R: Creating Graphical User Interfaces (GUIs)
using the tcltk

Introduction to Tcl

Adrian Waddell

University of Waterloo
Departement of Statistics and Actuarial Science

September 8, 2010

About these Slides

These slides were written on behalf of the Departement of Statistics and
Actuarial Science at the University of Waterloo, Canada.

At the time of writing, the current software versions are
GNU Emacs 23.1.1

Eclipse SDK Version: 3.5.2

R version 2.11.1

ESS 5.11

vV v v v

You find an R source code file for these slides and more slides on our
homepage.

http://www.stats.uwaterloo.ca/stats_navigation/StatSoftware/Essential-Software

About Tcl and Tk

Tcl (Tool Command Language) is a scripting language created by John
Ousterhout at University of California around 1991. John Ousterhout
also developed Tk, a platform independent graphical user interface (GUI)
library, as an Tcl extension.

Tk gained popularity because many other programming languages such
as Perl, Python, Ruby, Common Lisp and —for us of particular interest— R
provide libraries to write Tk GUIs.

Peter Dalgaard, at University of Copenhagen, announced his tcitk
package in 2001. Subsequently he announced some changes in the Rnews
2002, Vol. 3. However, he never wrote a complete documentation to his
tcltk package. (I speculate that writing the documentation would have
been more time intensive than writing the source code).

The absence of a complete tcitk library documentation makes the first
steps into GUI creation with Tk in R a bit tough. We try to ease the
initial learning curve with these slides.

http://en.wikipedia.org/wiki/Tcl
http://en.wikipedia.org/wiki/Tk_(framework)
http://en.wikipedia.org/wiki/Graphical_user_interface
http://staff.pubhealth.ku.dk/~pd/
http://www.ci.tuwien.ac.at/Conferences/DSC-2001/Proceedings/Dalgaard.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2002-3.pdf

Tk and R

Fortunately some understanding of Tcl and its naive Tk extension will be
sufficient to make use of the tcitk package. This further allows you to
make use of the excellent www.tcl.tk web page to get full Tcl/Tk
documentation and plenty of examples.

The syntax of Tcl differs from that of R quite a lot. The tc1tk library
provides a whole set of Tk wrapper functions such that the user can
integrate GUIs easily in R style into its R source code. Knowing Tcl and
native Tk will however help to customize some GUIs for ones own special
needs, as they open the door to the complete Tcl/Tk command set.

If you want an overview or a first impression of Tks capability, browse
through this web page with examples, maintained by Philippe Grosjean,
and also run some of the demos in R:

> library (tcltk)

> demo (package = "tcltk")
> demo (tkcanvas)

file:www.tcl.tk
http://www.sciviews.org/_rgui/tcltk/index.html

What you will learn from these Slides

As already mentioned, we will first go over some of the Tcl basics. We
than cover the conceptual part of the Tk library, such as its syntax and
some geometry managers. However individual widgets (graphical user
interface elements) such as for example listboxes, scrollbars or sliders
won't be discussed in detail because it would be too much to cover in

these slides.

You eventually will need to get a good book about Tcl and Tk if you
plan to frequently design GUIs. An excellent book is the following:

pons Practical Programming in Tcl and Tk
T Brent B. Welch (Prentice Hall PTR)
A copy of an early draft can be downloaded for free

from here. However getting a current edition (4th at

this time) is highly recommended.

Brent B. Welch kindly gave me the permission to adapt some of his
examples (the pack geometry manager) directly for these slides.

More advanced Tk programmers might want to take a look at this book.

http://www.beedub.com/book/tkbook.pdf
http://www.beedub.com/
http://wiki.tcl.tk/159

“Hello World™” in Tcl

Tcl commands, the equivalent of functions in R, get invoked as follows
commandName argl arg2 arg3

The Tcl equivalent to the R prompt > is the Tcl shell (tclsh) promt 5. R
comes with Tcl/Tk by default and provides with the .Tc1 function a
basic interface between R and Tcl.

> library (tcltk)
> .Tcl ('puts stdout "Hello World."’)

This code example invokes the command puts with the arguments
stdout and the character string "Hello World.".

Using the Tcl shell instead you can get the same output with the
following code:
% puts stdout "Hello World."

Hence, in what follows, all the “pure” Tcl code can be executed in R by
wrapping a .Tcl (’ and ’) around it.

You can check which Tcl version your R connects to by entering to R

> .Tcl(’'puts stdout S$tcl_version’)

Comments and Multiple Commands

Separation of commands and adding comments are done in Tcl the same
way as in R with the only difference that Tcl expects a comment to be at
the beginning of a command.

Hence, command separations are done with ;
puts stdout "Hello"; puts stdout "World"

and comments are either at the beginning of a new line or after a ;

In the end, there are some similarities between R and Tcl
set stdout "BUT" ; # but there are also many differences

In fact,

puts stdout Hello

would have also worked, as Hello appears to the Tcl interpreter as a
single argument. However

puts stdout Hello World

Does not work because the Tcl things that Hel1o wWorld are two
arguments (separated by a white-space).

Variables and Math

» The set command assigns a value to a variable

set x 2

» The variable x can subsequently be accessed with s$x, for example

puts stdout "Variable x is $x." ;# or
set y $x

In the Tcl world, accessing is called variable substitution.

» Variables are deleted with the unset command

unset x

» You can also do math with the variable x and y
expr $x+5xSy
note that the math syntaxt is the same as used in C

set x [expr pow(S$y,2)]

> [] is used for a nested command. The previous example was an
example of a command substitution.

More on Math in Tcl

The precision of math operations is by default set to 12 significant digits.
You can change this by creating the variable tc1_precision:

set tcl_precision 5
When calling the expr command: put its argument into curly braces {}

in order for expr to make all the substitutions in the expression. For
example for

expr $x+5xSy

the Tcl interpreter will first substitute sx+5x$y and pass the string! to the
expr command, which in turn has to converse it back to numeric values.

Better is to give the unsubstituted string sx+5+sy directly to expr, and
let expr do the substitutions. Doing so results in a gain of speed and
precision.

You can prevent the Tcl interpreter substitutions by putting the
arguments in curly braces (), for example

expr {$x+5%8y}

would be the best way to perform the computation of sx+5«sy.

Grouping
As we saw in some previous examples, we can either use double quotes to
group words into one argument,

set x "Farewell, fair cruelty."

or curly braces, with the only difference that curly braces don’t allow for
substitution, try

puts stdout {He said \"$x\"}
and

puts stdout "He said \"$x\""

where the backslash substitution in the last code snippet works in the
tclsh but not as an .Tcl argument, use

puts stdout "He said \’S$x\’\"

instead.

Hence, using braces allows you to induce a substitution at a later time

set y {He said \"$x\"}
puts stdout [subst $yl

Procedures
Tcl procedures are the equivalent of R functions. The proc command is
used to define procedures
proc procname arglist body
Note that, as opposed in R, procedure names do not conflict with
variable names.

proc bmi {height weight} {
set bmi [expr S$weight/pow ($height,2)]
return S$bmi

}

and you can call it with

bmi 1.82 75
As R functions do, Tcl procedures return their last expression evaluated.
The curly braces don't perform any different in the procedure syntax:

they group arguments (space) or commands (new lines) and delay the
substitution until the procedure is called.

Strings

“Within Tcl, the basic philosophy is that everything is a string. [...].
Other data structures (such as proc, dict, list, handle) are built on top
of this fundamental assumption.” [see wiki.tcl.tk]

The Tcl string command provides a collection of string operations.

> lts first argument determines the operation to perform [tcl.tk man]

A few examples are:

string length {Hello World!}

set col [string range {green world} 0 4]
string equal green $col

set x 5.4
string is integer $x

The append command is to faster than double quotes:

set x "$x years of work" ;# 1s really the same as
append x " was waisted"

http://wiki.tcl.tk/1500
http://www.tcl.tk/man/tcl8.5/TclCmd/string.htm

Lists

Lists are like vectors in R one dimensional arrays. Lists are created with
the 1ist command

set names [list Jeff Bob Lea Tiffany]

Here some basic list manipulations, read the online manual on lists, join
and split for more information.

lindex $names 2 ;# access third element
lrange $names [list 1 3] ;# access 2nd to 4th element
lset names 1 Bobby ;# replace element

llength S$names ;# length of the list

lappend names Paul ; # append one element

concat $names [list Emilio Berta] ;# combine two lists
lsearch —-all —-inline S$names *ffx* ; # search for ff

where the asterisk («) in the last example stands for any string.

http://www.tcl.tk/man/tcl8.5/TclCmd/list.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/join.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/split.htm

Arrays

A Tcl array is similar to the /ist data structure in R. Indices of arrays are
keys (strings). See the tcl manual and wiki entry.
The basic syntax is

set array ("key") "your string" ;# define an array element
set Sarray ("key") ;# access an element

To avoid possible errors, do not use space characters in the key, as
parentheses do not group.

Arrays are one dimensional, but nothing stops you from using 1,1 and
1,2 etc. as the key string.

http://www.tcl.tk/man/tcl8.5/TclCmd/array.htm
http://wiki.tcl.tk/1032

Control Flow Statements

Tcl provides
» looping commands for, foreach and while
» conditional commands if and switch

Follow the links to get the documentation and some examples for each of
them.

To compare strings in a conditional statement, you may use eq and ne
instead of the string equal command

if{[string equal $strl $str2]} { ... }
is the same as

if{$strl eq $str2} { ... }

Note: “You can control loop execution with the break and continue
commands. The break command causes immediate exit from a loop,
while the continue command causes the loop to continue with the next
iteration.” [Brent Welch]

http://www.tcl.tk/man/tcl8.5/TclCmd/for.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/foreach.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/while.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/if.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/switch.htm
http://www.beedub.com/book/

Scoping and Namespaces

In Tcl, procedures do not see variables defined outside the procedure.
You can, however, access them with the global and upvar commands.

Apart from calling procedures, it is possible to create namespaces with
the namespace command. Like the string command, namespace provides
a collection of operations, defined by its first argument.

Similar as in R, procedures can be accessed via the double colon ::.
From the online documentation:

namespace eval counter {

namespace export bump ; # export procedure
variable num 0 ; # create and initialize num
variable

proc bump {} {
variable num
incr num ;# num = num + 1
}
So, you can increment num in the counter namespace with

counter: :bump ;# increment num

http://www.tcl.tk/man/tcl8.5/TclCmd/global.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/upvar.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/namespace.htm

Events

A single event loop permeates everything in Tcl/Tk programs
that deal with 1/O. When things happen on files, sockets, the
GUI, timers or other input sources, events fire and Tcl callbacks
are invoked, simple as that. [tcl.tk]

Callbacks can be triggered by button clicks in GUIs, keyboard input or
after a certain time delay, to name a few.

Graphical user interfaces (GUIs) work with event binding. We will
discuss them in the appropriate Tk section.

The after command is used to delay the execution of a command
to sometime in the future.

The vwait command enters the event loop until a predefined
variable gets modified.

Idle events are processed when Tcl has nothing to do. They are
registered with the after idle command.

http://en.wikipedia.org/wiki/Callback_(computer_science)
http://www.tcl.tk/about/event.html
http://www.tcl.tk/man/tcl8.5/TclCmd/after.htm
http://www.tcl.tk/man/tcl8.5/TclCmd/vwait.htm

More on the Tcl/Tk API for R

So far, we have used the .Tc1 function in R to interact with the Tcl
interpreter. There are some other low-level Tcl/Tk interface functions in
R, see the R documentation with

> ?TclInterface
A more native feel to invoke Tcl procedures in R gives the tc1 function.
For example

> bar <- "x"
> tcl("set", bar, 1:5)

assigns the Tcl variable x the list (vector) 1 2 3 4 5. Note how R
converts its data structure —here a vector— to a Tcl list.

Tcl variables in R

You can of course access every Tcl variable in R via the .Tc1 or tc1
function. It is, however, possible to create an R variable which links to a
Tcl variable

> x <= tclvar("3")

This creates the R variable x which links to a global Tcl variable called
RTc11, where the number gets for every new R/Tcl variable incremented

> .Tcl(’set Rtcll’

You can access the information from within R with
> tclvalue (x)

or change it with

> tclvalue (x) <- "3.26456"

Remember, every Tcl variable holds a string as its base type! Hence if
you need to use a Tcl variable holding a integer within an R routine, use

> as.numeric (tclvalue (x))

Callbacks

Whenever you want to invoke an R function from Tcl, you need to get
the hex-address of the R function. Say your function of interest is
foo <- function(a,b) {

cat (paste ("you entered: a=",a," and b=",b,’\n’, sep='"'))
}
You can get the Tcl command to invoke the function as follows

> .Tcl.callback (foo)
[1] "R_call 0x22b88al0 %a $b"

So

> .Tcl('R_call 0x22b88al0 3 47)

you entered: a=3 and b=4
<Tcl>

As to my knowledge, you can not use returned values in Tcl.

Tck/Tk Packages and Source files

Sometimes it is easier, and/or faster, to write your program completely in
native Tcl code rather than using the wrapper functions provided by the
tcltk package. If you want the Tcl program to work within R, you can
write an interface with the commands presented in this chapter and load
the Tcl procedures in R as follows:

> .Tcl(’source myTclSourceFile.tcl’)

You can load Tcl packages either with the tclrequire function form
within R or with the Tcl command

% package require Img
if you were to load the 1mg package.
Emacs allows you to execute Tcl code interactively line by line. Another

good tool which supports command completions with the s key is a
program (tk extension) called tkcon.

