SUSTAINABILITY AND SOCIAL ENTREPRENEAURSHIP FELLOWSHIP, TEAM MICROALGAE

MEGHAN ALMEIDA, CRISTINA TZUNUN PALOMO, JUAN MANUEL

- biomass.
- to low toxicity and easy disposal.

MICROALGAE CULTIVATION AT MID-HALTON WASTEWATER FACILITY IDEAs Clinic

BIOMASS UTILIZATION SUGGESTIONS

Harvest –

1.) Biodiesel 2.) Biogas 3.) Animal Feedstock

WATER PARAMETERS [2][5]

Parameters	Current Conditions	Ideal Conditions	The selling price for 10% profit margains for diesel produced from HRAPs is \$9.84 and \$20.53/gal for disel produced from PBRs, higher than cost for disel per gallon.			
pН	6.7	7.0				
Temperature	18°C	25°C				
C/N ratio	~	12:1	Process	Productivity	Total Capital	Production Cost
Light Intensity	About 18:6 hours	About 16:8 hours			Cost	
		HRAPs	0.9 kg/m³ ⋅ day	2.125	0.00792	
Aeration	Diffusers	2.05 g/L in an aeration intensity of 3 cm3/s.		(Microalgae)	CAD/m ²	CAD/g
			PBRs	1.25 kg/m³ · day (Microalgae)	14.83 CAD/m ²	0.01716 CAD/g
ENERGY BALANCE			Biofuel HRAPS	0.00495 liters/m²/day	131 \$M	0.289 CAD/L
			Biofuel Production PBRs	0.00495 liters/m²/day	74 \$M	6.31 CAD/L
Energy Balance was performed on both microalgae cultivation systems [6]. Net energy = energy out - energy in						
			Biogas Production	2,972,222 kwh/day	16.3 \$M	\$0.0821 CAD/kWh

Energy out: energy produced by microalgae. Energy In: energy required to

produce/cultivate the microalgae.

Net Energy Produced

3.) Animal Feed Production [12] • Process the dried biomass into a fine powder or pellets • Blend with other feed ingredients to ensure an even distribution of nutrients.

• Presence of amino acids, PUFAs, carotenoids and vitamins enhances the nutritional quality of animal products [13].

[1] "Wastewater collection and treatment," Halton Region, https://www.halton.ca/For-Residents/Water-and-Environment/Wastewater/Wastewater-Treatment-Plants-Tours (accessed Jul. 22, 2024). [2] Y. Cai et al., "Effects of C/N ratio on the growth and protein accumulation of heterotrophic Chlorella in broken Rice Hydrolysate," Biotechnology for Biofuels and Bioproducts, vol. 15, no. 1, Oct. 2022. doi:10.1186/s13068-022-02204-z [3] S. Ranjan, P. K. Gupta, and S. K. Gupta, "Comprehensive evaluation of high-rate algal ponds: Wastewater treatment and biomass production," Application of Microalgae in Wastewater Treatment, pp. 531–548, 2019. doi:10.1007/978-3-030-13909-4_22

[4] R. Sirohi, A. Kumar Pandey, P. Ranganathan, S. Singh, A. Udayan f, M. Kumar Awasthi, A. Tuan Hoang, C. Reddy Chilakamarry, S. Hyoun Kim, Sang Jun Sim, "Design and Applications of Photobioreactors- a Review." Bioresource Technology, Elsevier, 17 Feb. 2022, www.sciencedirect.com/science/article/pii/S0960852422001870. [5] İ. DENİZ, "Determination of growth conditions for Chlorella vulgaris," Marine Science and Technology Bulletin, vol. 9, no. 2, pp. 114–117, Dec. 2020. doi:10.33714/masteb.717126 [6] K. D. Hall et al., "Energy balance and its components: Implications for body weight regulation," The American Journal of Clinical Nutrition, vol. 95, no. 4, pp. 989–994, Apr. 2012. doi:10.3945/ajcn.112.036350 [7] R. Davis, A. Aden, P. T. Pienkos, "Techno-economic analysis of autotrophic microalgae for fuel production, "Applied Energy, 2011.

[8] L. F. Eggers and D. Schwudke, "Liquid extraction: Folch," Encyclopedia of Lipidomics, pp. 1–6, 2016. doi:10.1007/978-94-007-7864-1_89-1

[9] N. A. Azeez et al., "Biodiesel potentials of microalgal strains isolated from fresh water environment," Environmental Challenges, vol. 5, p. 100367, Dec. 2021. doi:10.1016/j.envc.2021.100367 [10] N. Wu et al., 'Techno-Economic Analysis of Biogas Production from Microalgae through Anaerobic Digestion', Anaerobic Digestion. IntechOpen, Sep. 04, 2019. doi: 10.5772/intechopen.86090. [11] H. M. Zabed, S. Akter, J. Yun, G. Zhang, Y. Zhang, X.Qi, "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Volume 117, 2020, 109503, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2019.109503. [12] A. López-Sánchez et al., "Valorization of livestock waste through combined anaerobic digestion and microalgae-based treatment in México: A techno-economic analysis for distributed biogas generation, animal feed production, and carbon credits trading," Environmental Technology & Innovation, vol. 32, p. 103321, Nov. 2023. doi:10.1016/j.eti.2023.103321 [13] Saadaoui et al., "Microalgal-based feed: Promising alternative feedstocks for livestock and poultry production," Journal of Animal Science and Biotechnology, vol. 12, no. 1, Jun. 2021. doi:10.1186/s40104-021-00593-z

ECONOMIC ANALYSIS [7] [11]

METHANE RECIRCULATION

To optimize biomass production from microalgae, a drying process is necessary post-harvest. Presently, methane generated at the facility is flared and remains unutilized. This methane can be redirected to power the microalgae drying process [12], thereby eliminating the need for additional infrastructure expenditures.

REFERENCES