

SYDE 599

Computational Simulations for Societal and Environmental Systems Syllabus for Winter Term – 2023 (subject to changes before the 1st day of classes)

Instructor

Name: Professor Rodrigo Costa, Ph.D. Office Location: E7-6412 and Online TEAMS, e-mail Email: <u>rodrigo.costa@uwaterloo.ca</u> Office Hours: <u>TBD</u> Open door policy & upon request.

Course Description:

This course will introduce and apply the fundamentals of computational simulation for complex systems. Data collection and analysis, conceptual modelling, computational modelling, output analysis, and communication of results to non-expert audiences will be covered extensively. Students will develop computational simulations to explore potential solutions for complex societal problems, identifying emergent scenarios, costs, and benefits with the goal of informing decision-makers. Experience with coding in Python is not required but assignments and class projects will require coding. In-class tutorials will help students develop their coding and modeling skills.

Schedule

Lectures and tutorials are scheduled as follows. The Friday of Week 1 will be dedicated to a tutorial on probability, statistics, and Python. Starting from Week 2, the last 30-minutes of each class will be dedicated to a tutorial going over an application of the concepts learned in that class.

Day	Time	Location	Lecture/ Tutorial	
Wednesday	04:30pm – 06:20pm	TBD	Lecture & tutorial	
Friday	03:30pm –5:20pm	TBD	Lecture & tutorial	

Learning Outcome

By the end of this course, students should be able to:

- List, explain, and apply the steps in the process for developing a simulation to model a socioenvironmental system or process. (1a, 1d)
- **Evaluate** the range of applicability (strengths and weaknesses) of various computational modelling approaches for a particular system or process. (2a, 2b, 12a)
- Be confident in their ability to use computers to solve scientific and engineering problems. (4a, 4b)
- Think critically about simulation results and assess the appropriate confidence level for a solution. (2c, 4c, 5c, 9a)
- **Communicate** results in a way as to convince a non-expert audience of the reliability of a solution or simulation insights. (7a, 9b)

Course Material Posting and Distribution

UW-Learn is the official site for posting material related to SYDE599, including but not limited to announcements, lecture slides, extra reading material, quizzes, project instructions...etc. Note: students <u>are not authorized</u> to post of SYDE599 materials on any other site without instructor's consent. This does not apply to homework solutions and class project materials developed solely by the students.

Evaluation: (*subject to change*)

ltem	Weight [%]
Homework	40
Homework 1 (HW1)	10
Homework 2 (HW2)	10
Homework 3 (HW3)	10
Homework 4 (HW4)	10
Project	60
Milestone 1 - scope & data	10
Milestone 2 - models & simulation	10
Presentation	15
Final Report	25

Table 1: Grade Distribution

Project-related deliverables will require groups of 3-4 students. Homework will be in groups of up to 2 students.

Contingencies for Covid-19:

Should we be required to move away from full-occupancy in-person teaching, the instructors will work with the Department to ensure that students have a fair opportunity to meet course requirements and to be notified of any changes in a timely manner.

Fair Contingencies for Emergency Remote Teaching:

We are facing unusual and challenging times. To provide contingency for unforeseen circumstances, the instructor reserves the right to modify course topics and/or assessments and/or weight and/or deadlines with due notice to students. In the event of further challenges, the instructor will work with the Department/Faculty to find reasonable and fair solutions that respect rights and workloads of students, staff, and faculty.

Course Outline / Topics to be Covered in Lectures (subject to change): Table 2: Course Outline

Week	Date	Lecture Topic	Homework	Class Project
1	Wednesday, Jan 11 Friday, Jan 13	Introduction to wicked problems and simulations	Form groups HW0 out (optional)	
	Wednesday, Jan 18	Models and workflows for complex systems		
2	Friday, Jan 20	Models and workflows for complex systems		
	Wednesday, Jan 25	Models and workflows for complex systems		
3	Friday, Jan 27	Models and workflows for complex systems	HW0 due, HW1 out	Project pitches due
	Wednesday, Feb 01	Modelling - introduction to object-oriented		
4	Friday, Feb 03	Modelling - introduction to object-oriented programming		
5	Wednesday, Feb 08	Modelling - cellular automata		
3	Friday, Feb 10	Modelling - cellular automata	HW1 due	
6	Wednesday, Feb 15	Modelling - agent-based simulation		
0	Friday, Feb 17	Modelling - agent-based simulation	HW2 out	Milestone 1
7	Feb 18-Feb 26	Reading Week		
8	Wednesday, Mar 01	Modelling – discrete event simulation		
0	Friday, Mar 03	Modelling – discrete event simulation		
0	Wednesday, Mar 08	Input analysis - extracting insights from data		
9	Friday, Mar 10	Input analysis - extracting insights from data	HW2 due, HW3 out	
10	Wednesday, Mar 15	Input analysis - fitting models to data		
10	Friday, Mar 17	Input analysis - fitting models to data		Milestone 2
11	Wednesday, Mar 22	Output analysis - verification and validation		
11	Friday, Mar 24	Output analysis - visualization	HW3 due, HW4 out	
	Wednesday, Mar 29	Output analysis communicating results		
12	Friday, Mar 31	Output analysis - communicating results		
13	Wednesday, April 05	Project presentations	HW4 due	Presentations
13	Friday, April 07	Good Friday - no class		
14	Monday, April 10	Class wrap up		Final Reports

The topics listed in Table 2 are a guideline. The rate of moving from one topic to the other and the deadlines for deliverables will be adjusted prior to the beginning of the course and at the discretion of the instructor based on the class progress and the students' performance.

Assignment deadlines

Homework assignments and project deliverables deadlines are on Fridays at 11:59 p.m.

Assignment Submission Procedures:

Assignments will be posted on LEARN 2 weeks prior to the due date. Due dates are listed in Table 2. *Slight variations may occur and will be announced ahead of time*.

Late Submission Rules:10

Grace period of 2 days is allowed per student, where students can submit the assignment late without penalty. The 2 days can be used for one assignment or split on 2 assignments. A fraction of the day i.e., hour(s) after deadline of submission counts as a day. Once grace days are used up, a penalty of 10% per day will be applied.

Class project:

Class Project will be announced and discussed in class at the start of the term. Project is split into 5 deliverables: a project pitch, two milestones, a presentation, and a final report. The pitch and milestones will prepare the team to their final project application. The topic of the class project will be decided by the groups. The project pitch will allow the instructor to provide early feedback on the intended topic.

Instructor's policy:

Guiding Principles for our SYDE-BME Community (faculty, staff, and students):

1) Be compassionate. 2) Be accountable. 3) Be patient. 4) Be safe and healthy.

Compassionate and respectful communication: Most online communication between the Department and students will be done through LEARN and/or email. Students are reminded that they should use their email account name@uwaterloo.ca. Include an academic signature with your full name, program, student- ID).

SYDE-BME COMMENT ON ACCOMMODATION: We respect that our SYDE-BME students are independent adult decision-makers, with many opportunities to partake in activities that might be in time conflict with academic deadlines and deliverables. Along with the right to make adult decisions comes the responsibility and accountability for those decisions and any outcomes.

The University of Waterloo's policy on accommodation for missed deliverables pertains to verifiable health matters, and highly unfortunate events (for example: family tragedies). The Department of Systems Design Engineering follows University of Waterloo's general policy: students who self-elect to forgo a deliverable receive a "0" for that deliverable. It is preferred practice so that fairness is maintained for members of the same class/course by avoiding preferential treatment, and so that instructors are not burdened with having to create extra quizzes, deliverables, etc. It also reflects professional practice, as failing to show up to work and missing deadlines can be very costly to the company and individual (for example: not submitting a contract proposal, or design review on time). *Please read the policy here:* [Accommodation due to illness]

SYDE-BME Academic Priorities over Co-op Interviews: students should be able to arrange co-op interviews that do not conflict with major deliverables (for example: timed course midterms, final exams). For deliverables with longer time windows (for example: 24-48 hours or more), students must manage their time for deliverables and co-op interviews accordingly. If a co-op interview conflicts with a short deliverable time window (for example: 1-3 hours), then students **MUST** follow the CECA procedure for rescheduling the interview: [CECA rescheduling co-op interviews]

Compassionate Accommodation: If you are facing challenges that are affecting more than one course contact the Associate Chair Undergraduate (A.C.U.G. email: <u>sydeunde@uwaterloo.ca</u>) or the Director of BME (email: <u>sdbmedir@uwaterloo.ca</u>). They will review your case and coordinate a reasonable and fair plan in consultation with appropriate others (for example: instructors, Department Undergraduate Studies Committee, Chair, AccessAbility Services, Engineering Counselling services, Registrar's Office).

Academic Integrity: To maintain a culture of academic integrity, members of the University of Waterloo community are expected to promote honesty, trust, fairness, respect, and responsibility. [Check <u>Academic Integrity</u> on UWaterloo website for more information.]

All students are expected to work individually and submit their own original work. Under Policy 71, the instructor may have follow-up conversations with individual students to ensure that the work submitted was completed on their own.

Grievance: A student who believes that a decision affecting some aspect of his/her university life has been unfair or unreasonable may have grounds for initiating a grievance. Read Policy 70, <u>Student</u> <u>Petitions and Grievances, Section 4</u>. When in doubt please be certain to contact the department's administrative assistant who will provide further assistance.

Discipline: A student is expected to know what constitutes <u>academic integrity</u> [check the UWaterloo weblink] to avoid committing an academic offence, and to take responsibility for his/her actions. A student who is unsure whether an action constitutes an offence, or who needs help in learning how to avoid offences (e.g., plagiarism, cheating) or about "rules" for group work/collaboration should seek guidance from the course instructor, academic advisor, or the undergraduate Associate Dean. For information on categories of offences and types of penalties, students should refer to <u>Policy 71,</u> <u>Student Discipline</u>. For typical penalties check <u>Guidelines for the Assessment of Penalties</u>.

Appeals: A decision made, or penalty imposed under Policy 70 (Student Petitions and Grievances) (other than a petition) or Policy 71 (Student Discipline) may be appealed if there is a ground. A student who believes he/she has a ground for an appeal should refer to <u>Policy 72 (Student Appeals)</u>

Note for Students with Disabilities: AccessAbility Services, located in the new addition to Needles Hall, room 1401, collaborates with all academic departments to arrange appropriate accommodations for students with disabilities without compromising the academic integrity of the curriculum. If you require academic accommodations to lessen the impact of your disability, please register with the office at the beginning of each academic term. To schedule an appointment or to contact the virtual Front Desk, please phone 519-888-4567 ext. 45231 or ext. 47922 or e-mail access@uwaterloo.ca.

Wellness Support and Contact Information: University can be a challenging environment and it is normal to need support from time-to-time. Campus Wellness services are available to students through counselling and health services. If you are struggling or need someone to talk to you, please reach out. To book an appointment or learn more about the services, call 519-888-4567 x 32655 or explore www.uwaterloo.ca/campus-wellness. If you're experiencing a crisis and feel unable to cope and Campus Wellness is closed, contact any of these after-hours supports: EmpowerMe (1-833-628-5589), Good2Talk (1-866-925-5454) or Here 24/7 (1-844-437-3247). They are available at any time of the day or night to help.

CEAB Graduate Attributes:

The numbers in parentheses next to learning outcomes above refer to the CEAB (Canadian Engineering Accreditation Board) Engineering Graduate Attributes defined by the Canadian Engineering Accreditation Board that are listed below as a reference (Table 4):

Table 4: CEAB – Graduate Attributes and Indicators

GA#	Attribute	PI	Program-Level Indicator	
		1a	Demonstrate understanding of concepts in mathematics	
	Knowledge Base	1b	Demonstrate understanding of concepts in natural science	
1		1c	Demonstrate understanding of engineering fundamentals	
		1d	Demonstrate understanding of specialized engineering knowledge	
		2a	Formulate a problem statement	
	Problem	24	Develop models to solve engineering problems including identifying	
2	Analysis	2b	approximations, assumptions, and constraints	
		2c	Critically evaluate solutions of engineering problems	
		3a	Design experiments ¹ to investigate complex engineering problems	
			Gather information from relevant sources ² to address complex engineering problems	
3	Investigation	3b		
		3c	Synthesize information from multiple sources to reach valid conclusions	
		4a	Define design requirements and specifications for complex, open-ended engineering problems ³	
4	Design		Generate and refine potential solutions to complex, open-ended design problems	
-	Design	4b		
		4c	Critically evaluate and compare design choices	
		5a	Select appropriate engineering tools ⁴ , considering their limitations	
	Use of		Create and/or modify appropriate engineering tools, identifying their	
5	Engineering	5b	limitations	
	TOOIS	5c	Use ⁵ engineering tools appropriately	
	Individual and	6a	Contribute as an active team member or leader to complete individual tasks	
6	Teamwork	6b	Collaborate with others to complete tasks effectively as a team	
		7a	Generate appropriate documentation to communicate within the profession	
7	Communication		and to society at large	
	skills	7b	Orally present information within the profession and to society at large	
		7c	Interpret information, including instructions	
		8a	reference to the protection of the public and its interest	
8	Professionalism	8b	Describe the importance of codes, standards, best practices, laws, and	
			regulations within engineering	
			Identify the relevance of and uncertainty associated with the different aspects (social,	
		9a	cultural, economic, nealth, salety, legal, environmental) of an engineering project	
9	Impact of			
	engineering	9b	Analyze the social, health, safety, and environmental aspects of an engineering	
		100	project, incorporating sustainability considerations in making decisions	
	Ethics and equity	rua	Identify how an engineer is accountable to multiple stakeholders in	
10		10b	engineering practice	
		10c	Identify equitable and inequitable situations or behaviours	
<u> </u>	Economics and project		Apply project management techniques in engineering projects, with attention to risk, and	
11		11a	change	
		11h	Perform economic analyses of engineering projects with attention to	
	management		uncertainty and limitations	
	Lifolong	12a	Identify gaps in their knowledge, skills and abilities	
12	learning	12b	Obtain and evaluate information or training from appropriate sources	
	-	12c	Reflect on the use of information or training obtained	