.

.GlobalEnv

a
b
foo()

package:rggobi
· · ·

edges()
· · ·

· · · package:graph
· · ·

edges()
· · ·

For the above situation, the edges() function defined in the graph
package gets masked by the edges() function defined in the rggobi
package. You can still access the edges() function in the graph
package by using

> graph::edges(G)

You can remove an entry from the search path using detach().

Help

Your
Problem

R internal
help

? or help()

help.search()

apropos()
find()

vignettes

demo()

Literature

Books

Manuals

Tutorials

WWW

mailing lists

Wiki

message
boards

package
source code

Help
The R internal help system

I All packages in R come with documentation.

I You can access the documentation for plot() with help(plot),
?plot or in Emacs with C-c C-v plot RET.

I If you need the documentation on a Operator, use help(’&&’) or
?’&&’.

I Choose between the output format:

plain text options(help_type = ’text’)

html options(help_type = ’html’), for some systems you
might have to add the argument browser=’firefox’.

pdf options(help_type = ’pdf’)

I You get to the index of all documented R functions from a certain
package with library(help="MASS") or by using help.start() and
then selecting packages and your package name.

More on the Internal R Help
I Explore help.start(), read its documentation with ?help.start

I If don’t know exactly what you are looking for, try help.search()

which searches for a particular pattern using fuzzy matching or
regular expressions. Its short notation is ??. For example enter

> help.search("quantile")

or

> ??"quantile"

if you are looking for a cumulative quantile plot function.

R Help on the WWW
I R has a very nice built in web search function, e.g. if you are looking

for R and multithreading, enter into R

> RSiteSearch("multithreading")

I R has a very active user community which communicates mainly
through the R mailing lists. It’s very likely that someone else posted
a problem which is similar or equivalent to yours.

I Another way than RSiteSearch to search through the mailing list
archives is to use google. Enter site:stat.ethz.ch and then
the topic you are looking for:

site:stat.ethz.ch multithreading Search

http://www.r-project.org/mail.html
http://www.google.ca

Running demo()

Sometimes, the package developer writes demo files for his/her package.
They usually consist of a working example using the specific package.

I To get a list of all demos accessible from the current search path use

> demo()

I To get a list of demos for a specific package, e.g. the tcltk

package, use

> demo(package = ’tcltk’)

I To run a demo use

> demo(tkcanvas)

I To find the file path of the demo source code, use

> system.file("demo", "tkcanvas.R", package="tcltk")

